
ARTICLE IN PRESS
 Journal of
Visual Languages
 & ComputingJournal of Visual Languages and Computing

16 (2005) 3–40
1045-926X/$

doi:10.1016/j

$This pap

Ruthruff, E.

programmers

Centric Com

pp. 15–22 an
�Correspo

Lincoln, 256

E-mail ad

jreichwe@san

burnett@cs.o
www.elsevier.com/locate/jvlc
Interactive, visual fault localization support
for end-user programmers$

Joseph R. Ruthruff�, Shrinu Prabhakararao, James Reichwein,
Curtis Cook, Eugene Creswick, Margaret Burnett

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA

Received 1 January 2004; received in revised form 1 June 2004; accepted 1 July 2004
Abstract

End-user programmers are writing an unprecedented number of programs, primarily using

languages and environments that incorporate a number of interactive and visual programming

techniques. To help these users debug these programs, we have developed an entirely visual,

interactive approach to fault localization. This paper presents the approach. We also present

the results of a think-aloud study that examined interactive, human-centric issues that arise in

end-user debugging using a fault localization approach. Our results provide insights into the

contributions such approaches can make to the end-user debugging process.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: End-user programming; Visual fault localization; Debugging; End-user software engineering;

Testing; Slicing; Form-based visual programs
- see front matter r 2004 Elsevier Ltd. All rights reserved.

.jvlc.2004.07.001

er updates and extends earlier work that appeared in S. Prabhakararao, C. Cook, J.

Creswick, M. Main, M. Durham, M. Burnett, Strategies and behaviors of end-user

with interactive fault localization, in: Proceedings of the IEEE Symposium on Human-

puting Languages and Environments, Auckland, New Zealand, October 28–31, 2003,

d Ref. [2].

nding author. Department of Computer Science and Engineering, University of Nebraska-

Avery Hall, Lincoln, NE 68588 0115, USA. Tel.: +1 402 472 2401; fax: +1 402 472 7767.

dresses: ruthruff@cse.unl.edu (J.R. Ruthruff), prabhash@cs.orst.edu (S. Prabhakararao),

.rr.com (J. Reichwein), cook@cs.orst.edu (C. Cook), creswick@cs.orst.edu (E. Creswick),

rst.edu (M. Burnett).

www.elsevier.com/locate/jvlc

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–404
1. Introduction

Recent years have seen an explosive growth of end-user programming. In fact, by
the year 2005, it is estimated that there will be approximately 55 million end-user
programmers in the US alone, as compared to an estimated 2.75 million professional
programmers [3]. Real-world examples of end-user programming environments
include educational simulation builders, web authoring systems, multimedia
authoring systems, e-mail filtering rule systems, CAD systems, scientific visualization
systems, and spreadsheets. These systems all make use of at least some visual
programming techniques in order to support their users, such as graphical syntaxes,
drag-and-drop to specify desired outcomes or appearances, programming by
demonstration, and/or immediate visual feedback about a program’s semantics.

But, how reliable are the programs end users write using such systems? One of the
most widely used real-world end-user programming paradigms is the spreadsheet.
Despite its perceived simplicity, evidence from this paradigm reveals that end-user
programs often contain faults [4–6]. (Following standard terminology [7], in this
paper, a failure is an incorrect computational result, and a fault is the incorrect part
of the program that caused the failure.) Perhaps even more disturbing, users
regularly express unwarranted confidence in the quality of these programs [6,8].

To help solve this reliability problem, we have been working on a vision we call
‘‘end-user software engineering’’ [9]. The concept of end-user software engineering is
a holistic approach to the facets of software development in which end users engage.
Its goal is to bring some of the gains from the software engineering community to
end-user programming environments, without requiring end users to have training,
or even interest, in traditional software engineering concepts or techniques. Our end-
user software engineering devices communicate with their users entirely through
interactive, visual mechanisms.

We are prototyping our end-user software engineering methodologies in the form-

based paradigm because it is so widespread in practice. Form-based languages
provide a declarative approach to programming, characterized by a dependence-
driven, direct-manipulation working model [10]. The form-based paradigm is
inherently visual because of its reliance on multiple dimensions. In form-based
languages, the programmer designs a form in two or more dimensions, including
formulas which will ultimately compute values. Each formula corresponds to the
right-hand side of an equation, i.e., f(Y1,Y2,y,Yn), and is also associated with a
mechanism to visually display the formula’s value. For example, in spreadsheet
languages, a cell is the mechanism that associates a formula with a display
mechanism. When a cell’s formula is defined, the underlying evaluation engine
calculates the cell’s value and those of other affected cells (at least those that are
visible to the user), and displays new results. Examples of this paradigm include not
only commercial spreadsheet systems, but also research languages used for purposes
such as producing high-quality visualizations of complex data [11], for specifying
full-featured GUIs [12,13], for matrix manipulation [14–16], for providing steerable
simulation environments for scientists [17], for web programming [18], and for
working visually with user-defined objects [19,20].

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 5
In this paper, we introduce interactive fault localization, an entirely interactive,
visual approach to fault localization that we have integrated into our end-user
software engineering concept. Our approach has been carefully designed around five
properties, chosen after consideration of both software engineering and human-
computer interaction principles. Although we have prototyped our ideas in the form-
based paradigm, our design allows our approach to be incorporated into other types
of visual programming environments.

We also describe a think-aloud study that we conducted to evaluate how our
approach impacts the debugging efforts of end users, and to examine interactive,
human-centric issues that arise in end-user debugging using visual fault localization.
The results of this study indicate that our visual fault localization approach can
favorably affect the debugging efforts of end users working in form-based visual
programming environments. In addition, our study yields several insights into the
interactive, end-user debugging process that future work on end-user debugging may
need to consider.

The remainder of this paper is organized as follows: Section 2 discusses previous
research that is related to fault localization; Section 3 describes the end-user software
engineering devices with which our approach to fault localization is integrated;
Section 4 introduces our interactive, visual approach to fault localization; Section 5
describes the procedures of the think-aloud study; Section 6 outlines the results of
the study; Section 7 discusses the implications of our study’s results in further detail;
Section 8 discusses threats to the validity of our study’s results; Section 9 discusses
integrating our approach into other programming paradigms; and Section 10
presents our conclusions.
2. Related work

Our approach to interactive fault localization is intertwined with an environment
that emphasizes software engineering practices. Because of this, we look first at the
area of software engineering devices that make use of visualizations for debugging.
The FIELD environment was aimed primarily at program comprehension as a
vehicle for both debugging and instruction [21]. This work draws from and builds
upon earlier work featuring visualizations of code, data structures, and execution
sequences, such as PECAN [22], the Cornell Program Synthesizer [23], and Gandalf
[24]. ZStep [25], on the other hand, aims squarely at debugging and providing
visualizations of the correspondences between static program code and dynamic
program execution. Its navigable visualizations of execution history are representa-
tive of similar features found in some visual programming languages such as
KidSim/Cocoa/Stagecast [26] and Forms/3 [19,27]. An example of visualization
work that is especially strong in low-level debugging such as memory leaks and
performance tuning is PV [28]. Low-level visualization work specifically aimed at
performance debugging in parallel programming is surveyed by Heath [29]. Finally,
Eick’s work focuses on high-level views of software, mostly with an eye to keeping
the bugs under control during the maintenance phase [30].

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–406
Work aimed particularly at aiding end-user programmers with debugging and
other software engineering tasks is beginning to emerge. Ko and Myers present the
Whyline [31], an ‘‘Interrogative Debugging’’ device for the 3D programming
environment Alice. Users pose questions in the form of ‘‘Why didy’’ or ‘‘Why
didn’ty’’ that the Whyline answers by displaying a visualization of a partial
program slice that the user can navigate, expand, and compare with previous
questions. Igarashi et al. present devices to aid spreadsheet users in dataflow
visualization and editing tasks [32]. S2 [33] provides a visual auditing feature in Excel
7.0: similar groups of cells are recognized and shaded based upon formula similarity,
and are then connected with arrows to show dataflow. This technique builds upon
the Arrow Tool, a dataflow visualization device proposed by Davis [34]. Carr
proposes reMIND+ [35], a visual end-user programming language with support for
reusable code and type checking. reMIND+ also provides a hierarchical flow
diagram for increased program understanding. Outlier finding [36] is a method of
using statistical analysis and interactive techniques to direct end-user programmers’
attention to potentially problematic areas during automation tasks. The approach
uses visual cues to indicate abnormal situations while performing search and replace
or simultaneous editing tasks. Because not all outliers are incorrect, the approach
uses a heuristic to determine the outliers to highlight for the user. Finally, the
assertions approach in Forms/3 has been shown empirically to help end-user
programmers correct errors [37,38].

Ayalew and Mittermeir present a method of fault tracing for spreadsheets based
on ‘‘interval testing’’ and slicing [39]. In their approach, which is similar
to assertions in Forms/3 [37], user-specified intervals are compared with cell
values and system-generated intervals for each cell. When the user-specified
and system-generated intervals for a cell do not agree with the actual spread-
sheet computation, the cell is flagged as displaying a ‘‘symptom of a fault’’.
Furthermore, upon request from the user, a ‘‘fault tracing’’ approach can be used
to identify the ‘‘most influential faulty cell’’ from the cells perceived by the system
to contain symptoms of faults. (In the case of a tie, one cell is arbitrarily chosen.)
There are many differences between their approach and our fault localization
approach; we describe two such differences. First, unlike the approach of
Ayalew and Mittermeir, our fault localization approach includes robustness
features against user mistakes (described in Section 4.3.1). Second, our approach
explicitly supports an incremental end-user debugging process by allowing users to
make decisions that can have the effect of improving our continuously updated
feedback.

Fault localization is a very specific type of debugging support. Behind the
scenes, most fault localization research has been based on slicing and dicing
techniques. (We discuss slicing and dicing in Section 4.2.) A survey of these
techniques was made by Tip [40]. Agrawal et al. have built upon these techniques for
traditional languages in wslice [41]. wslice is based upon displaying dices of the
program relative to one failing test and a set of passing tests. Tarantula utilizes
testing information from all passing and failing tests to visually highlight possible
locations of faults [42]. Both these techniques are targeted at the professional

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 7
programmer, and return results after running a batch of tests. Besides being
explicitly targeted at end users, our methods differ from their approaches in that our
methods are interactive and incremental.

Pan and Spafford developed a family of heuristics appropriate for automated fault
localization [43]. They present a total of 20 different heuristics that they felt would be
useful. These heuristics are based on the program statements exercised by passing
and failing tests. Our approach directly relates to three of these heuristics: the set
of all cells exercised by failed tests, cells that are exercised by a large number of
failed tests, and cells that are exercised by failing tests and that are not exercised by
passing tests.
3. Background: end-user software engineering

We believe that interactive and visual programming techniques, which provide
support that has enabled end-user programming to evolve into a widespread
phenomenon, can help reduce the reliability problem in programs created by end
users. Towards this end, our ‘‘end-user software engineering’’ vision consists of a
blend of components that come together seamlessly through interactive visual
devices. Components that have been implemented in Forms/3 [19]—a form-based
visual programming language—include: ‘‘What You See Is What You Test’’
(WYSIWYT) [44–46], a visual testing methodology for form-based visual programs;
an automated test case generation device [47]; a test re-use approach [48]; and an
approach for supporting assertions by end users [37].

Visual fault localization has been blended into this combination by marrying it to
the WYSIWYT visual testing methodology. Therefore, we briefly describe
WYSIWYT here.

The underlying assumption behind the WYSIWYT testing methodology is that, as
a user incrementally develops a form-based visual program, he or she can also be
testing incrementally. The system communicates with the user about testing through
visual devices. Fig. 1 presents an example of WYSIWYT in Forms/3. In WYSIWYT,
untested cells that have non-constant formulas are given a red border (light gray in
this paper), indicating that the cell is untested. (Cells whose formulas are simply
constants do not participate in WYSIWYT devices, since the assumption is that they
do not need to be tested.) For example, the Total_Score cell has never been
tested; hence, its border is red (light gray). The borders of such cells remain red until
they become more ‘‘tested’’.

In order for cells to become more tested, tests must occur. But tests can occur
at any time—intermingled with editing formulas, adding new formulas, and
so on. The process is as follows. Whenever a user notices a correct value, he or
she can place a checkmark in the decision box at the corner of the cell he or she
observes to be correct: this testing decision constitutes a successful ‘‘test’’. Such
checkmarks increase the ‘‘testedness’’ of a cell, which is reflected by adding more
blue to the cell’s border (more black in this paper). For example, in Fig. 1,
the Weightedavgquiz cell has been given a checkmark, which is enough to

ARTICLE IN PRESS

Fig. 1. An example of WYSIWYT in the Forms/3 language.

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–408
fully test this cell, thereby changing its border from red to blue (light gray
to black). Further, because a correct value in a cell C depends on the correctness
of the cells contributing to C, these contributing cells participate in C’s
test. Consequently, in this example the border of cell avgquiz also turns blue
(black).

Although users may not realize it, the ‘‘testedness’’ colors that result from placing
checkmarks reflect the use of a dataflow test adequacy criterion that measures the
interrelationships in the source code that have been covered by the users’ tests. A cell
is fully tested if all its interrelationships have been covered; if only some have been
covered then the cell is partially tested. These partially tested cells would have
borders in varying shades of purple (shades of gray). (Details of the test adequacy
criterion are given in [45,46].) For example, the partially tested EC_Award cell has a
purple (gray) border.

In addition to providing feedback at the cell level, WYSIWYT gives the user
feedback about testedness at two other granularities. A percent testedness indicator
provides testedness feedback at the program granularity by showing a progress bar
that fills and changes color from red to blue (following the same colorization
continuum as cell borders) as the overall testedness of the program increases. The
testedness bar can be seen at the top of Fig. 1; the tested indicator shows that the
program is 18% tested. Testedness feedback is also available at a finer granularity
through dataflow arrows. In Fig. 1, the user has triggered the dataflow arrows for the
ExtraCredit cell. These arrows depart from tradition in two ways. First, they can
depict dataflow relationships between subexpressions within cell formulas, as

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 9
displayed with the EC_Award formula in Fig. 1. Second, when the user activates the
dataflow arrows for a cell, the arrows connecting the formulas’ subexpressions
follow the same red-to-blue color continuum of cell borders at the granularity of
subexpressions. This has the effect of showing users the untested cell reference
combinations that still need testing. In addition to color-coding the arrows, the
system also provides testedness feedback through an intelligent explanation
system [38]. In Fig. 1, the user has chosen to examine one of the purple (gray)
subexpression arrows leading into EC_Award, which shows that the relationship
between ExtraCredit and the indicated subexpression of EC_Award is 50%
tested.

WYSIWYT has been empirically shown to be useful to both programmers
and end users [49,50]; however, it does not by itself explicitly support a debugging
effort to localize the fault(s) causing an observed failure. Providing this debugging
support is the aim of our interactive, visual fault localization approach, which we
describe next.
4. Visual fault localization

Testing and debugging are closely related: testing is detecting the presence
of failures, and debugging is tracking the failure down to its fault (fault locali-
zation) and then fixing the fault. Taking advantage of this relationship, in our
approach, the WYSIWYT testing methodology is used as a springboard to fault
localization.

Here is the way this springboard works. In addition to the possibility of
noticing that a cell’s value is correct, there is also the possibility of noticing that a
cell’s value is incorrect. In the first case, the user checks off the cell’s value via
WYSIWYT’s decision box, as we explained in Section 3. The second case is
where fault localization comes in. In that case, which happens when the user has
detected a failure, the user can ‘‘X out’’ the value by placing an X-mark in the
decision box instead. These X-marks trigger a fault likelihood calculation for each
cell with a non-constant formula that might have contributed to the failure. This
likelihood, updated for each appropriate cell after any testing decision or formula
edit, is represented by visually highlighting the interior of suspect cells in different
shades of red. As the fault likelihood of a cell grows, the suspect cell is highlighted in
increasingly darker shades of red. The darkest cells are thus estimated to be the most
likely to contain the fault, and are therefore the best candidates for the user to
consider in trying to debug. Of course, given the immediacy of visual feedback that is
customary in form-based visual programming environments, the visual highlighting
is added or adjusted immediately whenever the user adds another checkmark or
X-mark.

For example, suppose that after working awhile, the user has gotten the
Grade program to the stage shown at the top of Fig. 2. At that point, the
user notices that the output value of the Total_Score cell is incorrect: the total
score is obviously too high. Upon spotting this failure, the user places an X-mark

ARTICLE IN PRESS

Fig. 2. (Top) A Grade program at an early stage of testing. (Bottom) The user notices an incorrect output

value in Total_Score and places an X-mark in the cell. All cells that could have dynamically

contributed to this incorrect value have been highlighted in shades of red (gray in this paper), with darker

shades corresponding to increased fault likelihood. In this bottom example, avgquiz and Weight-

edavgquiz have an estimated fault likelihood of ‘‘Very Low’’ (the fault likelihood of avgquiz is

indicated by the explanation tooltip) while EC_Award and the four rightmost cells have a fault likelihood

of ‘‘Low’’ (not indicated by tooltips). There is no estimated fault likelihood higher than ‘‘Low’’ in this

particular example because the technique is hesitant to assign higher estimations when only one failure

(X-mark) has been noted by the user. Finally, the testedness borders of cells with non-zero fault likelihood

have faded to draw visual focus to the fault likelihood component of the cell.

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4010
in the Total_Score cell, triggering fault likelihood calculations for all cells
whose values dynamically contributed to the value in Total_Score, and causing
the interiors of cells suspected of containing faults to be highlighted in red (gray in
this paper), as shown at the bottom of Fig. 2. The cells deemed (by the system) most
likely to contain the fault are highlighted the darkest.

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 11
4.1. Design constraints

The above example rests upon a number of constraints that we believe must be
met for viability with end-user programmers working in a form-based language. The
constraints we imposed upon our design are:
1.
 Most modern form-based visual programs are incremental and modeless: Most
form-based visual programming does not require the separate code, compile, link,
and execute modes typically required by traditional programming languages.
Developers simply draw and manipulate live calculation objects on forms and
continually observe how the results seem to be working out. Thus, in order for
testing and debugging techniques to be consistent with this way of working, users
must be allowed to debug and test incrementally and modelessly, in parallel with
program development.
2.
 Form-based visual program developers may not understand testing and debugging

theory: For an end-user audience, testing and debugging techniques cannot
depend on the user understanding testing or debugging theory, nor should such
techniques rely on specialized vocabularies based on such theory.
3.
 Form-based visual programming environments must maintain trust with their end-

user developers: End-user programmers may not understand the reasons if
debugging feedback leads them astray. Instead, they are likely to lose trust in our
approach and ignore the feedback. (As [51] explains, trust is critical to users
actually believing a system’s output.) Therefore, our methodology must maintain
some consistent level of guarantees about its correctness, so that users can
understand to what extent they can believe its feedback.
4.
 Form-based visual programs offer immediate feedback: When an end-user
programmer changes a formula, the environment displays the results quickly. Users
have come to expect this responsiveness from form-based visual programs and may
not accept functionality that significantly inhibits responsiveness. Therefore, the
integration of testing and debugging into these programming environments must
minimize the overhead it imposes, and must be interactive and incremental.

One direct result of these constraints is that many preexisting fault localization
techniques that have been designed for professional programming situations are not
suited towards the audience we wish to target. For example, batch-oriented
algorithms for fault localization that expect all testing to be completed before any
fault localization processing can be performed inherently cannot meet the
incremental, immediate feedback constraint. An entirely new approach to fault
localization is therefore necessary to meet these constraints.

4.2. Slicing and dicing

Our approach performs its calculations leading to the visual representation of
fault likelihood by drawing from information gleaned via slicing, and by making use
of that information in a manner inspired by dicing. This information is used to

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4012
incrementally calculate the colorizations of our fault localization approach so that
they can be interactively updated after each user action.

Weiser introduced program slicing [52] as a technique for analyzing program
dependencies. A slicing criterion /p,VS, where p is a program point and V is a
subset of program variables, is used to define a program slice. Program slices can
then be classified into two categories: backward slicing finds all the program points P

that affect a given variable v at a given program point p, whereas forward slicing
finds all the program points P that are affected by a given variable v at a given
program point p. (In Forms/3, cells are considered variables. Consequently, a cell A

is in the backward slice of a cell B if B is dependent on A—meaning the value of A

affects the output of B. Conversely, in this example, B is said to be in the forward
slice of A.) Weiser’s slicing algorithm calculates static slices, based solely on
information contained in source code, by iteratively solving dataflow equations.

Dynamic slicing [53] uses information gathered during program execution in addition
to information contained in source code to compute slices. Using this information,
dynamic slices find program points that may affect (or may be affected by) a given
variable at a given point under a given execution. Consequently, dynamic slicing usually
produces smaller slices than static slicing. Because our purpose is to localize the possible
location of faults to the smallest possible section of the program, our approach is based
on dynamic slicing. In the WYSIWYT framework, checkmarks on a cell C cause
testedness to automatically propagate up C’s backward dynamic slice to all contributing
cells. Our approach leverages this support, as we will describe in Section 4.3.2.

Considering slicing as a fault localization technique, a slice can make use of
information only about variables that have had incorrect values. But program dicing

[54], in addition to making use of information about variables that have had
incorrect values, can also make use of information about where correct values have
occurred. Using dicing, faults can be further localized by ‘‘subtracting’’ the slices on
correct variables away from the slices on the incorrect variable. Our approach is
similar in concept to dicing, but is not exactly the same.

Lyle and Weiser describe the cases in which a dice on an incorrect variable not
caused by an omitted statement is guaranteed to contain the fault responsible for the
incorrect value in their Dicing Theorem [54]. In this theorem, the first assumption
eliminates the case where an incorrect variable is misidentified as a correct variable.
The second assumption removes the case where a variable is correct despite
depending on an incorrect variable (e.g., when a subsequent computation happens to
compensate for an earlier incorrect computation for certain inputs). The third
assumption removes the case where two faults counteract each other and result in an
accidently correct value. The theorem is outlined below:

Dicing theorem. A dice on an incorrect variable contains a fault (except for cases
where the incorrect value is caused by omission of a statement) if all of the following
assumptions hold:
1.
 Testing has been reliable and all incorrectly computed variables have been

identified.

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 13
2.
1

Pro
If the computation of a variable, v, depends on the computation of another variable,
w, then whenever w has an incorrect value then v does also.
3.
 There is exactly one fault in the program.

The Dicing Theorem [54] states that a dice is only guaranteed to contain a fault if the
above three assumptions can be met. Meeting these assumptions is clearly not possible
in end-user programming. As just one example, end users, like any human performing
interactive testing, seem likely to make incorrect testing decisions. (We will return to
this point in Sections 6 and 7.) Because of this mismatch with the audiences and
environments we choose to support, our approach is different from dicing in both
definition and implementation, as we describe in the remainder of this section.

4.3. A heuristic for estimating fault likelihood

Since computing an exact fault likelihood value for a program point in any
program is not possible, a heuristic must be employed to estimate such a value based
on acquired information. We have chosen to use a dicing-like procedure to formulate
our approach to fault localization. Traditionally, a dice on an incorrect cell would be
formed after making a binary decision about cells: either a cell is indicated as
incorrect or it is not; but this does not allow for the possibility of user testing
mistakes, multiple faults in a program, etc. To account for these realities, our
methodology instead estimates the likelihood that a cell contains one or more faults
that contribute to a value marked incorrect. We call this likelihood the fault

likelihood of a cell. Let I be the set of cell values marked incorrect by the program
developer. The fault likelihood of a cell C is an estimate of the likelihood that C

contains one or more faults that contribute to an incorrect value in I. Estimates are
made according to five properties.

4.3.1. Five properties for fault localization

By piggy-backing off of the testing information base maintained by the
WYSIWYT methodology, our approach maintains five properties,1 summarized
below. These properties have been devised with both software engineering and
human–computer interaction principles in mind and, as alluded to in Section 1, form
the essence of our approach.

We will use producer–consumer terminology to keep dataflow relationships clear;
that is, a producer of a cell C contributes to C’s value, and a consumer of C uses C’s
value. In slicing terms, producers are all the cells in C’s backward slice, and
consumers are all the cells in C’s forward slice. C is said to participate in a test (or to
have a test) if the user has marked (with a checkmark or an X-mark) C or any of C’s
consumers.

Of course, these markings become obsolete if an input value is edited. Our fault
localization approach removes all of the X-marks and checkmarks on cells affected
In [2], we presented six properties for estimating fault likelihood, but later removed the fourth property.

perties 4 and 5 in this paper correspond to Properties 5 and 6 in [2].

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4014
by such an edit, although their effects on fault likelihood information are preserved.2

If a non-constant cell formula is edited (which constitutes a change in the program’s
source code), our approach internally removes the tests and fault likelihood values of
the cells affected by the edit (including the edited cell), and updates the user interface
accordingly.

Property 1. If cell C or any of its consumers have a failed test, then C will have non-
zero fault likelihood.

This first property ensures that every cell that might have contributed to the
computation of an incorrect value will be assigned some positive fault likelihood.
This reduces the chance that the user will become frustrated searching for a fault that
is not in any of the highlighted cells, which could ultimately lead to a loss of a user’s
trust in the system, and therefore violate the third design constraint that we placed
on any fault localization approach for form-based visual programs in Section 4.1.
The property also acts as a robustness feature by ensuring that (possibly incorrect)
checkmarks do not bring the fault likelihood of a faulty cell to zero.

Property 2. The fault likelihood of a cell C is proportional to the number of C’s
failed tests.

This property is based on the assumption that the more incorrect calculations a
cell contributes to, the more likely it is that the cell contains a fault.

Property 3. The fault likelihood of C is inversely proportional to the number of C’s
successful tests.

The third property, in contrast to Property 2, assumes that the more correct
calculations a cell contributes to, the less likely it is that the cell contains a fault.

Property 4. An X-mark on C blocks the effects of any checkmarks of C’s consumers
(forward slice) from propagating to C’s producers (backward slice).

This property is specifically to help narrow down where the fault is by preventing
‘‘dilution’’ of important clues. More specifically, producers that contribute only to
incorrect values are darker, even if those incorrect values contribute to correct values
further downstream. This prevents dilution of the cells’ colors that lead only to
X-marks. (In short, X-marks block the propagation of checkmarks). One example of
this behavior is given in Fig. 3.

Property 5. A checkmark on C blocks the effects of any X-marks on C’s consumers
(forward slice) from propagating to C’s producers (backward slice), with the
exception of the minimal fault likelihood property required by Property 1.
2Fault localization approaches can also internally maintain the input values corresponding to X-marks

and checkmarks so as to retrieve these tests if the program reverts to these input values and the program

has not been edited in a manner that affects the test. (In fact, this tactic is utilized by some versions of our

prototype.)

ARTICLE IN PRESS

Fig. 4. An illustration of Property 5’s effect. In this example, the strategically placed checkmarks in the

Weightedavgquiz, EC_Award, WeightedFinal, and ErrorsExist? cells block all but the minimal

(‘‘Very Low’’) fault likelihood from the X-mark in Total_Score.

Fig. 3. An illustration of Property 4’s effect. WeightedMidterm and Total_Score are the darkest

cells. In this example, the X-mark in Weightedavgquiz blocks any effects of the checkmark in

Total_Score from traveling upstream past the X-mark. This has the desirable effect of coloring

Weightedavgquiz, which is where the fault resides, fairly dark. (It is possible for an incorrect value to

occasionally or coincidentally produce a correct value downstream, and Property 4 helps to allow for this

possibility. In this example, Total_Score has a correct value because the incorrect value of

Weightedavgquiz—which the user has noted with an X-mark—has been ‘‘counteracted’’ by a second

fault in the WeightedFinal cell, which has an incorrect value not yet noted by the user.)

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 15
Similar to Property 4, this property uses checkmarks to prune off C’s producers
from the highlighted area if they contribute to only correct values, even if those
values eventually contribute to incorrect values. (Put another way, checkmarks block
most of the propagation of X-marks.) Fig. 4 depicts this behavior, and it is largely
due to Property 5 that the fault’s location has been narrowed down to being most

ARTICLE IN PRESS

Table 1

Mapping fault likelihood calculations to color intensities

Intensity of color Fault likelihood (C)

Low 1–2

Medium 3–4

High 5–9

Very high 10+

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4016
likely in either WeightedMidterm or Total_Score, which are thus colored the
darkest. (In Fig. 4, the fault is an incorrect mathematical operation in the
WeightedMidterm cell; instead of multiplying the value of the Midterm cell by
0.3, Midterm is multiplied by 0.4.)
4.3.2. Implementing the properties

To implement these properties, let NumBlockedFailedTests(C) (NBFT) be the
number of values belonging to C’s consumers that are marked incorrect, but are
blocked by a value marked correct along the dataflow path from C to the value
marked incorrect. Furthermore, let NumReachableFailedTests(C) (NRFT) be the
result of subtracting NBFT from the number of C’s consumers (i.e., the failed tests
that are not blocked). Finally, let there be NumBlockedSuccessfulTests(C) (NBST)
and NumReachableSuccessfulTests(C) (NRST), with definitions similar to those
above.

If a cell C has no failed tests, the fault likelihood of C is ‘‘None’’. If
NumReachableFailedTests(C)=0, but NumBlockedFailedTests(C)40, the fault like-
lihood of C is ‘‘Very Low’’. Otherwise, there are X-marks in C’s consumers that
reach C (are not blocked by checkmarks), and C’s fault likelihood is estimated using
the equation below, and then mapped to a colorization using the scheme in Table 1.3

Fault likelihoodðCÞ ¼ maxð1; 2 � NRFT � NRSTÞ:

As alluded to in Section 4.2, our approach leverages WYSIWYT’s current
dynamic slicing support for X-marks. Just as checkmarks’ effects are propagated up
the marked cell’s backward dynamic slice, so too are the effects of X-marks.
Consequently, for each cell, our approach is able to maintain a list of all checkmarks
and X-marks affecting the cell. These lists are how we implement our five properties
to calculate the fault likelihood for a cell.

The two interactions that trigger action from our fault localization approach are
(1) placing a checkmark or X-mark, and (2) changing a non-constant formula. Our
approach keeps track of which cells are reached by various marks so that the
blocking characteristics of Properties 4 and 5 can be computed given complex,
intertwined dataflow relationships. Let p be the number of cell C’s producers, i.e.,
3This equation, as well as the moment when fault likelihood is mapped to a colorization scheme, has

changed slightly since [2] after analyzing the results of a recent formative study of the effectiveness of our

approach [55].

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 17
cells in C’s backward dynamic slice. Furthermore, let e be the number of edges in the
graph consisting of C’s backward dynamic slice, and let m be the total number of
marks (tests) in the program. The time complexity of placing or undoing a
checkmark or X-mark is Oððp þ eÞm2Þ: Adding or modifying C’s non-constant
formula has time complexity Oðp þ em2Þ; but in this case the edges e are those of a
(dataflow) multigraph because a cell can be referenced multiple times in a formula.
(Details of the complexity analysis of our approach are provided in [56].)
5. Study

Will end users be able to benefit from the fault localization approach we have just
described, and if so, how will they integrate it with their own problem-solving
procedures and strategies? To explore this issue, we conducted a study investigating
the following research questions:
RQ1:
 Do end users perceive value in the fault localization feedback over time?

RQ2:
 How thoroughly do end users understand the interactive, visual fault

localization feedback?

RQ3:
 What types of faults do the debugging strategies of end users reveal?

RQ4:
 How does fault localization feedback influence an end user’s interactive

debugging strategy?

RQ5:
 How do wrong testing decisions affect fault localization feedback?
To obtain the necessary qualitative information, we conducted a think-aloud
study using ten end users as participants. A think-aloud study allows participants to
verbalize the reasoning for their actions. Traditional experiments based on statistical
methods provide quantitative information but do not provide the qualitative
information we sought for this work. For example, a traditional experiment cannot
explain user behaviors or reactions to fault localization feedback, or provide insights
into the cognitive thought process of a user; rather, such experiments provide only
indirect clues about the human-centric issues we sought to investigate.

5.1. Procedure

Our participants were divided into two groups: a control group having only the
features of WYSIWYT and a treatment group having both WYSIWYT and our
integrated, visual fault localization approach. The control group was able to place
X-marks but, unlike the treatment group, these X-marks did not trigger fault
localization feedback. (A control group was needed for the focus of RQ3.) Each
session was conducted one-on-one between an examiner and the participant. The
participant was given training on thinking aloud, and a brief tutorial (described in
Section 5.3) on the environment he or she would be using, followed by a practice
task. Also, the environment had an on-demand explanation system via tooltips,
available for all objects, reducing or eliminating the need for memorization.

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4018
The same (male) examiner was used for all ten participants. The examiner was
positioned behind the participant in order to be out of the participant’s field of
vision. This prevented facial expressions and body language by the examiner from
influencing the participant. Furthermore, the think-aloud training and tutorial given
to each participant was recited from a script. These measures were taken to ensure
that the same treatment was given to each participant, and that the examiner did not
influence the study’s results.

After familiarizing themselves with their environment, each participant worked on
the tasks detailed in Section 5.4. The data collected for each session included audio
transcripts, electronic transcripts capturing all user interactions with the system,
post-session written questionnaires, and the examiner’s observations. Audio
transcripts captured the participants’ verbalizations as they performed the given
tasks. Electronic transcripts captured user actions such as editing the values in a cell,
placing a checkmark or X-mark in a decision box, and turning on/off arrows
indicating dataflow relationships between cells. Post-session questionnaires asked
about the usefulness of the WYSIWYT features in finding and fixing errors, and
tested the participants’ understanding of our fault localization approach. (Readers
are referred to [57] for the contents of the post-session questionnaires.) In addition,
the examiner took notes of his observations during the session.

5.2. Participants

Our participants were 10 business majors with spreadsheet experience. We chose
business majors because spreadsheets are a kind of form-based program commonly
used for business applications. We required participants to be experienced with
spreadsheets because we did not want learning of basic spreadsheet functionality to
be a variable in our study. The participants were equally divided into two groups.
We distributed participants based on their experience with spreadsheets and their
grade point average so that there was an even distribution of experienced and less
experienced participants in both groups. The information about their spreadsheet
experience and whether they had taken a programming class was gathered via a
background questionnaire that the participants filled out prior to the study—this
information is summarized in Table 2. It is fairly common these days for business
students to take a high school or college programming class, but none of the
participants had any professional programming experience.
Table 2

The number of participants of each gender, the number who had spreadsheet experience in the specified

settings, and the number who had taken programming classes

Gender Spreadsheet experience? Programming classes?

M F High school College Professional Personal High school College

Control 1 4 2 4 2 4 2 1

Treatment 4 1 2 5 2 4 0 2

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 19
5.3. Tutorial

Before the study’s tasks, participants were given training on thinking aloud and a
brief tutorial on the environment they would use. (Readers are referred to [57] for the
entire text of the tutorials.) Since it was essential for the participants to think aloud,
the participants were asked to do two ‘‘thinking aloud’’ practice problems: adding
the numbers ‘‘678’’ and ‘‘789’’, and counting the number of windows in their parents’
house. The tutorial about the Forms/3 environment and WYSIWYT was designed
such that the participants received practice editing, testing, and debugging cells. As
part of the tutorial, all participants were led through a debugging exercise. For the
treatment participants, this exercise was done using the fault localization feedback in
order to promote its use later in the experiment, which was necessary to obtain the
data needed for our research questions. To keep the debugging exercise as similar as
possible for the control participants’ version, the debugging exercise was done using
dataflow arrows.

In the tutorial, the participants performed tasks on their own machines according
to verbal instructions. Participants were free to ask questions or seek clarifications
during the tutorial. The tutorial ended when each feature in the environment had
been the subject of at least one testing, debugging, or exploratory hands-on task, and
when the participant had no further questions.

At the end of the tutorial, the participants were given two minutes to explore the
program they were working with during the tutorial to allow them to work further
with the features taught in the tutorial. As a final tutorial task, to prepare the
participants for the study’s tasks, participants were given five minutes to practice
debugging a simple program.

5.4. Tasks

Allwood classified faults in spreadsheets as mechanical, logical, and omission
faults [58]; this scheme is also used in Panko’s work [6]. Under Allwood’s
categorization, mechanical faults include simple typographical errors or wrong cell
references in the cell formulas. Mistakes in reasoning were classified as logical faults.
Logical faults are more difficult than mechanical faults to detect and correct, and
omission faults are the most difficult [58]. An omission fault is information that has
never been entered into the formula.

Drawing from this research, we seeded five faults of varying difficulty into each of
two Forms/3 programs. When classifying these faults, we realized that Allwood’s
scheme does not always clearly differentiate mechanical faults from logical faults.
For example, the scheme does not specify how to distinguish typographical mistakes
(mechanical faults) from mistakes in reasoning (logical faults). In our study, if a
seeded fault was a single incorrect character adjacent on the keyboard to the correct
character (e.g., a 4 that should have been a 3), the fault was classified as a
‘‘mechanical’’ fault—the result of a typographical error. If the fault was missing
information, such as a missing cell reference or subexpression, it was classified as an
‘‘omission’’ fault. Otherwise, the fault was classified as a ‘‘logical’’ fault.

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4020
The first of our two experimental tasks was the Grade program from Fig. 1,
which computes the total score for a course given input for three quizzes, extra
credit, a midterm, and a final exam. There is also a cell that indicates when an input
cell is outside the valid range. Grade had three mechanical faults, one logical fault,
and one omission fault—these faults are detailed in Table 3. This program was
designed to be the ‘‘easier’’ of our two tasks based on its size, the complexity of its
formulas, and our choice of seeded faults.

The other program, Payroll, is presented in Fig. 5. Into Payroll, we seeded
one mechanical fault, three logical faults, and one omission fault—these faults are
detailed in Table 4. This program was much larger, had more levels of data flow, and
had a greater number of cells with non-constant formulas in relation to input cells
when compared to the Grade program.

Participants were given these two programs (tasks) in varying order, with
instructions to test and correct any errors found in the programs. For each task, the
participants were provided the unverified program and a description of the
program’s expected functionality. Furthermore, the participants were provided a
single example of the expected output values given specified inputs for the Grade
task, and two such examples for the Payroll task. Participants had a time limit of
15min to complete the Grade task and 30min to complete the Payroll task.
6. Results

The primary technique we used for analyzing the data was in essence to re-create
each participant’s session. To do this, we replayed the participant’s audio transcript
while at the same time replaying the system-captured electronic transcripts that had
captured each participant’s actions and the system responses. This procedure
allowed us to view the system’s behavior for each user action while at the same time
listening to what the participant said, allowing discovery of strategy choices or
failure discoveries that would not have been evident from either the audio or the
electronic transcript alone. The examiner’s notes were also used to be sure we
considered points the examiner had noticed during the experiment.

Session data were also subdivided into ‘‘episodes’’, where each episode was
considered to start when a participant showed evidence of discovering a failure
(evidenced through what they said or through the placement of an X-mark) until
that participant either fixed the fault causing the failure or turned their attention to a
different failure or fault. The subdivision into episodes was useful in determining the
sequence in which cells were being considered to track down the faults causing an
observed failure. (Sequence information was needed for research questions RQ3,
RQ4, and RQ5.)

6.1. RQ1: do end users perceive value in the fault localization feedback over time?

Blackwell’s model of attention investment [59] is one model of user problem-
solving behavior predicting that users will not want to enter an X-mark unless the

A
R
TIC

LE
IN

PR
ES

S

Table 3

The faults seeded in the Grade task

Cell name Faulty formula Correct formula Fault type

avgquiz (quizl+quiz2+quiz3)/4 (quizl+quiz2+quiz3)/3 Mechanical

EC_Award if ExtraCredit425 then 5 else

(if ExtraCreditX20 then 2 else 0)

if ExtraCredit425 then 5 else

(if ExtraCreditX20 then 3 else 0)

Mechanical

WeightedMidterm Midterm * 0.4 Midterm * 0.3 Mechanical

ErrorsExist? if quizl4100 or quiz24100 or quiz34100 or

Midterm4100 or Final410 or ExtraCredit4100

then ‘‘Error Exists’’ else ‘‘No Error’’

if quizl4100 or quiz24100 or quiz34100 or Midterm4100 or

Final4100 or ExtraCredit4100 then ‘‘Error Exists’’

else ‘‘No Error’’

Logical

Total_Score if ErrorsExist?=‘‘No Error’’ then

Weightedavgquiz+WeightedMidterm+

WeightedFinal else ‘‘Cannot be computed’’

if ErrorsExist?=‘‘No Error’’ then Weightedavgquiz+

WeightedMidterm+WeightedFinal+EC_Award

else ‘‘Cannot be computed’’

Omission

J
.R

.
R

u
th

ru
ff

et
a

l.
/

J
o

u
rn

a
l

o
f

V
isu

a
l

L
a

n
g

u
a

g
es

a
n

d
C

o
m

p
u

tin
g

1
6

(
2

0
0

5
)

3
–

4
0

2
1

ARTICLE IN PRESS

Fig. 5. The Payroll program.

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4022
benefits of doing so are clear to them. The model considers the costs, benefits, and
risks users weigh in deciding how to complete a task. For example, if the ultimate
goal is to forecast a budget using a spreadsheet, then using a relatively unknown
feature such as an X-mark has cost, benefit, and risk. The costs are figuring out when
and where to place the X-mark and thinking about the resulting feedback. The
benefit of finding faults may not be clear after only one X-mark; in fact, the user may
have to expend even more costs (place more X-marks) for benefits to become clear.
The risks are that going down this path will be a waste of time, or worse, will mislead
the user into looking for faults in the correct formulas instead of in the incorrect
ones.

First, we consider whether participants, having briefly seen X-marks in the
tutorial, were willing to place even one X-mark to help their debugging efforts. The
answer was that they were: four of the five treatment participants placed at least one
X-mark, especially when they needed assistance debugging a failure (discussed
further in Section 6.4). The participant who did not place an X-mark (treatment
participant TP3) explained during a post-session interview that she had forgotten
about them, and wished she had used them:
TP3:
 I wish I could redo the problem with the X-mark. If I would have done that, it

would have been a lot more easier.
Given a first use, one indicator of whether users perceive value is whether
they continue to use the device. That is, in our interactive fault localization
system, the first interaction about a failure (X-mark) leads to feedback, and
his feedback may or may not be perceived by the user as having enough value
to lead him or her to place a second X-mark. In general, a difference in any
interactive fault localization approach from traditional approaches is that the
accuracy of feedback about fault locations must be considered at every step of
the way—especially in early steps, not just at the end of some long batch of tests.
As the attention investment model explains, if the early feedback is not seen
as providing information that is truly of practical help, there may never be any
more interactions with the system! This was exactly the case for participant

A
R
TIC

LE
IN

PR
ES

S

Table 4

The faults seeded in the Payroll task

Cell name Faulty formula Correct formula Fault type

HealthInsur if MStatus=‘‘Married’’ then 480 else 300 if MStatus=‘‘Married’’ then 480 else 390 Mechanical

EmployeeTaxes SocSec+Medicare+FedWithhold+InsurCost SocSec+Medicare+FedWithhold Logical

SingleWithHold if AdjustMinusWithholdo119 then 0 else

(AdjustMinusWithhold) * 0.10

if AdjustMinusWithholdo119 then 0 else

(AdjustMinusWithhold�119) * 0.10

Logical

SocSec if GrossOver87K=0 then TotalGrossPay * 0.062

else GrossOver87K * 0.062

if GrossOver87K=0 then TotalGrossPay * 0.062

else 87000 * 0.062

Logical

InsurCost HealthInsur+LifeInsurPremium HealthInsur+LifeInsurPremium+Dental Omission

J
.R

.
R

u
th

ru
ff

et
a

l.
/

J
o

u
rn

a
l

o
f

V
isu

a
l

L
a

n
g

u
a

g
es

a
n

d
C

o
m

p
u

tin
g

1
6

(
2

0
0

5
)

3
–

4
0

2
3

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4024
TP5, who placed only one X-mark in the Grade task, and explained after the
session:
TP5:
 To me, putting an X-mark just means I have to go back to do more work.
In his case, the X-mark he placed was in a cell whose only contributors were input
cells; consequently, because our fault localization approach does not tint input cells
(which have constant formulas rather than non-constant formulas), the only cell
tinted was the cell in which he just placed the X-mark. Since this feedback did not
add to the information he already had, it is not surprising that he found no benefit
from placing an X-mark. This indicates the importance of the feedback (reward),
even in the early stages of use; if the reward is not deemed sufficient for further
attention, a user may not pursue further use.

However, the other three treatment participants who placed an X-mark went on
to place a second X-mark later in the session. Further, after placing this second
X-mark, all three participants then went on to place a third X-mark. The successes
that rewarded these participants (detailed in Section 6.3) appear to have outweighed
their perceived costs of testing and marking failures with X-marks, suggesting that
the rewards of placing X-marks were sufficiently conveyed to these users.

To help discern the perceived value of using fault localization in the participants’
view, we included an evaluation in the post-session questionnaire regarding how
helpful placing X-marks was ‘‘in finding and fixing errors’’. Treatment participants
TP1 and TP2 used X-marks on both problems and rated the feedback as ‘‘Helpful’’.
The one participant, TP3, who forgot about using X-marks and wished that she
had, rated the feedback as ‘‘Quite Helpful’’. Participant TP5, who placed only one
X-mark, offered ‘‘No Opinion’’ about the value of the feedback on the post-session
questionnaire. Surprisingly, participant TP4, who used X-marks five times on the
Payroll problem and whose verbal comments (see Section 6.3) suggested that he
used the feedback during his debugging, rated the feedback as ‘‘Not Helpful’’.

6.2. RQ2: how thoroughly do end users understand the interactive feedback?

To what extent did the participants understand the message the interactive
feedback was trying to communicate? We investigated two levels of understanding:
the deeper level being the ability to predict feedback under various circumstances,
and the more shallow level of being able to interpret feedback received. Prediction
was deemed to be a quantitatively greater level of understanding than interpretation
because predicting fault localization feedback can only be done if one understands
the semantics of the feedback (i.e., is able to accurately interpret the feedback).

To investigate these two levels of understanding, the post-session questionnaire for
our treatment participants had 11 questions, approximately evenly divided between
the two levels, regarding the effects of X-marks on the interior colorings of a cell.
The participants’ ability to predict behavior, as measured by six questions, was
mixed. Again using producer–consumer terminology, all participants were able
to correctly predict the impacts on producer cells of placing a single X-mark

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 25
(two questions). About half the participants were able to predict the impacts on
consumer cells of placing a single X-mark (one question) and to predict the impacts
when multiple X- and check- marks were involved (three questions). However, their
ability to interpret behaviors (the interpretation level of understanding) was
uniformly good: all four of the participants who actually used X-marks during the
session were able to explain the meanings of the colorings and marks, and to say
what those meanings implied about faults (five questions). For example, some
responses to questions about what it means when the interior of cells get darker or
get lighter were:
TP1:
 If the color becomes lighter, the cells have less of a chance to be wrong.

TP2:
 The chance of an error in the darker cells is greater than in the lighter cells.

TP4
 (referring to a darker cell): Higher chance of error in that cell.
Note that these responses are not a product of the participants reciting the
contents of the tutorial. The tutorial introduced participants to the mechanics of
placing X-marks and recited the contents of any explanation tooltips that were on
the screen, but did not contain any content regarding how to interpret the semantics
of the feedback, or how to compare feedback between cells. Finally, these post-
session questionnaire results are corroborated by the actions of the users themselves,
as detailed in the next two sections.

6.3. RQ3: what types of faults do the debugging strategies of end users reveal?

Because this work is about fault localization, we focus on users’ abilities to identify

the location of faults, as defined by either an explicit verbal statement or by the fact
that they edited the cell’s formula. (Once identified, corrections usually followed; 60
of the 69 faults were corrected once identified.)

Once a failure was spotted, users exhibited two kinds of debugging strategies to
find the fault causing the failure: an ad hoc strategy, in which they examined cell
formulas in no particular order that we could discern; and a dataflow strategy, which
we defined as following the failure’s dependencies back through cell references until
they found the fault. Note that the use of a dataflow strategy by participants is not in
itself surprising, given the contents of the tutorial. A bit more surprising is the
extensive use of ad hoc debugging instead of dataflow, despite the participants’
practice during the tutorial with dataflow.

A dataflow strategy can be accomplished through mental effort alone, but
participants rarely did this: mostly they used either arrows, the fault localization
feedback, or a combination of both. Note that we have categorized as dataflow only
sink-to-source (logically top-down) sequences. This is not a limitation because no
instances of source-to-sink sequences (logically bottom-up) were observed. Also note
that strategy categorizations used here reflect what participants actually did, not
what they might have chosen to do in the absence of the system’s guidance.

How successful were these strategy choices? Table 5 enumerates the participants’
strategy choices failure-by-failure and the corresponding success rates. Comparing

ARTICLE IN PRESS

Table 6

The number of faults that were identified using ad hoc and dataflow debugging strategies across all

participants

Grade Payroll

Ad hoc Dataflow Ad hoc Dataflow

Control 13 6 6 3

Treatment 13 9 9 6

Table 5

The success rates of identifying a fault contributing to an observed failure (faults identified/failures

observed), for each debugging strategy

Ad hoc Dataflow Total

Dataflow total Using X-mark

Grade

Control 13/20 6/6 N/A 19/26

(65%) (100%) (73%)

Treatment 13/16 9/10 5/5 22/26

(81%) (90%) (100%) (85%)

Total 26/36 15/16 41/52

(72%) (94%) (79%)

Payro11

Control 6/17 3/6 N/A 9/23

(35%) (50%) (39%)

Treatment 9/21 6/12 3/5 15/33

(43%) (50%) (60%) (45%)

Total 15/38 9/18 24/56

(39%) (50%) (43%)

For each row and column except ‘‘Total’’, a numerator of 25 is the maximum possible. (The maximum

possible is 25 because each task had five faults, and the control and treatment groups who worked on these

tasks were each composed of five participants.)

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4026
the first two columns’ percentages column-wise shows that, for both participant
groups, dataflow debugging tended to be more successful than ad hoc. Within
dataflow, the treatment participants’ success rates with X-marks tended to exceed the
dataflow total success rates. A row-wise comparison of the denominators in the
dataflow column also shows that treatment participants tended to use dataflow
strategies nearly twice as frequently as the control participants (The table’s
numerators cannot be compared column-wise or row-wise as raw values, because
participants usually started with ad hoc and then sometimes switched to dataflow for
hard-to-locate faults.)

Participants had a slightly greater tendency to identify faults with ad hoc strategies
than with dataflow. Table 6 shows the number of times that faults were identified in

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 27
the Grade and Payroll tasks using each strategy. It is not all that surprising that
more faults were identified with ad hoc strategies because, as Table 5 indicates, ad
hoc strategies were used more often than dataflow strategies. However, in Table 5,
note that the percentage of faults identified per failure was consistently higher using
dataflow.

With what types of faults did the strategies matter? To investigate this, we first
looked at the faults that were the easiest to correct: mechanical faults, according to
Allwood’s classification scheme [58].

Easy faults: The participants’ strategy choices did not matter with the easiest
faults. The easiest are mechanical faults, according to Allwood, and were usually
found regardless of the strategy used. Over all tasks and all participants, 33 of the 40
mechanical faults were identified.

Because strategy did not seem to matter in identifying easy faults, we next looked
at the faults that were the harder to correct: logical and omission faults, according to
Allwood.

Hard faults: Participants had a much harder time identifying the harder faults. Of
the 60 logical and omission faults among the treatment participants, only 32 were
identified. However, the ad hoc and dataflow strategies were almost identically split
in terms of identifying these harder faults—17 of the faults were identified using ad
hoc strategies, and 15 were identified using dataflow strategies.

Since these data were not very revealing about when different strategies paid off,
we considered the locality of these types of faults relative to where in the program’s
output the participant first noticed a failure that was caused by one of these faults.
Locality, of course, is a characteristic of faults that we could not use to select the
faults to seed into our programs because the characteristic is based on each
participant’s individual actions.

Local faults: Strategy did not matter much with the ‘‘local’’ faults (those in which
the failed value spotted by the participant was in the same cell as the faulty formula).
This is often the case in smaller programs, where there are fewer cells to reference
and the likelihood of a local fault is greater, and probably contributed to both
groups’ greater success in the Grade task.

Non-local faults: Strategy mattered a great deal for the non-local faults. Over all of
the participants and tasks, 16 non-local faults were identified—all using dataflow. Not

a single non-local fault was identified using the ad hoc strategy. In fact, for seven of these
non-local fault identifications (by six different participants), the participants began
their search for the fault using an ad hoc strategy and, when unable to succeed,
switched to a dataflow strategy, with which they succeeded in finding the fault.

Our fault localization approach augments dataflow strategies, which is especially
illustrated by treatment participants TP4 and TP5. Both participants found all faults
in the smaller Grade task. Both participants also found the mechanical fault and
one of the logical faults in the larger Payroll task in short order. But then, they
both got stuck on where to go next. At this critical juncture, TP4 decided to place an
X-mark (carried out with a right-click) on a failure. Once he saw the feedback, he
rapidly progressed through the rest of the task, placing five X-marks and correcting
the final three faults in only seven minutes. The transcripts show that the initial

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4028
X-mark, which initiated the (dataflow-oriented) fault localization feedback, was a
key turning point for him:
TP4
 (thinking aloud): Right click that ‘cause I know it’s incorrect, highlights

everything that’s possible erroryEmployeeTaxes is also incorrect. My
NetPay is incorrect. Adjusted gross pay (AdjustGrossPay) is incorrect, so

click those wrong.
Whereas TP4 made the defining decision to use the X-mark, TP5 did not. TP5’s
pattern of looking at cells gradually became ad hoc. He started randomly looking at
formulas. He made decisions about the values in various cells and eventually
happened upon a local fault, bringing his total to three. He never searched the
dataflow path any further than one cell. He said ‘‘I’m getting confused here’’
numerous times, but did not change his approach.

6.4. RQ4: how does this feedback influence an interactive debugging strategy?

We had initially expected that treatment participants would always place X-marks
whenever they observed a failure and would then use the subsequent visual feedback
to guide their interactive debugging strategy, but this was not the case. Instead, they
were very conservative, placing only 15 X-marks in total. They seemed to view the
X-marks as a device to be called upon only when they were in need of assistance.
(Recent findings on ‘‘politeness’’ in human–computer communications may be
relevant here [60]. If participants viewed X-marks as criticisms, then Nass et al.’s
findings would suggest that, just as people are reluctant to criticize a human face-to-
face, the participants may have felt reluctant to place an X-mark unless they were
extremely sure doing so was warranted.) For example, only late in the session, when
treatment participant TP1 got stuck debugging the failures, did he turn to the fault
localization device:
TP1
 (thinking aloud): I don’t know how to check the kind of error it is. I’ll mark it

wrong and see what happens.
When participants did place an X-mark, the visual feedback often had an
immediate impact on their interactive debugging strategy: regardless of what their
previous strategy had been, as soon as the feedback appeared, the participants
switched to a dataflow strategy by limiting their search to those cells with estimated
fault likelihood and ignoring cells with no assigned fault likelihood.
TP1
 (thinking aloud): I’m going to right-click on the Total_Score. See that

the weighted average, the weighted quiz (Weightedavgquiz), the

WeightedMidterm, and the WeightedFinal, and the error box (Error-
sExist?) all turn pink.
The fault localization feedback beckons the user toward a dataflow strategy, but it
has attributes dataflow arrows do not have. First, it produces a smaller search space

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 29
than the dataflow arrows, because it highlights only the producers that actually did

contribute to a failure (a combination of dynamic slices), rather than including the
producers that could contribute to failures in other circumstances (a combination of
static slices). Second, it prioritizes the order in which the users should consider the
cells, so that the faulty ones are likely to be considered earliest. The above shows that
TP1 took advantage of the reduction in search space brought about by the tinting of
the producers of a cell with a failure. But did the participants also take advantage of
this prioritization, indicated by some cells being darker than others?

Our electronic transcripts indicate that the answer to this question is yes. When the
participants searched cell formulas for a fault after placing an X-mark, 77% of these
searches initially began at the cell with the darkest interior shading. As an example,
here is a continuation of the above quote from TP1 after placing an X-mark:
TP1
 (thinking aloud): See that the weighted average, the weighted quiz (Weighted-
avgquiz), the WeightedMidterm, and the WeightedFinal, and the error

box (ErrorsExist?) all turn pink. The Total_Score box is darker though.
Another example can be found in a post-session questionnaire response from TP5:
TP5:
 The problem has been narrowed to the darker cells.
When the fault was not in the darkest cell, participants’ searches would gradually
progress to the next darkest cell and so on. Some participants realized that the
colorings’ differentiations could be enhanced if they made further testing decisions
by placing checkmarks and X-marks, carried out by left- or right-clicking a cell’s
decision box.
TP4
 (thinking aloud): Right click that ‘cause I know it’s incorrect, highlights

everything that’s possible errors. Now, I know my TotalGrossPay is correct.

I’ll left click that one and simplify it.
From the results of this and the previous sections, it is clear that fault localization
succeeded in drawing participants into a suitable strategy (dataflow), even when
participants had not realized that a dataflow strategy would help them succeed better
than ad hoc approaches. Further, it is clear that participants were influenced by the
feedback’s prioritization information when more than one color was present—in
that they looked first to the darkest cells, and then to the next darkest, and so on—
and that their doing so was tied to the dataflow strategy, which located a class of
faults that was not found without it (as detailed in Section 6.3).
6.5. RQ5: how do wrong testing decisions affect fault localization feedback?

Being human, the end-user participants in our study made some mistakes in their
testing decisions. Here we consider the types of mistakes they made, and the impact
of these mistakes on the users’ successful use of the fault localization feedback.

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4030
(Because the control participants did not have fault localization feedback, we
consider only the treatment participants.)

In total, the five treatment participants placed 241 checkmarks, of which 11
(4.56%) were wrong—that is, the user pronounced a value correct when in fact it was
incorrect. Surprisingly, however, none of the 15 X-marks placed by participants were
incorrect.

A possible reason for this difference may be a perceived seriousness of
contradicting a computer’s calculations, meaning participants were only willing to
place X-marks when they were really sure their decision was correct. (This is
consistent with observations in an earlier small study [61] of a participant exhibiting
great faith in the computer’s output, and with Nass et al.’s politeness findings [60].)
For example, at one point, participant TP1 placed an X-mark in a cell, then
reconsidered the mark because he was unsure the X-mark was really warranted.
TP1
 (thinking aloud): So, I’ll right click on that one. I’m not sure if this is right. Eh,
I’ll leave it as a question mark.
In contrast, checkmarks were often placed even if the user was unsure whether the
marks were warranted. Our verbal transcripts include ten different statements by
treatment participants with this sentiment. For example, consider the following
quotes from two treatment participants:
TP1
 (thinking aloud): I’ll go ahead and left click the LifeInsurPremium box

because I think that one’s right for now.

TP3
 (thinking aloud): I think these are right, (so) check that.
What impact did the wrong checkmarks have on fault localization? Four of the 11
wrong checkmarks were placed with a combination of X-marks, resulting in
incorrect fault localization feedback. All four of these particular checkmarks, placed
by three different participants, adversely affected the participants’ debugging efforts.

For example, during the Grade task, TP1 placed an incorrect checkmark in the
(faulty) WeightedMidterm cell. He later noticed that the Total_Score cell,
although its formula was correct, had an incorrect value (due to the fault in
WeightedMidterm). Unable to detect the source of this failure, he turned to the
fault localization approach and placed an X-mark in the Total_Score cell:
TP1
 (thinking aloud): The Total_Score box is darker though. And it says the error

likelihood is low, while these other boxes that are a little lighter say the error

likelihood is very low. Ok, so, I’m not sure if that tells me anything.
The participant knew that Total_Score was correct. Fig. 6 illustrates that had it
not been for the wrong checkmark, the faulty WeightedMidterm cell would have
been one of the two darkest cells in the program. Instead, the wrongly placed
checkmark caused WeightedMidterm to be colored the same as its correct
siblings, thus providing the participant with no insightful fault localization feedback.
(The participant eventually corrected the fault after a search of over six minutes.)

ARTICLE IN PRESS

Fig. 6. (Top) The Grade task, with an incorrect checkmark in WeightedMidterm, as seen by

participant TP1. Total_Score is the darkest, and the other six all are the same shade. (Bottom) What

TP1 would have seen without the wrong checkmark: WeightedMidterm would be as dark as

Total_Score.

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 31
Participant TP2, faced with a similar scenario as in Fig. 6, was overcome with
frustration and confusion:
TP2
 (thinking aloud): All righty so, I’m doing something wrong here (long pause) I

can’t figure out what I’m doing wrong.
TP2’s confusion resulted in nearly seven minutes of inactivity. He eventually located
and corrected the fault, but remained flustered for the duration of the session.

As this example points out, it may not be realistic to ignore the fact that end users
will provide some wrong information. In our study, even though less than 5% of the
checkmarks placed by the participants were incorrectly placed, these incorrect marks
adversely affected the debugging efforts of 60% (three out of five) of the treatment

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4032
participants! Given the presence of mistakes, robustness features may be necessary to
allow success even in the presence of mistakes. Toward this end, recall that Property
1 from Section 4.3.1 ensures that our fault localization approach colors every cell in
the dataflow chain contributing to a failure—even the cells the user may have
previously checked off. Clearly, however, this attempt at robustness was not enough
to completely counteract the impacts of mistakes. Alternative approaches whose
build-up of historical information can outweigh some small number of errors [55] are
another possibility.
7. Discussion

Previous fault localization research has focused primarily on techniques to aid
professional programmers performing batch testing. In contrast, our study focuses on
supporting end-user programmers with an interactive fault localization approach. In
generalizing our experiences in end-user debugging, there are many issues that future
work in this area may need to consider.

7.1. When was fault localization used?

We expected that participants would place X-marks on every cell with an incorrect
output value (failure). We further expected that participant verbalizations and
electronic transcripts would show that our interactive, visual feedback effectively
guided the debugging efforts of participants. While our feedback proved helpful to
participants when they actually triggered it, in most cases, participants did not
initially invoke our fault localization approach for assistance. Instead, they treated
fault localization as a resource to be called upon only when they had exhausted their
own debugging abilities.

The reason for this behavior might be tied to attention investment [59]. According
to this model, users manage their attention (time) by attempting to maximize their
benefit-cost return in terms of the time spent to get their work done. Applied to
debugging, this suggests that as long as users are progressing at a good rate at finding
the faults (the benefit), users may see no reason to expend time (cost) on figuring out
which cells to mark correct or incorrect. Of course, the amount of cost and benefits
users perceive would vary from person to person, since these perceptions could be
influenced by many factors such as their past experience, their aversion to risk, their
perception of the slope of the learning curve, and their confidence level. However,
once the easiest faults have been found and the time (cost) to find more faults starts
to increase, the extra time to mark cells may be perceived as being worthwhile,
potentially saving time on the ‘‘hard-to-find’’ faults.

7.2. When was fault localization helpful?

Many of the faults that contributed to failures observed by participants were
either ‘‘local’’ to the failure or would be considered by Allwood as ‘‘easy’’ [58]. In

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 33
both these cases, participants were usually able to locate the fault relatively easily,
and without the assistance of our fault localization approach (or even a dataflow-
based debugging strategy). Hence, our fault localization support did not appear to be
especially useful to participants when searching for easy and/or local faults, a result
we did not anticipate.

However, fault localization proved especially useful for participants searching for
non-local faults (Recall from Section 6.3 that not a single non-local fault was
identified using an ad hoc strategy; all 16 identified non-local faults were localized
using a dataflow-based debugging strategy.) Some participants realized without help
that a dataflow strategy was needed, but some did not. While dataflow-based
debugging strategies may seem intuitively superior in the eyes of trained computer
scientists, such strategies may not come naturally to end-user programmers. One key
way our fault localization approach helped was to lead participants toward a
suitable strategy. Once participants were engaged in a suitable strategy, fault
localization helped further by prioritizing the order they should follow the strategy.
7.3. Mistakes in end-user debugging

Our study brings a unique approach to fault localization by considering interactive

debugging with respect to end-user programmers. Our results suggest that end users
may make mistakes during interactive debugging. Moreover, in our study, these
mistakes had a big impact on the success of the majority of our treatment
participants. This brings up a variety of issues that future work on end-user
debugging may need to consider.

Recall from Section 4 that we employed a dicing-like heuristic as the cornerstone
of our fault localization approach. We hypothesized that end users might make
mistakes during interactive debugging, and such mistakes would violate the first
assumption of the Dicing Theorem [54] that testing has been reliable. (In fact, the
correctness of testing decisions is a common assumption in software engineering
research.) This hypothesis was supported through our study, as 4.56% of the
WYSIWYT checkmarks placed by our participants were incorrectly assigned. This
result indicates that fault localization approaches explored in previous research, such
as program dicing, may be inherently unsuitable for end-user programming
environments.

We also found that while our study’s participants made incorrect testing decisions
regarding perceived correct values (i.e., erroneously placed checkmarks in
WYSIWYT), they never pronounced values incorrect when those values were in
fact correct (i.e., erroneously placed X-marks). This trend was later corroborated by
a recent empirical study [62] that we conducted. The finding could be tied to the
pervasive phenomenon of positive test bias—the tendency to choose tests that
confirm one’s hypothesis rather than tests that refute it [63]. One lesson that
developers of end-user programming environments might take away from this result
is to place greater trust in the ‘‘X-mark-equivalent’’ decisions made by users, and be
more wary when considering the impact of a checkmark on fault likelihood

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4034
calculations. Fault localization approaches may also benefit from including features
to enhance robustness in the face of a few mistakes.

7.4. The importance of early feedback

In our research into fault localization for end users, we strove for an approach that
would provide useful feedback at all stages of the debugging process, from beginning
to end. However, our study helped us to realize that the importance of any
approach’s early feedback when targeting end users. In our study, if an approach’s
early feedback did not seem to be useful, users did not give the fault localization
device a chance to produce better feedback later.

This may be the most challenging result of our study from the perspective of future
fault localization approaches. It is not surprising that previous fault localization
research has not focused on approaches providing useful early feedback—after all,
early feedback is of little consequence to professional programmers performing
batch testing of test suites. Yet this early feedback may be paramount to the success
of an interactive fault localization approach in an end-user programming
environment. The lesson for developers of end-user programming environments is
that the fault localization approaches best suited for end users may be those that
provide quality early feedback, even if sacrificing the quality of later feedback is
necessary.4
8. Threats to validity

Every study has threats to the validity of its results, and these must be considered
in order to assess the meaning and impact of results. This section discusses potential
threats to the validity of our study and, where possible, how we attempted to
mitigate the impact of these threats on our results. (See [64] for a general discussion
of validity evaluation and a threats classification.)

Threats to internal validity are other factors that may be responsible for our
results. It is possible that the specific faults seeded in our two programs are
responsible for our results. To mitigate this factor, as described in Section 5.4, we
seeded faults according to Allwood’s classification scheme [58] to ensure that
different types of faults were seeded in our tasks. Another threat to the internal
validity of our study is due to the possibility that participants may not have
understood programs’ functionality sufficiently to correct the faults. Also, the
study’s time limits could have interacted with the learning styles of some
participants. It is also possible that the one-on-one nature of the study between
the participant and the examiner intimidated the participants, or caused them to try
to give answers that they thought the examiner wanted to hear, but this final
limitation is inherent in any think-aloud study.
4A recent formative experiment [55] examines the quality of the early and later feedback provided by the

approach presented in this paper, as well as the feedback of two separate fault localization approaches.

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 35
Threats to construct validity question whether the results of a study are based on
appropriate information. (Stated another way, threats to construct validity question
whether the dependent variables of the study are appropriate.) Because of the
qualitative information necessary to answer our research questions, many of our
results come from the verbalizations of our participants. However, one limitation of
using participant verbalizations is the possibility that our participants did not
vocalize some of their thought processes during the completion of the study’s tasks.
If this was the case, it is possible that we were deprived of information that could
have changed the conclusions of our study. (Verbalizations may then be considered a
dependent variable of our experiment with inherent limitations.) We attempted to
mitigate this possibility by politely requesting that participants ‘‘think aloud’’ when
they displayed periods of silence. But again, this threat is characteristic of all think-
aloud studies.

Threats to external validity limit the extent to which results can be generalized. In
considering this matter, program representativeness is an issue facing our study. If
the programs used in our study did not mimic those that real end users create, our
results may not generalize. Also, to better control study conditions and ensure that
participants could complete the tasks in the alloted time, our programs were not
large, and therefore may not necessarily be representative of real end-user programs.
In future work, although it may sacrifice some internal validity, a solution to this
issue may be to replicate this study using programs obtained from real end users with
real faults. An alternative solution may be to gather additional empirical evidence
through future studies using a greater range and number of programs. Finally, the
fault seeding process was chosen to help control the threats to internal validity, but
this came at a cost of some external validity, because the faults and fault patterns of
real end users may differ from those introduced into our study tasks.
9. Fault localization in other paradigms

The design of a fault localization approach can be broken down into three
components: the ‘‘information base’’ maintained by the approach, how that
information base is leveraged by a heuristic to estimate the fault likelihood of a
given program point, and how that fault likelihood is communicated to a user. Given
these components, we believe that it is feasible to extend our approach to other
programming paradigms. Because the visualization mechanisms of communicating
fault likelihood calculations are highly dependent on the targeted paradigm, we
discuss some issues that may arise in extending our approach’s information base and
heuristic to other paradigms, beginning with the implications stemming from our
heuristic.

9.1. Heuristic implications

As mentioned in Sections 1 and 4.3.1, we based our heuristic around five
properties, which were chosen with human-centric principles in mind as much as

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4036
software engineering considerations. These properties reflect how the information
base is manipulated (e.g., tracking the number of blocked failed tests) just as much as
the mathematical calculations that map testing information to fault likelihood
values.

A valuable characteristic of these properties is their generality. Although our
properties were stated using cells and their values as examples of variables and cell
formulas as examples of program points, the properties could be applied to other
paradigms’ equivalent variable and program point structures. For example, in
Prograph [65], each node with its incoming wires is a program point corresponding
to a cell formula, and each incoming or outgoing port on a dataflow node is a
variable corresponding to a cell value. It follows that the mathematical calculations
that map testing information to fault likelihood values can also be adjusted as
needed in other programming environments.

This generality means that the only assumption made by our properties is that the
system has knowledge of which tests were dynamically exercised by each program
point. Thus, we turn to the availability of systems and methodologies to track this
information next.

9.2. Information base

The information base of our approach is a record of tests affecting each variable.
To obtain this testing information, we coupled our fault localization approach to the
WYSIWYT testing methodology; therefore, because of the generality of the
properties, any paradigm capable of supporting WYSIWYT is capable of supporting
our fault localization approach.

Although WYSIWYT was designed for form-based visual programs, it is
generalizable to other programming paradigms as well. For example, there has
been Prograph-based work to adapt the methodology to the dataflow paradigm [66].
WYSIWYT has also been successfully extended to the screen transition paradigm
[67], which has a strong relationship with rule-based programming and also to more
traditional state transition diagrams. However, even without WYSIWYT, any other
form of maintaining the same testing information would also provide the necessary
information base.
10. Conclusions

This paper presents an entirely visual, interactive approach to fault localization for
end-user programmers. Our approach estimates the likelihood that each program
point contains a fault, and interactively updates this fault likelihood information as
future testing decisions are made by a user. In a think-aloud study that we conducted
using this approach, visual fault localization feedback guided participants into
effective dataflow-based debugging strategies, which were tied with the identification
of difficult-to-detect faults. We also found that our participants made mistakes
during interactive testing and debugging that adversely affected their debugging

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 37
efforts. We hope that the results of our study will help developers of future fault
localization approaches and future programming environments better address the
unique needs of end-user programmers.
Acknowledgements

We thank the members of the Visual Programming Research Group at Oregon
State University for their feedback and help. We also thank the anonymous
reviewers for their comments and suggestions, which improved the quality and
presentation of this paper. This work was supported in part by the National Science
Foundation under ITR-0082265 and in part by the EUSES Consortium via NSF
grant ITR-0325273. The opinions and conclusions in this paper are those of the
authors and do not necessarily represent those of the NSF.
References

[2] J. Reichwein, G. Rothermel, M. Burnett, Slicing spreadsheets: an integrated methodology for

spreadsheet testing and debugging, in: Proceedings of the Second Conference on Domain Specific

Languages, October 1999, pp. 25–38.

[3] B.W. Boehm, C. Abts, A.W. Brown, S. Chulani, Software Cost Estimation with COCOMO II,

Prentice-Hall, PTR, Upper Sadle River, NJ, 2000.

[4] D. Cullen, Excel snafu costs firm $24m, The Register, June 19, 2003, http://www.theregister.co.uk/

content/67/31298.html, Last Accessed: July 19th, 2004.

[5] R. Panko, Finding spreadsheet errors: most spreadsheet errors have design flaws that may lead to

long-term miscalculation, Information Week, May 1995, p. 100.

[6] R. Panko, What we know about spreadsheet errors, Journal on End User Computing (1998) 15–21.

[7] ANSI/IEEE, IEEE Standard Glossary of Software Engineering Terminology, IEEE, New York,

1983.

[8] C. Cook, M. Burnett, D. Boom, A bug’s eye view of immediate visual feedback in direct-

manipulation programming systems, in: Proceedings of Empirical Studies of Programmers: Seventh

Workshop, Alexandria, VA, October 1997, pp. 20–41.

[9] M. Burnett, G. Rothermel, C. Cook, End–user software engineering, Communications of the ACM

47 (9) (2004) 53–58.

[10] A. Ambler, M. Burnett, B. Zimmerman, Operational versus definitional: a perspective on

programming paradigms, Computer 25 (9) (1992) 28–43.

[11] E. Chi, J. Riedl, P. Barry, J. Konstan, Principles for information visualization spreadsheets, IEEE

Computer Graphics and Applications, July/August 1998.

[12] B. Myers, Graphical techniques in a spreadsheet for specifying user interfaces, in: Proceedings of the

ACM Conference on Human Factors in Computing Systems, May 1991, pp. 243–249.

[13] T. Smedley, P. Cox, S. Byme, Expanding the utility of spreadsheets through the integration of visual

programming and user interface objects, in: ACM Workshop on Advanced Visual Interfaces, May

1996, pp. 148–155.

[14] A. Ambler, The Formulate visual programming language, Dr. Dobb’s Journal (1999) 21–28.

[15] S. Peyton Jones, A. Blackwell, M. Burnett, A user-centered approach to functions in Excel, in:

Proceedings of the ACM International Conference on Functional Programming, Uppsala, Sweden,

August 25–29, 2003, pp. 165–176.

[16] G. Viehstaedt, A. Ambler, Visual representation and manipulation of matrices, Journal of Visual

Languages and Computing 3 (3) (1992) 273–298.

http://www.theregister.co.uk/content/67/31298.html
http://www.theregister.co.uk/content/67/31298.html

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4038
[17] M. Burnett, R. Hossli, T. Pulliam, B. VanVoorst, X. Yang, Toward visual programming languages

for steering in scientific visualization: a taxonomy, IEEE Computer Science and Engineering 1 (4)

(1994).

[18] M. Burnett, S. Chekka, R. Pandey, FAR: an end-user language to support cottage e-services, in:

Proceedings of the IEEE Symposium on Human-Centric Languages, Stresa, Italy, September 2001,

pp. 195–202.

[19] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reichwein, S. Yang, Forms/3: a first-order visual

language to explore the boundaries of the spreadsheet paradigm, Journal of Functional Programming

11 (2) (2001) 155–206.

[20] M. Burnett, H. Gottfried, Graphical definitions: expanding spreadsheet languages through direct

manipulation and gestures, ACM Transactions on Computer–Human Interaction 5 (l) (1998) l–33.

[21] S. Reiss, Visualization for software engineering—programming environments, in: J. Stasko,

J. Domingue, M. Brown, B. Price (Eds.), Software Visualization: Programming as a Multimedia

Experience, MIT Press, Cambridge, MA, 1998, pp. 259–276.

[22] S. Reiss, Graphical program development with PECAN program development systems, in:

Proceedings of the Symposium on Practical Software Development Environments, April 1984.

[23] T. Teitelbaum, T. Reps, The Cornell program synthesizer: a syntax directed programming

environment, Communications of the ACM 24 (9) (1981) 563–573.

[24] D. Notkin, R. Ellison, G. Kaiser, E. Kant, A. Habermann, V. Ambriola, C. Montanegero, Special

issue on the Gandalf project, Journal on Systems and Software 5 (2) (1985).

[25] H. Lieberman, C. Fry, ZStep 95: a reversible, animated source code stepper, in: J. Stasko,

J. Domingue, M. Brown, B. Price (Eds.), Software Visualization: Programming as a Multimedia

Experience, MIT Press, Cambridge, MA, 1998, pp. 277–292.

[26] N. Heger, A. Cypher, D. Smith, Cocoa at the Visual Programming Challenge 1997, Journal of Visual

Languages and Computing 9 (2) (1998) 151–168.

[27] J. Atwood, M. Burnett, R. Walpole, E. Wilcox, S. Yang, Steering programs via time travel, in:

Proceedings of the IEEE Symposium on Visual Languages, Boulder, CO, September 3–6, 1996, pp.

4–11.

[28] D. Kimelman, B. Rosenburg, T. Roth, Visualization of dynamics in real world software systems, in:

J. Stasko, J. Domingue, M. Brown, B. Price (Eds.), Software Visualization: Programming as a

Multimedia Experience, MIT Press, Cambridge, MA, 1998, pp. 293–314.

[29] M. Heath, A. Malony, D. Rover, Visualization for parallel performance evaluation and optimization,

in: J. Stasko, J. Domingue, M. Brown, B. Price (Eds.), Software Visualization: Programming as a

Multimedia Experience, MIT Press, Cambridge, MA, 1998, pp. 347–365.

[30] S. Eick, Maintenance of large systems, in: J. Stasko, J. Domingue, M. Brown, B. Price (Eds.),

Software Visualization: Programming as a Multimedia Experience, MIT Press, Cambridge, MA,

1998, pp. 315–328.

[31] A.J. Ko, B.A. Myers, Designing the Whyline: a debugging interface for asking questions about

program failures, in: Proceedings of the ACM Conference on Human Factors in Computing Systems,

Vienna, Austria, April 24–29, 2004, pp. 151–158.

[32] T. Igarashi, J.D. Mackinlay, B.-W. Chang, P.T. Zellweger, Fluid visualization of spreadsheet

structures, in: Proceedings of the IEEE Symposium on Visual Languages, 1998, pp. 118–125.

[33] J. Sajaniemi, Modeling spreadsheet audit: a rigorous approach to automatic visualization, Journal on

Visual Languages and Computing 11 (l) (2000) 49–82.

[34] J.S. Davis, Tools for spreadsheet auditing, International Journal on Human–Computer Studies 45

(1996) 429–442.

[35] D.A. Carr, End-user programmers need improved development support, in: CHI 2003 Workshop on

Perspectives in End-User Development, April 2003, pp. 16–18.

[36] R.C. Miller, B.A. Myers, Outlier finding: focusing user attention on possible errors, in: Proceedings of

the ACM Symposium on User Interface Software and Technology, November 2001, pp. 81–90.

[37] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, C. Wallace, End-user software

engineering with assertions in the spreadsheet paradigm, in: Proceedings of the 25th International

Conference on Software Engineering, Portland, OR, May 3–10, 2003, pp. 93–103.

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–40 39
[38] A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook, M. Durham, G. Rothermel,

Harnessing curiosity to increase correctness in end-user programming, in: Proceedings of the ACM

Conference on Human Factors in Computing Systems, Fort Lauderdale, FL, April 5–10, 2003,

pp. 305–312.

[39] Y. Ayalew, R. Mittermeir, Spreadsheet debugging, in: Proceedings of the European Spreadsheet

Risks Interest Group, Dublin, Ireland, July 24–25, 2003.

[40] F. Tip, A survey of program slicing techniques, Journal on Programming Languages 3 (3) (1995)

121–189.

[41] H. Agrawal, J.R. Horgan, S. London, W.E. Wong, Fault localization using execution slices and

dataflow tests, in: Proceedings of the International Symposium Software Reliability Engineering,

Toulouse, France, October 1995, pp. 143–151.

[42] J.A. Jones, M.J. Harrold, J. Stasko, Visualization of test information to assist fault localization, in:

Proceedings of the 24th International Conference on Software Engineering, Orlando, FL, May 19–25,

2002, pp. 467–477.

[43] H. Pan, E. Spafford, Toward automatic localization of software faults, in: Proceedings of the 10th

Pacific Northwest Software Quality Conference, October 1992.

[44] M. Burnett, A. Sheretov, G. Rothermel, Scaling up a ‘What You See Is What You Test’ methodology

to spreadsheet grids, in: Proceedings of the IEEE Symposium on Visual Languages, Tokyo, Japan,

September 13–16, 1999, pp. 30–37.

[45] G. Rothermel, M. Burnett, L. Li, C. Dupuis, A. Sheretov, A methodology for testing spreadsheets,

ACM Transactions on Software Engineering and Methodology 10 (l) (2001) 110–147.

[46] G. Rothermel, L. Li, C. Dupuis, M. Burnett, What you see is what you test: a methodology for testing

form-based visual programs, in: Proceedings of the 20th International Conference on Software

Engineering, June 1998, pp. 198–207.

[47] M. Fisher, M. Cao, G. Rothermel, C.R. Cook, M.M. Burnett, Automated test case generation for

spreadsheets, in: Proceedings of the 24th International Conference on Software Engineering,

Orlando, FL, May 19–25, 2002, pp. 141–151.

[48] M. Fisher II, D. Jin, G. Rothermel, M. Burnett, Test reuse in the spreadsheet paradigm, in:

Proceedings of the IEEE International Symposium on Software Reliability Engineering, November

2002.

[49] V. Krishna, C. Cook, D. Keller, J. Cantrell, C. Wallace, M. Burnett, G. Rothermel, Incorporating

incremental validation and impact analysis into spreadsheet maintenance: an empirical study, in:

Proceedings of the International Conference on Software Maintenance, Florence, Italy, November

2001, pp. 72–81.

[50] K.J. Rothermel, C.R. Cook, M.M. Burnett, J. Schonfeld, T.R.G. Green, G. Rothermel, WYSIWYT

testing in the spreadsheet paradigm: an empirical evaluation, in: Proceedings of the 22nd

International Conference on Software Engineering, Limerick, Ireland, June 4–11, 2000, pp. 230–239.

[51] C. Corritore, B. Kracher, S. Wiedenbeck, Trust in the online environment, in: HCI International, vol.

1, New Orleans, LA, August 2001, pp. 1548–1552.

[52] M. Weiser, Program slicing, IEEE Transactions on Software Engineering 10 (4) (1984) 352–357.

[53] B. Korel, J. Laski, Dynamic slicing of computer programs, Journal of Systems and Software 13 (3)

(1990) 187–195.

[54] J.R. Lyle, M. Weiser, Automatic program bug location by program slicing, in: Proceedings of the

Second International Conference on Computers and Applications, 1987, pp. 877–883.

[55] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Prabhakararao, M. Fisher II, M. Main, End-user

software visualizations for fault localization, in: Proceedings of the ACM Symposium on Software

Visualization, San Diego, CA, June 11–13, 2003, pp. 123–132.

[56] J. Reichwein, M.M. Burnett, An integrated methodology for spreadsheet testing and debugging,

Technical Report 04-60-02, Oregon State University, Corvallis, OR, January 2004, http://

eecs.oregonstate.edu/library/?call=2004-6, Last Accessed: July 19th, 2004.

[57] S. Prabhakararao, C.R. Cook, Interactive fault localization for end-user programmers: a think aloud

study, Technical Report 04-60-03, Oregon State University, Corvallis, OR, January 2004, http://

eecs.oregonstate.edu/library/call=2004-39, Last Accessed: July 19th, 2004.

http://eecs.oregonstate.edu/library/?call=2004-6
http://eecs.oregonstate.edu/library/?call=2004-6
http://eecs.oregonstate.edu/library/call=2004-39
http://eecs.oregonstate.edu/library/call=2004-39

ARTICLE IN PRESS

J.R. Ruthruff et al. / Journal of Visual Languages and Computing 16 (2005) 3–4040
[58] C. Allwood, Error detection processes in statistical problem solving, Cognitive Science 8 (4) (1984)

413–437.

[59] A. Blackwell, First steps in programming: a rationale for attention investment models, in:

Proceedings of the IEEE Symposium on Human-Centric Computing Languages and Environments,

Arlington, VA, September 3–6, 2002, pp. 2–10.

[60] C. Nass, Y. Moon, P. Carney, Are people polite to computers? Responses to computer-based

interviewing systems, Journal of Applied Social Psychology 29 (5) (1999) 1093–1110.

[61] L. Beckwith, M. Burnett, C. Cook, Reasoning about many-to-many requirement relationships in

spreadsheets, in: Proceedings of the IEEE Symposium on Human-Centric Computing Languages and

Environments, Arlington, VA, September 3–6, 2002, pp. 149–157.

[62] J.R. Ruthruff, M. Burnett, G. Rothermel, The impact of two orthogonal factors in interactive fault

localization, Technical Report 04-60-08, Oregon State University, Corvallis, OR, June 2004, http://

eecs.oregonstate.edu/library/call=2004-37, Last Accessed: July 19th, 2004.

[63] L.M. Leventhal, B.E. Teasley, D.S. Rohlman, Analyses of factors related to positive test bias in

software testing, International Journal of Human–Computer Studies 41 (2004) 717–749.

[64] C. Wohlin, P. Runeson, M. Host, B. Regnell, A. Wesslen, Experimentation in Software Engineering,

Kluwer Academic Publishers, Boston, MA, 2000.

[65] P.T. Cox, F.R. Giles, T. Pietrzykowski, Prograph: a step towards liberating programming from

textual conditioning, in: IEEE Workshop on Visual Languages, Rome, Italy, October 4–6, 1989,

pp. 150–156.

[66] M. Karam, T. Smedley, A testing methodology for a dataflow based visual programming language,

in: Proceedings of the IEEE Symposium on Human-Centric Computing Languages and Environ-

ments, Stresa, Italy, September 5–7, 2001, pp. 280–287.

[67] D. Brown, M. Burnett, G. Rothermel, H. Fujita, F. Negoro, Generalizing WYSIWYT visual testing

to screen transition languages, in: Proceedings of the IEEE Symposium on Human-Centric

Computing Languages and Environments, Auckland, New Zealand, October 28–31, 2003,

pp. 203–210.

http://eecs.oregonstate.edu/library/call=2004-37
http://eecs.oregonstate.edu/library/call=2004-37

	Interactive, visual fault localization support �for end-user programmers
	Introduction
	Related work
	Background: end-user software engineering
	Visual fault localization
	Design constraints
	Slicing and dicing
	A heuristic for estimating fault likelihood
	Five properties for fault localization
	Implementing the properties

	Study
	Procedure
	Participants
	Tutorial
	Tasks

	Results
	RQ1: do end users perceive value in the fault localization feedback over time?
	RQ2: how thoroughly do end users understand the interactive feedback?
	RQ3: what types of faults do the debugging strategies of end users reveal?
	RQ4: how does this feedback influence an interactive debugging strategy?
	RQ5: how do wrong testing decisions affect fault localization feedback?

	Discussion
	When was fault localization used?
	When was fault localization helpful?
	Mistakes in end-user debugging
	The importance of early feedback

	Threats to validity
	Fault localization in other paradigms
	Heuristic implications
	Information base

	Conclusions
	Acknowledgements
	References

