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Abstract

Spreadsheet languages, which include commercial
spreadsheets and various research systems, have proven
to be flexible tools in many domain specific settings. Re-
search shows, however, that spreadsheets often contain
faults. We would like to provide at least some of the
benefits of formal testing and debugging methodologies
to spreadsheet developers. This paper presents an inte-
grated testing and debugging methodology for spread-
sheets. To accommodate the modeless and incremental
development, testing and debugging activities that occur
during spreadsheet creation, our methodology is tightly
integrated into the spreadsheet environment. To accom-
modate the users of spreadsheet languages, we provide
an interface to our methodology that does not require an
understanding of testing and debugging theory, and that
takes advantage of the immediate visual feedback that is
characteristic of the spreadsheet paradigm.

1 Introduction

Spreadsheet languages, which include commercial
spreadsheet systems as a subclass, have proven useful
in many domain specific settings, including business
management, accounting, and numerical analysis. The
spreadsheet paradigm is also a subject of ongoing re-
search in many domain specific areas. For example, there
is research into using spreadsheet languages for matrix
manipulation problems [33], for providing steerable sim-
ulation environments for scientists [7], for high-quality
visualizations of complex data [9], and for specifying
full-featured GUIs [21].

Despite the end-user appeal of spreadsheet languages
and the perceived simplicity of the spreadsheet paradig-
m, research shows that spreadsheets often contain faults.
For example, in an early spreadsheet study, 44% of “fin-

ished” spreadsheets still contained faults [4]. A more re-
cent survey of other such studies reported faults in 38%
to 77% of spreadsheets at a similar stage [25]. Of per-
haps greater concern, this survey also includes studies of
“production” spreadsheets actually in use for day-to-day
decision-making: from 10.7% to 90% of these spread-
sheets contained faults.

One possible factor in this problem is the unwarranted
confidence spreadsheet developers have in the reliabili-
ty of their spreadsheets [10]. Another is the difficulty
of creating and debugging spreadsheets: in interviews,
experienced spreadsheet users reported that debugging
spreadsheets could be hard because tracing long chains
of formulas is difficult and because the effects of a small
fault may not be visible until they have been propagated
to a final result [14, 22].

To begin to address these problems, our previous work
[30] presented a testing methodology for spreadsheet-
s. That methodology allowed the user to indicate which
cells are correct for a given test case, and to view test-
edness information inferred from those marks. Building
on that work, this paper describes our approach to inte-
grating support for debugging and fault localization with
that methodology. This integrated methodology adds the
ability to mark which cells areincorrect for a given test
case, and to view fault localization information inferred
from both correct and incorrect marks. Key to the ef-
fectiveness of our approach is that it is tightly integrated
into the spreadsheet environment, facilitating the incre-
mental testing and debugging activities that normally oc-
cur during spreadsheet development. Our methodology
also employs immediate visual feedback to present in-
formation in a manner that requires no knowledge of the
underlying testing and fault localization theories.

1



2 Background: Testing Spreadsheets

The underlying assumption in our previous work has
been that, as the user develops a spreadsheet incremen-
tally, he or she is also testing incrementally. We have in-
tegrated a prototype implementation of our approach to
incremental, visual testing into the spreadsheet language
Forms/3 [6]; the examples in this paper are presented in
that language.

Testing following our methodology [30] is intend-
ed for spreadsheet developers, not software engineers.
Thus, our methodology does not include specialized test-
ing vocabulary – in fact, it includes no vocabulary at
all, instead presenting test-related information visually.
Users test spreadsheets by trying different input values,
and validating correct cells with a checkmark. Cells start
out with red borders, indicating that they are untested. As
cells are checked, their border colors change along a red-
blue continuum, becoming bluer as the cell’s testedness
increases. When all the cells are blue, the spreadsheet is
considered tested.

Although users of our methodology need not realize
it, they are actually using a dataflow test adequacy cri-
terion [18, 23, 26] and creatingdu-adequatetest suites.
In the theory that underlies this methodology, adefini-
tion is a point in the source code where a variable is as-
signed a value, and ause is a point where a variable’s
value is used. Adefinition-use pair, or du-pair, is a tu-
ple consisting of a definition of a variable and a use of
that variable. A du-adequate test suite is based on the
notion of anoutput-influencing all-definition-use-pairs-
adequate test suite[13] and is a test suite that exercises
each du-pair in such a way that it participates (dynami-
cally) in the production of an output explicitly validated
by the user.

In spreadsheet terms, cells are considered variables. A
cell is used when another cell references it, and a cell is
defined within its own formula. If a cell’s formula con-
tainsif expressions, then the cell can have multiple def-
initions. The testedness of a cell is calculated as the num-
ber of validated du-pairs with uses in that cell, divided by
the total number of du-pairs with uses in that cell. Also,
in the output-influencing scheme, testedness propagates
against dataflow, so that if a cella is validated, and if one
of the du-pairs that provideda’s validated value has its
definition in cellb, then any du-pairs that participated in
providingb’s value are also considered tested.

This underlying theory is hidden from the user,
for whom du-pairs represent interactions between cells

caused by references in cell formulas. These interaction-
s can be visualized by the user through the display of
dataflow arrows between subexpressions in cell formu-
las, and these arrows are colored to indicate whether the
corresponding interaction has been tested.

This methodology also lets the user incrementally and
simultaneously develop and test their spreadsheets. If the
user adds a new formula or alters an existing formula, the
underlying evaluation engine determines the du-pairs af-
fected by this alteration and updates stored and displayed
testing information. In this context, the problem of incre-
mental testing of spreadsheets is similar to the problem
of regression testing [29] and our solution emphasizes
the importance of retesting code affected by modifica-
tions.

Figure 1 illustrates our prototype implementation of
this methodology in use. The figure depicts a Form-
s/3 spreadsheet implementing a simple security check.
Three key values identifying a person are placed in the
cellskey1, key2, andkey3. The output cellskey1 out,
key2 out, andkey3 out give a garbled version of the o-
riginal keys that can be checked against a data base to
determine if the person can be accepted. The spread-
sheet developer initially validated the three output cells
in this program. Then, to test further, the developer en-
tered a different test case consisting of a different value
for key3. Doing so changed the checkmark onkey3 out
to a question mark, indicating that previously displayed
values have been validated, but the current ones have not.
The formula forkey3 3 contains anif expression. So
far only one branch of this expression has been tested, so
the borders for thekey3 out andkey3 3 cells are pur-
ple (gray in this paper). Cellkey3 2 has not been test-
ed at all, so it is red (a light gray in this paper). Cells
key1 out, key1 1, key2 out, key2 1, andkey3 1 have
been completely tested, and have blue borders (black in
this paper). The colors of displayed arrows between cells
indicate the degree to which dependencies (interactions)
between those cells have been validated.

3 An Integrated Methodology for Testing
and Debugging Spreadsheets

During the course of a spreadsheet development ses-
sion, users will locate failures in their spreadsheets: cases
where cell outputs are incorrect. The interactive and in-
cremental manner in which spreadsheets are created sug-
gests that on discovering such failures, users may imme-
diately attempt to locate and correct the faults that cause
those failures.
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Figure 1: Forms/3SecurityCheck spreadsheet with testing information displayed.

We wish to provide spreadsheet end users with auto-
mated support for this process of debugging and fault lo-
calization. There are three attributes of spreadsheet lan-
guages and their users that place constraints on method-
ologies providing such support:

• Spreadsheets are modeless.Spreadsheet creation
does not require the separate code, compile, link,
and execute modes typically required by tradition-
al programming languages. Spreadsheet developers
simply write formulas, enter values, and see results.
Thus, in order for testing and debugging techniques
to be useful for spreadsheet developers, the develop-
ers must be allowed to debug and test incrementally
in parallel with spreadsheet development.

• Spreadsheet developers are not likely to under-
stand testing and debugging theory.Given their
end user audience, spreadsheet testing and debug-
ging techniques cannot depend on the user under-
standing testing or debugging theory, nor should
they rely on specialized vocabularies based on such
theory.

Furthermore, spreadsheet developers are not liable
to understand the reasons if debugging feedback
leads them astray. They are more likely to be-
come frustrated, lose trust in our methodology, and
ignore the feedback. Therefore, our methodology
must avoid giving false indications of faults where
no faults exist.

• Spreadsheets offer immediate feedback.When
a spreadsheet developer changes a formula, the
spreadsheet displays the results quickly. Users have
come to expect this responsiveness from spread-
sheets and may not accept functionality that signifi-
cantly inhibits responsiveness. Therefore the inte-
gration of testing and debugging into the spread-
sheet environment must minimize the overhead it
imposes.

Our methodology has been developed with these con-
straints in mind.

3.1 Slicing and dicing

Our debugging methodology is based on techniques
for program slicing and dicing developed originally for
imperative programs. We briefly review those techniques
here in turn.

Program slicingwas introduced by Weiser [34] as a
technique for analyzing program dependencies. A pro-
gram slice is defined with respect to a slicing criterion
〈s, v〉 in which s is a program point andv is a subset of
program variables. A slice consists of a subset of pro-
gram statements that affect, or are affected by, the values
of variables inv at s [34]. Backward slicingfinds all the
statements that affect a given variable at a given state-
ment, whereasforward slicing finds all the statements
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that are affected by a given variable at a given statement.
Weiser’s slicing algorithm calculatesstaticslices, based
solely on information contained in source code, by it-
eratively solving dataflow equations. Other techniques
[15, 24, 27, 31] calculate static slices by constructing and
walking dependence graphs.

Korel and Laski [16] introduceddynamic slicing, in
which information gathered during program execution is
also used to compute slices. Whereas static slices find
statements that may affect (or may be affected by) a giv-
en variable at a given point, dynamic slices find state-
ments that may affect (or may be affected by) a given
variable at a given point under a given execution. Dy-
namic slicing usually produces smaller slices than static
slicing. Dynamic slices are calculated iteratively in [16];
an approach that uses program dependence graphs has
also been suggested [1].

A great deal of additional work has been done on pro-
gram slicing. An extensive survey of slicing is given in
[32]. A more recent survey of dynamic slicing is given
in [17].

Program dicing was introduced by Lyle and Weiser
[20] as a fault localization technique for further reduc-
ing the number of statements that need to be examined to
find faults. Whereas a slice makes use only of informa-
tion on incorrect variables at failure points, a dice also
makes use of information on correct variables, by sub-
tracting the slices on correct variables away from the s-
lice on the incorrect variable. The result is smaller than
the slice on the incorrect variable; however, a dice may
not always contain the fault that led to a failure.

Lyle and Weiser describe the cases in which a dice on
an incorrect variable not caused by an omitted statement
is guaranteed to contain the fault responsible for the in-
correct value in the following theorem [20]:

Dicing Theorem. A dice on an incorrect vari-
able contains a fault (except for cases where
the incorrect value is caused by omission of a
statement) if all of the following assumptions
hold:

1. Testing has been reliable and all incor-
rectly computed variables have been i-
dentified.

2. If the computation of a variable, v, de-
pends on the computation of another
variable, w, then whenever w has an in-
correct value then v does also.

3. There is exactly one fault in the program.

In this theorem, the first assumption eliminates the case
where an incorrect variable is misidentified as a correct
variable. The second assumption removes the case where
a variable is correct despite depending on an incorrect
variable (e.g. when a subsequent computation happens
to compensate for an earlier incorrect computation, for
certain inputs.) The third assumption removes the case
where two faults counteract each other and result in an
accidentally correct value.

Given the assumptions required for the Dicing The-
orem to hold, it is clear that dicing must be an imper-
fect technique in practice. Thus, Chen and Cheung [8]
explore strategies for minimizing the chance that dicing
will fail to expose a fault that could have produced a par-
ticular failure, including the use of dynamic rather than
static slicing.

3.2 Integrated testing and debugging

We have developed an integrated and incremental test-
ing and debugging methodology that uses a fault local-
ization technique similar to dicing. To achieve a close in-
tegration with the spreadsheet environment, our method-
ology gives spreadsheet developers the ability to edit,
test, or debug a spreadsheet at any point during the devel-
opment process without losing previously gathered test-
ing or debugging information. To make this possible, our
methodology provides the following user operations:

• The ability to view or hide testing and fault local-
ization information at any time.

• The ability to incrementally mark cell values correct
or incorrect for a single test case.

• The ability to change test cases without losing test-
ing or debugging information gathered during pre-
vious testing.

• The ability to make a potential bug fix or other for-
mula edit without losing testing or debugging infor-
mation.

We next discuss how our methodology provides these
functionalities while satisfying the constraints imposed
by spreadsheet environments. We present the material
in the context of an integrated spreadsheet development,
testing, and debugging session.
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Figure 2:SecurityCheck spreadsheet at an early stage.

3.2.1 Spreadsheet development and simple fault lo-
calization

Suppose that, starting with an empty spreadsheet, the us-
er begins to build theSecurityCheck application dis-
cussed in Section 2 and reaches the state shown in Figure
2. At this state, the user’s spreadsheet contains an incor-
rect output: thekey3 out cell, which should contain the
value(4508/97), contains the value 23. This is caused
by an incorrect cell reference in the cellkey3 2. Instead
of dividing the value ofkey2 1 by the value ofkey3, the
formula forkey3 2 divideskey2 1 by itself.

As soon as an incorrect output is noticed, users can
place an “X” mark in a cell to indicate that it has an in-
correct value. Suppose the user places such a mark in the
key3 out cell.

Now, suppose the user decides to investigate the cause
of this failure immediately. Having placed one or more
X marks, the user can view fault localization information
by pressing a “Show Possible Bugs” button. This caus-
es cells suspected of containing faults to be highlighted
in red (gray in this paper); in this case, the highlighted
cells are those contained in the backward dynamic slice

of key3 out. Note that the border color scheme is dif-
ferent from that used in our previous testing methodolo-
gy. Previously border colors went from red, representing
untested, to blue, representing tested. Now border colors
start out at black (light gray in this paper) to represent
untested, move to various shades of purple to represent
partially tested, and finally move to blue (black in this
paper) to represent fully tested. This color scheme was
chosen to avoid a conflict between red border colors rep-
resenting an untested cell, and a red background color
representing a potentially faulty cell.

Now six of the cells are highlighted red, including
key3 out. Two of these cells are constant cells. For our
purposes, a constant cell is any cell whose formula does
not refer to another cell. These cells are highlighted in
case the incorrect value is caused by a data entry error.
At this point the user, knowing that the entered data is
correct, can ignore those cells and concentrate on the re-
maining four cells.
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Predecessors(C) The set of cells inS thatC references in its formula.
Successors(C) The set of cells inS that referenceC in their formulas.
DynamicPredecessors(C) The set of cellsD ∈ S such thatD’s value was used the

last time the value ofC was computed.
DynamicSuccessors(C) The set of cellsD ∈ S such thatD used the value ofC

the most recent timeD’s value was computed.
BackwardSlice(C) The transitive closure onPredecessors(C).
ForwardSlice(C) The transitive closure onSuccessors(C).
DynamicBackwardSlice(C) The transitive closure onDynamicPredecessors(C).
DynamicForwardSlice(C) The transitive closure onDynamicSuccessors(C).
IncorrectDependentsOf (C) The set of cells inDynamicForwardSlice(C) that have

been marked incorrect.
CorrectDependentsOf (C) The set of cells inDynamicForwardSlice(C) that have

been marked correct.

Table 1: The definitions used in determining fault likelihood. HereS is a spreadsheet, andC is any cell inS.

3.2.2 Applying additional knowledge to further re-
fine fault localization information

Dicing in a spreadsheet environment would find the set
of cells that contribute to a value marked incorrect but
not to a value marked correct. The set of cells indicated
by dicing could exclude a fault if one of the conditions in
Dicing Theorem were violated. However, one constraint
our methodology must satisfy is that the user should not
be frustrated by searching through highlighted cells to
find that none of them contain faults. We believe that the
restrictions imposed by the Dicing Theorem are too strict
to be practical in a spreadsheet environment. Therefore
dicing cannot be used for our methodology.

Dicing makes a binary decision about cells: either a
cell is indicated or it is not. To allow the conditions in
the Dicing Theorem to be violated without causing user
frustration, our technique does not make a binary deci-
sion about which cells to include or exclude. Instead,
our methodology estimates the likelihood that a cell con-
tributes to a value marked incorrect. This likelihood is
presented to the spreadsheet developer by highlighting
suspect cells in different shades of red. We call this like-
lihood thefault likelihoodof a cell. LetI be the set of
cell values marked incorrect by the spreadsheet develop-
er. The fault likelihood of a cellC is an estimate of the
likelihood thatC contains a fault that contributes to an
incorrect value inI.

Returning to theSecurityCheck example, sup-
pose that having seen several cells highlighted in red as
potentially faulty, the user does not yet wish to examine
formulas, but would prefer to restrict the potential fault
site further. One way to do so is to test other parts of the
spreadsheet for correctness. In this case, only one of the

other output cells has been created,key2 out. This cell
is correct, so the user can mark it with a check box. The
result of doing so is shown in Figure 3. Now bothkey2 1
andkey2 contain a lighter shade of red than before be-
cause they contribute to a correct cell value. The shade of
red in the background of a cell indicates the fault likeli-
hood of that cell. A lighter shade of red indicates a lower
likelihood, and a darker shade of red indicates a higher
likelihood.

There is no way to compute an exact value for the fault
likelihood of a cell: we can only estimate it based on the
number of values marked correct or incorrect that depend
on a cell’s value. Our strategy for doing so is to maintain
six properties, described below, which rely on the defini-
tions in Table 1.

Property 1 If IncorrectDependentsOf (C) 6= φ thenC
has at least a minimal fault likelihood.

This property ensures that every cell in the backward dy-
namic slice of a value marked incorrect will be highlight-
ed. This reduces the chance that the user will become
frustrated searching for a fault that is not there, and in
our opinion is essential to a fault localization methodol-
ogy for spreadsheets. However, there are still two situa-
tions in which the highlighted cells might not include a
fault responsible for a value marked incorrect. The first
situation can occur when a fault is caused by the omis-
sion of a cell. The second situation can occur when a
correct value is mistakenly marked incorrect. These sit-
uations, however, cannot in general be avoided by any
fault localization methodology.
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Figure 3:SecurityCheck spreadsheet following additional validation.

Property 1 determines the overhead imposed by
the actions of marking a cell correct or incorrec-
t. The time complexity of both operations must be
O(|DynamicBackwardSlice(C )|), whereC is the cel-
l being marked. This is approximately the same as the
cost of computing the value ofC for the first time (i.e.,
when the predecessors also need to be computed).

In order to localize a fault to a set of cells smaller than
the dynamic backward slice, we maintain several other
properties to determine how fault likelihood should be
estimated. These properties ensure that cells highlighted
a bright shade of red have a higher likelihood of contain-
ing a fault than those marked a lighter shade of red.

Property 2 The fault likelihood ofC is proportional to
|IncorrectDependentsOf (C)|.

Property 3 The fault likelihood ofC is inversely propor-
tional to |CorrectDependentsOf (C)|.

Property 2 is based on the assumption that the more in-
correct computations a cell contributes to, the more likely
it is that the cell contains a fault. Conversely, Property 3

is based on the assumption that the more correct compu-
tations a cell contributes to, the less likely it is that the
cell contains a fault.

Property 4 If C has a value marked incorrect, the fault
likelihood ofC is high.

This property is based on the assumption that a good
place to start looking for a fault is the place where the
effect of the fault was first recognized. We give that cell
a high fault likelihood so that it stands out.

Property 5 An incorrect mark onC blocks the effect-
s of any correct marks on cells inDynamicForward -
Slice(C), preventing propagation of the correct mark-
s’ effects to the fault likelihood of cells inDynamic-
BackwardSlice(C).

This property is relevant when a correct cell value de-
pends on an incorrect cell value. There are three possible
explanations for such an occurrence. The first is that a
formula of one of the cells between the correct cell and
the incorrect cell somehow converts the incorrect value
to a correct one. The second is that there is another fault
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between the two cells that counteracts the effect of the
incorrect value. The third is that the developer made a
mistake in marking one of these two cells. We choose
to trust the developer’s decision in this case and assume
one of the first two situations. For both of these situations
the incorrect value does not contribute to the correct val-
ue. Therefore the effects of the correct mark should not
propagate back to cells the incorrect value depends on.

Property 6 A correct mark onC blocks the effects
of any incorrect marks on cells inDynamicForward -
Slice(C), preventing propagation of the incorrect mark-
s’ effects to the fault likelihood of cells inDynamic-
BackwardSlice(C), except for the minimal fault likeli-
hood required by Property 1.

This property is relevant when a value marked incorrect
depends on a value marked correct. In dicing, the dynam-
ic backward slice of the correct value would be complete-
ly subtracted from that of the incorrect value. However
we need to be more conservative and assume that a vio-
lation of the Dicing Theorem is possible. Thus, the cells
in the dynamic backward slice of the correct value are
given a low but nonzero fault likelihood.

3.2.3 Implementing the Properties

The above properties allow for many different ways of
estimating fault likelihood. First we require the fol-
lowing definitions to handle the “blocks” introduced
by the fifth and sixth properties. LetNumBlocked -
IncorrectDependentsOf (C) be the number of cell val-
ues belonging to cells inDynamicForwardSlice(C)
that are marked incorrect but are blocked by a
value marked correct along the data flow path
from C to the value marked incorrect. Let
NumReachableIncorrectDependentsOf (C) be |Incor -
rectDependentsOf (C)| − NumBlockedIncorrectDe-
pendentsOf (C), or in other words the number of
cell values marked incorrect whose effects reach
C without being blocked. Similar definitions are
made for NumBlockedCorrectDependentsOf (C) and
NumReachableCorrectDependentsOf (C).

As a starting point, we decided to divide fault likeli-
hood into six distinct ranges: “none”, “very low”, “low”,
“medium”, “high”, and “very high”. To estimate the fault
likelihood for a cellC, we first assign a range to the val-
ues ofNumReachableIncorrectDependentsOf (C) and
NumReachableCorrectDependentsOf (C) using Table

NumReachableIncorrectDependentsOf (C)
Range or NumReachableCorrectDependentsOf (C)

none 0
low 1–2
medium 3–4
high 5–9
very high 10+

Table 2: NumReachableIncorrectDependentsOf (C)
andNumReachableCorrectDependentsOf (C) yield six
distinct fault likelihood ranges as shown.

2. These ranges can be associated with numeric val-
ues from 0, representing “none”, to 5, representing “very
high”. To combine these ranges to determine the result-
ing fault likelihood, we use the function:

fault likelihood(C) = max(1, RID −
⌊
RC

2

⌋
)

whereRID = NumReachableIncorrectDependentsOf (C)
andRC = NumReachableCorrectDependentsOf (C).

We make three exceptions. IfIncorrectDepend -
entsOf (C) = φ, then the fault likelihood ofC is “none”.
If C has been marked incorrect, its fault likelihood is as-
signed a value of “very high”, in keeping with Property 4.
If NumReachableIncorrectDependentsOf (C) = 0, but
NumBlockedIncorrectDependentsOf (C) > 0, then the
fault likelihood ofC is assigned a value of “very low”.
This is to maintain Property 1, and ensures that every cell
in the dynamic backward slice of a value marked incor-
rect is highlighted.

Returning to Figure 3,key3 out is a bright red col-
or because it has a “very high” fault likelihood. Cells
key3 3 and key3 2 each have one reachable incorrec-
t dependent, so they have fault likelihoods of “low”. Cell
key2 1 has a “very low” fault likelihood because it has
one reachable incorrect dependent and another reachable
correct dependent.

3.2.4 Applying additional test cases

Suppose the user developing theSecurity Check
spreadsheet still wants to further narrow down the set of
possible locations of the fault. One option is for the user
to apply additional test cases. Figure 4 shows the result
of entering a new test case intokey1, key2, andkey3.
Now bothkey2 out andkey3 out are correct, so the us-
er checks both cells. The information about the previous
test case is not lost, so nowkey3 3 has a reachable cor-
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Figure 4:SecurityCheck spreadsheet following application of additional test cases.

rect dependent for this test case and a reachable incorrect
dependent for the previous test case. This giveskey3 3 a
fault likelihood of “very low”. However, in this test case
key3 2 is no longer in the dynamic backward slice of
key3 out. This is becausekey3 3 is designed to not use
key3 2 if its result would be a divide by zero. There is
still one reachable incorrect dependent from the previous
test case forkey3 2, so its fault likelihood stays “low”.
Now the faulty cell,key3 2, has the brightest red color
on the form, suggesting that it is most likely to contain a
fault.

In order for testing and debugging information to be
preserved between test cases, our methodology must re-
spond correctly to formula edits. Any formula edit that
changes a constant cell to another constant is consid-
ered a change in test case. When this occurs, all of the
marked cells dependent on the changed cell must have
their marks removed and replaced with question mark-
s. However, the effects of those marks on cell colors
and testing and debugging information should not be re-
moved by changing a test case. In effect, the mark is
“hidden” behind the question mark.

This process of preserving testing and debugging in-
formation across edits adds no additional time complex-
ity to the process of editing a cell, because the spread-
sheet environment must already visit the dependents of a
changed cell in order to mark them as requiring recom-
putation.1

3.2.5 Maintaining testing and fault information af-
ter changes to formulas

Now suppose the developer of theSecurity Check
application decides to fix the fault. This involves edit-
ing the formula forkey3 2 from “key2 1/key2 1”, to
“key2 1/key3”. Figure 5 shows the result of this ac-
tion. As expected,key3 2 now contains a divide by zero
error; this is whykey3 3 useskey3 1 instead. Howev-
er, now that the formula has changed, the marks placed
on key3 out are out of date. Not only must they be re-
moved, but their effects on testing and debugging infor-
mation must be undone. In effect, the affected cells can

1For more information on marking and evaluation strategies appli-
cable to spreadsheet languages, see[5].
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Figure 5: CorrectedSecurityCheck spreadsheet.

no longer be considered tested because they rely on a
new and untested formula. This also encourages the user
to perform regression testing on the cells affected by the
change.

Whenever a formula edit is made that does not change
a constant to a constant, testing and debugging infor-
mation must be removed. This information must be re-
moved for all prior test cases, so the effects of every mark
ever placed on a cell in the static forward slice of the edit-
ed cell must be removed.

Furthermore, our methodology relies on static and dy-
namic slicing information. This information must be
kept up to date whenever any edit is made.

Whenever a formula edit occurs, the spreadsheet en-
vironment must mark all affected cells to be recomput-
ed. This requires storing some form of static or dynamic
successor information. An algorithm for a formula edit
that maintains static successor information for a cellC
must visit the cells inPredecessors(C) and update their
static successor information. This includes the cells in
Predecessors(C) both before the formula change and af-

ter the change. The static predecessor information can be
gathered from the cell’s formula. LetSP represent the
the maximum number of static predecessors before and
after the formula edit. The worst case time complexity
for such an algorithm isO(SP + |ForwardSlice(C)|).
Such an algorithm provides all the information needed
for static slicing; the slicing algorithm can perform a
graph walk using the cell’s formula during a backward
slice, and the static successor information for a forward
slice.

Dynamic successor and predecessor information can
be maintained during the process of recalculating cells.
An algorithm to recompute a cellC and maintain dynam-
ic successor and predecessor information must first visit
the cells inDynamicPredecessors(C) to update their
dynamic successor information. ThenC must be recom-
puted. This involves visiting every cell required forC ’s
new value. During this process, the dynamic predeces-
sor information forC can be collected, and the dynamic
successor information for the cells used to computeC
can be updated. Thus the only additional cost needed to
maintain dynamic slicing information is the time need-
ed to update the dynamic successor information for the
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cells previously used byC. Let DP be the maximum
number of dynamic predecessors ofC, both before and
afterC is recomputed. The time complexity for an algo-
rithm to computeC ’s value isO(DP +COMP ), where
COMP is the time required to compute the cell’s val-
ue once the values of its predecessors are known. Note
that in some spreadsheet languages cell formulas can use
functions whose time complexity is not bounded by the
number of operands. However in order to evaluate the ef-
fect our methodology has on responsiveness, we assume
the worst case scenario in which the time complexity of
recomputing a cell is dominated by the cost of maintain-
ing dynamic successor and predecessor information.

Our methodology also adds overhead by removing
testing information when editing a formula. As discussed
earlier, a formula edit to provide a different a test case
adds no additional overhead to an algorithm for accept-
ing an edit to a cell. However, editing a non-constant
formula does. An algorithm that handles such an ed-
it to a cellC while maintaining static slicing informa-
tion and testing and debugging information must not on-
ly visit the cells inForwardSlice(C), but also the cells
in the backward static slices of every cell that had been
marked during the current or a previous test case. Let
M be the number of cells marked inForwardSlice(C).
LetB be the maximum length of a backward static slice
of a marked cell inForwardSlice(C). The worst case
time complexity for editing a formula while maintain-
ing fault localization information isO(SP + M · B +
|DynamicForwardSlice(C)|).

To analyze the effects on responsiveness of maintain-
ing testing and debugging information, we must consid-
er two separate activities. The first is the formula ed-
it itself. The second is the calculation phase where at
minimum every cell on the screen is recalculated. From
the user’s point of view, the system is responsive only
if both the edit and the recalculation of on-screen cells
happen quickly. Therefore we merge the two and de-
fine a responsive editto be an operation where a cel-
l is edited and at least the on-screen cells are updat-
ed. For our methodology, the worst case time complex-
ity for a responsive edit isO(SP + M · B + DP ·
|DynamicForwardSlice(C)|). There are three overhead
factors that must be considered,SP ,DP , andM ·B.

Spreadsheet environments maintain successor infor-
mation in order to mark or recompute cells that need to
be recomputed. Therefore, eitherSP orDP will already
be a factor in the complexity for a spreadsheet environ-
ment that does not implement our methodology. Howev-
er, one of these factors may be added as overhead from
our methodology. The factorDP is likely to have a larg-

er effect thanSP , because every cell that is recalculated
to update the screen must update the dynamic succes-
sor information of its predecessors. In spreadsheet lan-
guages that do not support ranges, such as Forms/3,DP
or SP are likely to be constant bound. This is because
the number of predecessors depends on the number of
references in a formula. Since long formulas are often
awkward, users are more likely to break them up into
distinct cells than to create large formulas that reference
a large number of cells. However, if ranges are added, a
short formula is capable of referencing a large number of
cells. Ranges also add additional complexity for visual-
izing a slice, as drawing an arrow to each cell in the range
will result in a jumble of arrows. This can be dealt with
by handling a range as a single entity. For example, the
data flow arrows in Excel point to a box around a range
rather than to every cell in the range.

The largest factor introduced by our methodology is
likely to be theM · B factor introduced when changing
a formula. SinceB is the size of a static slice, it could be
large. However we have no way of knowing how largeM
will be, as this depends on how many marks are placed
by the user.

It remains to be seen if the factors ofM ·B, SP orDP
can be large enough to negatively affect the responsive-
ness of our methodology. However, there are approaches
that can mitigate the effects of these factors. One ap-
proach would be a multithreaded approach to updating
cell values and testing and debugging information. A
background thread can be used to update information
while the user is free to continue interacting with the
spreadsheet. This allows the spreadsheet environmen-
t to stay interactive. However as the user makes changes
the state of the spreadsheet could become increasingly
inconsistent. This can be partially mitigated by placing
priority on updating information for on-screen cells. This
approach would be useful only if the benefits to be gained
by our technique outweighed the difficulty of implement-
ing it.

4 Related Work

Previous work related to testing and debugging
spreadsheets has been limited to auditing tools. Most of
the work on such tools has taken place in commercial ap-
plications. For example, Microsoft Excel 97 allows users
to place restrictions on the value of a cell, to place com-
ments on cells, and to draw arrows that track dataflow
dependencies. The dataflow arrows implement a form of
static slicing that lets users view backward and forward
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slices by expanding the arrows out one dependence level
at a time.

The only research work we are aware of addressing
auditing tools is by Davis [12]. Davis proposes two tool-
s, a dataflow arrow tool and an automatically derived
dataflow graph. The arrow tool is similar to the arrows
in Excel; however, from any one cell it is possible only
to request arrows that show one dependence level. The
dataflow graph tool draws a graph using different sym-
bols to categorize cells as input, output, decision vari-
ables, parameters, or formulas. This graph is similar to
the graph suggested by Ronen, Palley and Lucas [28],
however it is generated automatically by the system in-
stead of being drawn by the user.

Our testing and debugging methodology utilizes
dataflow arrows similar to those used by Excel and
Davis’s tools. Unlike Excel arrows, however, our
dataflow arrows allow users to display an entire slice at
once, or to limit the depth of the slice. The user can also
choose between forward and backward slicing, as well as
dynamic and static slicing. At the testing level, users can
also display dataflow arrows at a finer granularity (be-
tween subexpressions); this ability will soon be adapted
into our debugging functionality.

There has also been research into using interactive, vi-
sual techniques to aid in debugging, particularly as it re-
lates to program comprehension (eg: [2, 19]). This ap-
proach integrates debugging functionality with review-
ing execution histories, both graphically and textually, to
better understand program behavior and thus find faults.

5 Conclusions and Future Work

Due to the popularity of commercial spreadsheets,
spreadsheet languages are being used to produce soft-
ware that influences important decisions. Furthermore,
due to recent advances from the research community that
expand its capabilities, the use of this paradigm is likely
to continue to grow. We believe that the fact that such
a widely-used and growing class of software often has
faults should not be taken lightly.

To address this issue, we have developed a methodol-
ogy that brings some of the benefits of formal testing and
debugging methodologies to this class of software. Our
methodology is tightly integrated into the spreadsheet
environment, facilitating the incremental testing and de-
bugging activities that occur during spreadsheet devel-
opment. Our methodology also employs the visual feed-

back that is characteristic of spreadsheet environments,
while presenting information in a manner that requires
no knowledge of the underlying testing and fault local-
ization theories.

Future work is planned along two dimensions. First,
although our previous user studies have suggested that
visual feedback about testing coverage helps users cor-
rect faults [11], we have not yet conducted a user study
involving the methodology presented here. We are cur-
rently designing such a study.

Second, we expect user studies to reveal possibilities
for new or refined debugging techniques. For exam-
ple, we may wish to investigate the use of slicing and
fault localization at the level of subexpressions: this may
yield more precise results, but at additional cost. Anoth-
er possible direction is to refine the user interface for our
methodology. Our current interface limits the user to on-
ly the information that can be displayed on one screen. A
more scalable approach, such as the one used in [3] for C
programs, would allow users to scan through slicing and
fault localization information for a large spreadsheet pro-
gram without having to scroll within or switch between
multiple worksheets.

Although our current research is with spreadsheet lan-
guages, we believe this methodology could be extended
to other end user languages. The notion of fault likeli-
hood used in this paper could be used in other environ-
ments in which slicing is available. However, availability
of slicing is not sufficient for our methodology. In addi-
tion the slicing must be highly accurate, to avoid giv-
ing false indications that frustrate the user. Furthermore
the environment must also support interactive editing of
source code, editing of test cases, and validation of out-
put, and must provide immediate feedback as to the ef-
fects of those actions. This combination of requirements
suggests that our methodology is best suited for the high-
ly interactive visual environments that have recently be-
gun to emerge for end user programming.

The studies presented in [14, 22] showed that end user-
s find that the act of debugging, and particularly the ac-
t of locating faults in long computation chains, is very
difficult in spreadsheet programs. Our methodology at-
tempts to alleviate this difficulty by providing the user
with slicing and fault localization information. The goal
of this work is to provide effective testing and debugging
methodologies that help reduce the number of faults in
spreadsheet programs and may also be helpful in other
end user programming environments.
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