Journal of Visual Languages and Computing (1994) 5, 1-3

Declarative Visual Languages

THERE 1S A NATURAL SYNERGISM between declarative programming paradigms and visual
programming that is mutually beneficial. Let us consider declarative programming
paradigms first. Declarative programming paradigms focus on relationships rather
than algorithms. Relationships tend to be multi-dimensional; algorithms tend to be
much more single-dimenstonal. In addition, declarative languages are largely devoid of
control flow information; often they are non-deterministic. Thus, they need a
representation that does not require, or even imply, an ordering. In summary,
declarative languages need an unordered, multi-dimensional representation.

Now, let us consider visual programming. Visual programming offers the potential
of improving our ability to communicate and solve problems, provided we use the
visual medium to advantage. To do so requires that we realize that visual informaton
is largely unordered and multi-dimensional. This argues that a visual programming
environment maximizes its strengths when the underlying paradigm needs an
unordered, multi-dimensional representation. Bingo! We have a match.

For these reasons, it is not surprising that declarative programming paradigms and
visual programming are increasingly being combined in declarative visual languages.
This special issue focuses on some such declarative visual languages and provides
examples of some of their diversity of application.

Declarative visual languages emphasize defining relationships existent in the prob-
lems they seek to solve and minimizing ‘computer programming’, i.e. the mapping
of these relationships to sequences of operations. It is this ‘computer programming’
process that is so time-consuming, complex and error-prone. By avoiding it,
largely relying upon the underlying system to derive control sequences based strictly
upon the relationships and dependencies among the data, we can expedite the
programming process, enhance the applicability of the solution and minimize
over-constraining the implementation. All three of these benefits are important.
Because of them declarative visual languages will continue to grow in importance.

Expediting the programming process is probably the single most important
objective of computing science research. The more computer algorithms are con-
structed by the underlying system, the less programmers must do. Yer, such assistance
by the system does not come without a cost. Historically, declarative languages have
at times produced unacceptable machine performance. Recent advances in declarative
language compilation techniques, along with ever-increasing CPU speed and memory
size, have greatly reduced this difficulty. Increasingly, declarative visual languages
provide a viable means of reducing programming time.

Enhancing the applicability of the solution is perhaps the next most important
objective of computing science research. Again, the more we can leave constructing
computer algorithms out of the programming process and up to the underlying
system, the more we increase the flexibility of the solution and its future applicability.
By restricting the programming process to expressing relationships existent in the
problem domain and not allowing these relationships to be intermingled with
sequencing constructs, we more readily accommodate future changes. A programmer
can change the problem relationships, and the underlying system will derive a new
evaluation order.

1045-926X /94 /010001 + 03 $08.00/0 © 1994 Academic Press Limited

2 M. M. BURNETT & A. L. AMBLER

Finally, minimizing over-constraining the implementation is becoming increasingly
important as a goal of computing science research. The fastest and most cost-effective
machines in the future will most certainly be parallel. To exploit these machines
effectively we will need to consciously remove control and sequencing information
from our programs, leaving the machine as much freedom as possible for decisions of
evaluation ordering. Declarative visual languages are already largely devoid of
unnecessary control and sequencing information.

The four papers in this special issue provide a good breadth of declarative visual
language approaches and their applications. Included are four of the more prevalent
approaches to declarative visual languages: rule-based, form-based, logic and func-
tional. Of the four papers, two are specific to application areas: program visualization
and temporal specification; and two are generic to computer programming.

The first paper, by Kenneth Cox and Gruia-Catalin Roman, describes a rule-based
approach to program visualization. The central problem for program visvalization is
how one associates program events, such as a variable taking on a new value, with an
appropriate visualization. Typical approaches have involved a two-step process of,
first, instrumenting the program to signal interesting events, and, second, constructing
programs that map these interesting events into appropriate visualizations. Visualiza-
tion systems have provided extensive packages to facilitate primarily the second step,
constructing programs that map these interesting events into appropriate visualiza-
tions. Cox and Roman provide an alternative that uses a declarative rule-based tuple
representation to map program state into visualization state. While the representation
used for mapping rules is not a visual representation, it is an excellent example of the
use of a declarative language applied to visual objects. After presenting their
methodology, the authors examine its computational power and look at its potential
use in other areas.

The second paper, by Margaret Burnett and Allen Ambler, discusses visual data
abstraction within declaratuve visual languages. While the abstraction methodologies
used in building larger programs have been well-studied for textual procedural
languages, they have received considerably less attention in declarative languages and
little attention in visual programming languages. Visual data abstraction differs from
traditional data abstraction in two ways: (1) it must address the associated graphical
representations and interacuve behaviors as a part of the definition of abstract data
types; and (2) it must support development of visual abstractions entirely through
visual programming mechanisms. Burnett and Ambler use Forms/3, a form-based
approach to general-purpose programming, to illustrate visual data abstraction. The
paper discusses a number of programming-language issues, including maintaining the
liveness associated with visual environments, and information hiding and its conflict
with visibility in a visual environment. The issue of declarativeness becomes the most
pronounced in the consideration of event-handling, which is needed to meet the
interactive component of visual data abstraction. An explicit approach to time is used
to solve this problem, supporting event-oriented programming while at the same time
preserving referential transparency.

The third paper, by L. K. Dillon, G. Kutty, P. M. Melliar-Smith, L. E. Moser and
Y. S. Ramakrishna, employs a visual temporal logic approach to stating temporal
specifications for concurrent systems. Previous textual approaches to temporal logic
specifications, while adequate, have been difficult to read and understand, and have

DECLARATIVE VISUAL LANGUAGES 3

had little impact on practical applications. Dillon et al. use stylized timing diagrams to
communicate complex relationships and dependencies. In practice, designers often
construct such stylized timing diagrams as a means of understanding and construct-
ing correct temporal specifications. The authors have developed a methodology and a
system, GIL (Graphical Interval Logic), for working directly from these diagrams
rather than subsequently translating them to some textual form. In addition, while the
system designer is constructmg specifications, the GIL system provides visual clues to
help remind him/her of existing constraints and to discover and correct flaws. The
system incorporates a refutation-style proof checker. The paper discusses the design
and use of GIL, including developing and proving temporal specifications for the ‘fair
mutex system’ example of concurrent processes.

The fourth, paper, by Jorg Poswig, Guido Vrankar and Claudio Moraga, describes
a higher-order functional visual programming language called VisaVis. Programming
in VisaVis uses 2 mechanism termed substitution, in which data and concrete instances
of function invocations substitute for more abstract, template-like function invoca-
tions. The paper describes the programming process, showing how continuous visual
feedback is provided to the user on the status of each function invocation. In addition,
it presents an optimized translation of VisaVis programs into FFP, a formal system
for functional programming. An important goal of the translation approach was to
preserve the data parallelism that is inherent in programs created in VisaVis. The
authors conclude with brief descriptions of other research being done using VisaVis.
These include animation of visual program execution, work on an implicit-type
system and a query interface for browsing the collection of function definitions.

The four papers presented here provide excellent examples of the potential of
declarative visual languages. In particular, they explore the merger of declarative
programming paradigms and visual programming to achieve systems for expressing
problem solutions that expedite the programming process, enhance the applicability of
the solution and minimize over-constraining the implementation. There are many
other works that might have been presented here as well. In putting together this
special issue, we hope that more researchers will take up the pursuit of declarative
visual languages for use in these and other problem domains.

MARGARET M. BURNETT AND ALLEN L. AMBLER
Guest EpITORS

