
IEEE Symposia on Human-Centric Computing Languages and Environments, Stresa, Italy, Sept. 2001 (to appear).

- 1 -

Visually Testing Recursive Programs in Spreadsheet Languages*

Margaret Burnett, Bing Ren, Andrew Ko, Curtis Cook, Gregg Rothermel
Department of Computer Science, Oregon State University, Corvallis, OR 97331

{burnett, ren, koan, cook, grother}@cs.orst.edu

* This work was supported in part by NSF under ITR-0082265, CCR-9806821, and CAREER Award CCR-9703198.

Abstract

Although there has been recent research into ways to
design visual programming languages and environments,
little attention has been given to systematic testing in
these languages, and what work has been done does not
address “power” features such as recursion. In this
paper, we discuss two possible ways the “What You See Is
What You Test” methodology could be extended to
accommodate recursion. The approaches are presented in
terms of their testing theoretic aspects and then
implementation strategies and algorithms. Since the goal
is to help the people using these languages, we also
present an empirical study and use its results to inform
our choice as to which of the two approaches to adopt.

1. Introduction

Although there has been a fair amount of research into
mechanisms for coding and understanding programs
written in visual programming languages, there has been
little attention to other aspects of the software lifecycle for
programs written in these languages. To address one such
aspect, we have been working on a visual testing
methodology for testing programs written in declarative
visual languages, prototyping our results in spreadsheet
languages—the most widely used type of visual
programming language in practice. We use the term
“spreadsheet language” to denote not only commercial
spreadsheet systems, but also research spreadsheet
languages for a wide variety of purposes, such as for
producing high-quality visualizations of complex data [5],
for specifying GUI interfaces [9, 16], for manipulating
matrices [1], and for working with user-defined objects [2,
3]. Our visual testing methodology is called the “What
You See Is What You Test (WYSIWYT)” methodology
[13, 14].

The testing problem is particularly challenging for
visual programming languages that aim toward diverse
audiences ranging from end users to professional
programmers, as is the case with spreadsheet languages.

In such languages, the testing approach must make sense
to end users, while at the same time supporting an
organized approach to testing backed by a firm foundation
to provide the testing power needed by professional
programmers. Further, it is well documented that
spreadsheets contain many faults (logic errors); virtually
every study that looks for faults in spreadsheets finds
them. (See [11] for a survey of this work.) Finally,
spreadsheet languages’ highly interactive, incremental
characteristics such as automatic and immediate visual
feedback impose the constraint that a testing methodology
for such languages must also be interactive and
incremental, and must feature automatic and immediate
visual feedback as well. For these reasons, spreadsheet
languages make a particularly good “acid test” for an
approach to a testing methodology for declarative visual
programming languages.

Our previous work presented the WYSIWYT
methodology for individual spreadsheet cells [14], later
extended it to large grids in which some cells share the
same formula [4], and empirically validated its usefulness
to both programmers and end users [8, 15]. However,
recursive programs had not been supported by this
methodology. It is important to support even these more
powerful features, not just the “easy parts,” to support the
professional programmers end of the spectrum. In this
paper, we extend the WYSIWYT methodology to support
recursive spreadsheets and linked copied spreadsheets in
general.

2. Spreadsheet design patterns

Recursive programs in languages supporting end users
can include programming structures that are rarely found
in traditional languages, and this is demonstrated well by
spreadsheets. Design patterns have become widely used in
understanding program structures in traditional
programming paradigms, and we will use that device here.

In Figure 1, four linked spreadsheet design patterns are
shown. The dataflow arrows in the graphs represent cell
references, and the nodes represent the spreadsheets.

- 2 -

Figure 1: Four design patterns for linked
spreadsheets. Arrows are in the direction of
dataflow. (a) Analogous to call-return. (b) Pipeline.
(c) Analogous to co-routines. (d) Pipeline with return-
to-start.

Figure 1(a) shows the equivalent of a traditional call-
return relationship of one procedure calling another; in a
recursive situation, the procedure/spreadsheet on the left
is a copy of the procedure/spreadsheet on the right.
However, as Figure 1(b) shows, linked spreadsheets, some
of which can be copies of the others, can exist without a
complete call-return relationship, such as in a pipeline-like
arrangement. In contrast to this, in traditional languages,
pipelines are not usually allowed. Figure 1(c) shows what
might be classified as “co-routines” in traditional
programming literature, in which some cell on the left
spreadsheet references a cell on the right, which in turn
references another cell on the left, and so on. Figure 1(d)
is a combination of (a) and (b).

As these examples show, spreadsheet languages allow
non-traditional programming structures. This suggests that
a testing methodology for such languages must be flexible
enough to handle cell referencing and linked spreadsheet

“design patterns” beyond the ubiquitous call-return pattern
of traditional programs.

3. Testing recursive spreadsheets

Prior to this work, we developed WYSIWYT for
spreadsheets without recursion and prototyped it in the
visual spreadsheet language Forms/3 [2, 3]. With the
WYSIWYT methodology, cells are initially colored with
red borders (red means “untested”). If the uservalidatesa
cell’s value by checking it off in a checkbox in the cell’s
corner, borders change color along a continuum of red to
blue (“untested” to “tested”).

3.1 Extended WYSIWYT approach

To test spreadsheets with recursion, one possible
approach is a seemingly straightforward extension of the
above testing methodology for non-recursive spread-
sheets, maintaining testedness information about each cell
individually based upon its dataflow relationships. We
term this approach the “Extended WYSIWYT” approach.
Figure 2 is an example of a recursive spreadsheet, because
a copy has been made ofFactorial, and the original refers
to the copy for some of its calculations. (The notationS:X
means a cellX on spreadsheetS. For example,Factorial:N
means cellN on a spreadsheet namedFactorial.) The main
thing to notice in the figure at this point is how the
WYSIWYT methodology appears to the user. Red-
bordered cells (light gray) are untested, blue-bordered
cells (black) are tested, and purples (grays) are between. A
user can check off a correct value, as in56_Factorial:N. If
there is a question mark in a cell, checking off the cell will
increase testedness. The upper right corner of each
spreadsheet reports a spreadsheet’s overall testedness.

(a) (b)

(c) (d)

Figure 2. Forms/3 Factorial recursive spreadsheet. The user first created a spreadsheet Factorial (at left), then
copied it and changed cell N’s formula on the copy to Factorial:N–1 (at right). Finally the user entered the
formula on Factorial:Answer (left) and the system automatically created any other copies needed to calculate
the results.

- 3 -

To reason about testedness in the Extended
WYSIWYT approach as well as in the original
WYSIWYT approach, behind the scenes acell relation
graph (CRG) is used. The CRG is used as both a
theoretical model and an implementation device. A CRG
is a pair (V, E) modeling the spreadsheet, whereV is a set
of formula graphs, andE is a set of directed edges
modeling dataflow relationships between pairs of elements
in V (see Figure 3). A formula graph models flow of
control within a single cell’s formula, and is comparable
to a control flow graph. In the simplest non-recursive
spreadsheets, there is one formula graph per cell;
however, in spreadsheets in which some formulas have
been replicated/shared, some sharing of formula graphs
takes place [4].

This CRG model has been used to define several test
adequacy criteria [13, 14]. The strongest criterion we have
defined,du-adequacy, is the criterion we use in this paper
to define when a spreadsheet has been tested “enough.”
Under this criterion, a cellX will be said to have been
tested enough when all of itsdefinition-use associations
(abbreviated du-associations) have been covered
(executed) by at least one test. In this model, atest is a
user decision as to whether a particular cell contains the
correct value, given the constants upon which it depends.

Decisions are communicated to the system when the user
checks off a cell tovalidate it. Thus, given a cellX that
referencesY, du-adequacyis achieved with respect to the
interactions betweenX and Y when each ofX’s uses
(references toY) of eachdefinition in Y has been covered
by a test. For example, nodes 7 and 15 in the figure are
definitions. Node 7 also refers to (uses) node 15, and thus
(15,7) is one du-association that needs to be tested. We
assume that cells whose formulas are simply constant
values, such asFactorial:N in Figure 2 and 3, do not need
testing, and refer to them as “input cells” in this paper.

In the Extended WYSIWYT approach, information on
recursive copies is kept individually for each copied cell,
just as is true of the original, and the user thus has the
flexibility to validate any cell on any spreadsheet or copy.
This has the advantage of being completely consistent
with the way WYSIWYT works on non-recursive
spreadsheets.

To maintain and make use of testedness information,
the system’s work is divided into four tasks, each of which
is triggered by a user action. The algorithms for Tasks 2-4
are the same as with non-recursive spreadsheets, but Task
1 requires further discussion.

Task 1: When a cellC’s formula is edited, static du-
associations are collected for the cell, the collection

5:if Factorial:N < 2

7:Factorial:N *
56_Factorial:Answer

6:1

4:E

8:X

T F

Factorial:Answer

1:E

2:constant

3:X

Factorial:N

56_Factorial:Answer

9:E

10:Factorial:N - 1

11:X

56_Factorial:N

17:E

18:56_Factorial:N - 1

19:X

70_Factorial:N

70_Factorial:Answer

13:if 56_Factorial:N < 2

15:56_Factorial:N *
70_Factorial:Answer

14:1

12:E

16:X

T F

21:if 70_Factorial:N < 2

23:70_Factorial:N *
someCopy:Answer

22:1

20:E

24:X

T F

Figure 3. Cell relation graph for factorial recursive spreadsheets under the Extended WYSIWYT approach.
Dashed arrows indicate dataflow relationships between cells. Within the formula graphs, E indicates entry into
a formula and X indicates exit. Note, on the 70_Factorial:Answer, someCopy:Answer means the system
doesn’t have such a cell.

- 4 -

of which is denotedC.DUAs.
Task 2: When a cellC is executed, the most recent

execution trace of its nodes, denotedC.Trace, is
stored (via a probe in the evaluation engine).

Task 3: When a cellC is validated, C.Trace is
consulted to find which of the du-associations in
C.DUAsshould be marked “covered.”

Task 4: When a formula for a (non-input) producer of
C is edited,C.DUA’s du-associations need to be reset
to “not covered.” (C’s direct producersare the cells
C references; in general, we recursively defineC’s
producers as its direct producers and their
producers.)

3.1.1 A problem with task 1. In non-recursive
spreadsheets, static du-associations are incrementally
collected whenever the user edits cellC’s formula. The
underlying assumption is that all cells thatC references
exist at the moment of a formula being accepted by the
system; otherwise an error message would be produced
and the formula rejected. However, for recursive
spreadsheets, this assumption is not valid.

We term a spreadsheet created from scratch by a user a
model spreadsheet, and the cells on itmodel cells. These
have a white background in Forms/3 such as the leftmost
spreadsheet in Figure 2. Copies have gray backgrounds,
except for cells whose formulas have been edited; since
they now have their own formulas, these too are shown in
white. In recursive spreadsheets, Forms/3 automatically
generalizes what references to a spreadsheet copy mean
[17]. If it did not, formulas such as the one for
56_Factorial:Answer in the copied spreadsheet in Figure 2
would be circular. After generalization, concrete
references to specific copies, which reflect the way the
user entered them, are underlined to indicate that they are
just samples. Moving the mouse over the underlined
references displays a legend with the generalized
reference for which the concrete version is a sample, as
shown at the bottom of the figure.

In Figure 2, when the user enters the formula of the cell
Factorial:Answer, all cells thatFactorial:Answer references
exist, allowing the system to collect du-associations.
However, when the formula is copied to its copy
56_Factorial:Answer, a problem arises: there is a reference
to a cell namedAnswer (see legend at the bottom right) on
another copy that has not yet been created by the system.
Thus, for 56_Factorial:Answer, there is not yet enough
information for the system to collect all the static du-
associations.

To solve the problem, it is necessary to store some
temporary du-associations as placeholders, thereby
delaying the collection of some “static” du-associations
until after the runtime evaluation of formulas reveals new

static du-associations to collect. Doing so is necessary
because both the original spreadsheet and its (modified)
copy are visible and available to the user for viewing,
editing, and referencing.

Algorithm CollectIncomingAssocof Figure 4 is called
when the user edits cellC’s formula or when a formula is
copied to C. If C’s referenced cells exist, the system
statically collects du-associations as usual; if not, the
system builds temporary du-associations that are almost
identical to the final ones. When the system eventually
evaluates the formula, the algorithmRebuildAssoc(Figure
4) is called. If, as a result of evaluation, the system created
copies containinguse’s missing references, the system
replaces the temporary du-associations with real du-
associations. The time cost does not change from that of
the original WYSIWYT version of this algorithm, which
is analyzed in [13].

3.1.2 Infeasible DU-associations.Even without recursion
it is not always possible to test all du-associations. For
example, one ofY’s definitions might depend on some cell
Z being less than 0, withX’s use ofY occurring only ifZ is
greater than 0, and thusX-Y du-associations will never
execute. Such du-associations are termedinfeasible. It is
well known that infeasible elements such as these present
a problem for testing methodologies, and we do not
propose a comprehensive solution, but we need to avoid
exacerbating the problem in dealing with recursion.

Unfortunately, the Extended WYSIWYT approach
does exacerbate the problem, because the temporary du-
associations solution (Section 3.1.1) is not sufficient for
cells on spreadsheet copies that compute base conditions.

Algorithm CollectIncomingAssoc (C)
For each use ∈ C.Uses

If a directProducer exists for use
For each def ∈ directProducer.Defs

Let DUA = (def, use, false)
Add DUA to C.DUAs.Incoming
Add DUA to directProducer.DUAs.Outgoing

Else
Let tempProducer be an identical copy of the

directProducer referenced in use
For each def ∈ tempProducer.Defs

Let DUA = (def, use, false)
Set DUA.temporary = true
Add DUA to C.DUAs.Incoming
Add DUA to tempProducer.DUAs.Outgoing

Add use to C.TemporaryUseList

Algorithm RebuildAssoc (C)
For use ∈ C.TemporaryUseList

If a directProducer exists for use
Let temporaryDUAs = use.DUAs.Incoming
DeleteDUAs (temporaryDUAs)
For each def ∈ directProducer.Defs

Let DUA = (def, use, false)
Let C be the cell containing use
Add DUA to C.DUAs.Incoming
Add DUA to DP.DUAs.Outging

Remove use from C.TemporaryUseList

Figure 4. Collecting incoming du-associations.

- 5 -

For example,70_Factorial:Answer’s reference in Figure 5
to another copy ofFactorial will never be created or
executed because70_Factorial:Answer computes the base
(see node 23 in Figure 3).

Even if the user decides to changeN to a larger input
value, the problem does not go away. Although it is
solved for 70_Factorial, it re-materializes for whatever
new copies the system automatically creates to compute
the base condition. Thus, there will always be infeasible
static du-associations under the Extended WYSIWYT
approach, and 100% testedness of all viewable
spreadsheets is unattainable.

3.2 Copy representative approach

Another possible approach was inspired by the Region
Representative approach we developed to remove the
tedium of testing groups of cells with replicated formulas
[4]. The idea behind the Region Representative approach
was to share most of the testing data among these similar
cells. Recursive spreadsheets also introduce similar cells
via copied formulas. The idea behind the Copy
Representative approach is to allow these copies also to
share testing data. A potential advantage is that users
might think it logical for copies of spreadsheets to share
testing data.

3.2.1 Changes to the CRG model.In the Copy
Representative approach, when cells have the same
formula, they share a single formula graph. Thus, instead
of building a formula graph for every cell, as in the
Extended WYSIWYT approach, the system builds a
generalized formula graph for the model cell and its
unedited copies, as in the Figure 6. Further, as with the
Region Representative approach, all copies of input cells
(with constant formulas) are represented by a single

formula graph.
The CRG in this figure is much smaller than the CRG

in Figure 3. This difference carries significant
implications for the user’s interaction: a validation of one
cell C now propagates to every other cell relating to the
same model. For example, if the user validated
Factorial:Answer, all Answer cells in Factorial’s copies
would also be validated.

3.2.2 Algorithms.When a cell is created or edited, it must
be given either a new or an existing formula graph. If a
model or copied cell’s formula has been edited directly by
the user, the cell requires a new formula graph. Otherwise,
the cell is an identical copy, and can point to an existing
formula graph.

The Copy Representative algorithms’ time costs
presented below are the same per formula graph as the
Extended WYSIWYT’s, but the Copy Representative
approach produces fewer formula graphs since some of
them are shared.

Task 1 (collecting static du-associations): Du-
associations among generalized representatives of cells,
not among cells themselves, are collected statically, and
are later resolved dynamically to the concrete cells they
represent. For example, in Figure 6, the top left formula

Figure 5. 70_Factorial is the copy of the
spreadsheet in Figure 2 that computes the base
condition.

8:N < 2

10:N *
someFactorial:Answer9:1

7:E

11:X

T F

someFactorial:Answer

1:E

2:constant

3:X

const:N

4:E

5:someFactorial:N - 1

6:X

nonconst:N

Figure 6. Cell relation graph for factorial recursive
spreadsheets under the Copy Representative
approach.

- 6 -

graph represents allN cells with constant formulas. The
top right formula graph represents all the otherN cells,
which have a single shared (non-constant) formula.
Similarly, the bottom formula graph represents cell
Answer on all copies ofFactorial.

Algorithm CollectIncomingAssocin Figure 7 uses a
shared formula graph (SharedGraph) for all copies
instead of collecting static du-associations for each
concrete cell. When a user edits a cell, that cell’s
SharedGraph is passed to algorithm
CollectIncomingAssoc. For each generalized use cell
sharing this formula graph (possibly on multiple
spreadsheet copies), the algorithm considers all definition
cells which contribute to the use. From these definition
cells, the system can build du-associations between the
definition cells’ formula graphs, and the use cells’ formula
graphs. With this algorithm, the system does not need the
temporary du-associations of the Extended WYSIWYT
approach.

Task 2 (collecting trace information): When a cell is
executed, a trace of its execution is saved. Unlike the du-
associations and formula graphs, the execution traces are
not shared among cells, under the Copy Representative
approach, because different cells with the same formulas
may execute different parts of that formula. For example,
in Figure 2, cell Factorial:Answer executes the else-
expression of the formula whereas Figure 5’s
70_Factorial:Answer executes the then-expression.
Execution traces are collected via an O(1) probe in the
evaluation engine.

Task 3 (marking du-associations “covered” when the
user validates cell C). Figure 8 gives the validation
algorithm. The system gets the du-association of a cell
reference from the shared formula graph, and then
validates the du-association. The call todynamicResolve
finds the concrete cell represented in this du-association in
the context ofC and recursively validates further.

Task 4 (resetting affected cells to “not covered” when
the user edits a formula)is analogous to Task 1, and does
not warrant separate discussion.

4. Experiment

To guide our choice of method, we conducted an
experiment to compare the two approaches. The specific
objectives of the study were to investigate the following
research questions:
RQ1. In which approach are spreadsheet programmers

more effective in terms of du-adequacy?
RQ2. In which approach do spreadsheet programmers

have fewer redundant test cases?
RQ3. In which approach are spreadsheet programmers

more effective at finding faults?
RQ4. Which approach do spreadsheet programmers

expect while testing?

4.1 Method and procedures

The participants were 47 undergraduate and graduate
computer science students enrolled in software
engineering courses. Half of the subjects used the Copy
Representative approach and half used the Extended
WYSIWYT approach. Each of the students was given
extra credit in their class for participation.

Subjects completed a background questionnaire and
were given a 20-minute tutorial on Forms/3 that included
a 2-minute open-ended practice session. Then, subjects
performed three 5-minute testing sessions in which
problem order was counter-balanced. Following the three
sessions, participants completed a comprehension quiz
intended to extract subjects’ understanding of the
importance of testing, of how to choose appropriate test
cases, and of the behavior of the underlying testing
approach.

The subjects were given three recursive programs to
find faults in: one calculatedxn, another calculated the
greatest common divisor of two numbers, and the third
calculated a class grade by accumulating scores from three
copied spreadsheets. Before running the actual
experiment, we evaluated its design, including the
problems, tutorial, and user interface, using Cognitive
Walkthroughs [6] and pilot studies.

Algorithm CollectIncomingAssoc (SharedGraph)
For each use ∈ SharedGraph.Uses

Let useCells = {copies sharing SharedGraph}
Let allDefCell s = { definition cells that

contribute to use }
Let defSharedGraphs = {defCell.SharedGraph

| defCell ∈ allDefCells}
For each defSharedGraph ∈ defSharedGraphs

For each def ∈ defSharedGraph.Defs
Let DUA = (def, use, false)
Add DUA to useSharedGraph.DUAs.Incoming
Add DUA to defSharedGraph.DUAs.Outgoing

Figure 7. Collecting incoming du-associations under
the Copy Representative approach.

Algorithm ValidateCell (C)
Let aSharedGraph = C.SharedGraph
For each use ∈ C.Trace

For each DUA ∈ aSharedGraph.DUAs.incoming
If DUA.use = use then

Let defCellRef = DUA.def
DUA.exercised = true
directProducer =

dynamicResolve(defCellRef,C)
validateCell (directProducer)

Figure 8. Algorithm for updating testedness following
a validation.

- 7 -

4.2 Results

Brief summaries of the analyses of the data are
provided below.

To address RQ1 (testing coverage), the total
spreadsheet testedness (du-associations covered out of
total number of du-associations) for each problem was
recorded for each subject. A Repeated Measures ANOVA
showed that the level of coverage of the Copy
Representative group was significantly higher than that of
the Extended WYSIWYT group across the three problems
(F=59.1, df=1,45, p<.001). There was also a significant
difference in coverage for the three problems (F=9.0,
df=2,44, p<.001) and an interaction effect (F=12.1,
df=2,44, p<.001), which says that the influence of the
approach differed across problems.

To address RQ2 (redundancy), for each subject we
recorded the percentage of redundant test cases out of the
total number of recorded test cases. A Repeated Measures
ANOVA showed that the redundancy of the Copy
Representative group was greater than the redundancy of
the Extended WYSIWYT group (F=19.79, df=1,45,
p<.001). There were no differences in redundancy among
the problems or interaction effects between the groups and
the problems.

To address RQ3 (faults), the number of faults found by
each group was counted. Though the two groups did not
differ significantly in the number of faults they found,
more subjects from the Copy Representative group found
all faults and fewer found no faults than the Extended
WYSIWYT group (Table 1).

To gather data about the groups’ understanding of their
respective testing approach (RQ4), we asked subjects
which of four cells on model and copy spreadsheets would
become more tested if a cell on a copied spreadsheet was
validated in an example problem. In both groups,
approximately 17% answered correctly for the given
approach.

The same data were also analyzed regarding whether
the subjects expected testedness information to be passed
onto the model spreadsheet when they validated a cell on
a copied spreadsheet. A binomial test for proportions
revealed that more subjects expected the model
spreadsheet to share testing information with its copies
(p<.01). The magnitude of this expectation was not
different between groups (χ2=.537, p >.1).

A Repeated Measures ANOVA also revealed that the

Extended WYSIWYT group performed a greater number
of tests than the Copy Representative group (F=8.52,
df=1,45, p<.001), and also revealed a interaction between
the testing approach and problems (F=3.68, df=2,44,
p<.05).

4.3 Discussion

Two issues regarding testing are whether users can
achieve more coverage with less work and whether
increasing amount of work by users leads to finding more
of the faults. The Copy Representative group achieved
much higher testing coverage with fewer clicks, while the
Extended WYSIWYT group worked harder but achieved
less coverage. With the Extended WYSIWYT approach,
users are forced to test each spreadsheet independently,
and thus it requires more work to achieve the same level
of coverage. One might hypothesize that the Extended
WYSIWYT group would find more faults since they did
more tests. However, the results of the experiment show
that the groups did not differ in their ability to find faults,
and in fact, the Copy Representative group found a few
more overall.

The results of the experiment also showed that the
Copy Representative group performed more redundant
test cases while achieving higher coverage. Redundancy is
a two-sided issue: on the one hand, Copy Representative
users can be viewed as “wasting effort;” on the other
hand, the Extended WYSIWYT group could be viewed as
“wasting effort” in that they tested the same formulas on
multiple spreadsheets.

Regarding understandability, although results indicated
that most subjects could not accurately predict the
behavior of either of the testing approaches, significantly
more subjects expected the behavior to be that of the
Copy Representative approach.

In summary, the experiment certainly did not reveal the
understandability advantage of the Extended WYSIWYT
approach that we initially expected. Also, from a
theoretical standpoint, the Copy Representative approach
is better because it avoids the thorny theoretical problems
raised by the Extended WYSIWYT approach. Taken
together, these two factors suggest that the Copy
Representative approach is the better choice.

5. Related work

There is little previous work outside of our own
regarding testing of spreadsheets or in visual languages in
general. The spreadsheet-oriented work has mostly
focused on management devices to get users to test
spreadsheets better, although there is also some work on
comprehension aids for spreadsheet systems that might be
useful for testing. Panko recently presented a summary of

No faults 1 fault 2 faults
Copy Representative 2 7 15
Extended WYSIWYT 6 7 10

Table 1. The number of faults found in each
group.

- 8 -

this work, and continues to update it [11].
In the larger software engineering community, most

previous research regarding testing methodologies has
been done in the context of traditional imperative
languages, but even in that research community, testing
techniques have paid little specific attention to whether or
not a program is recursive. Testing based on code-based
test adequacy criteria has potential to be cognizant of
recursion, but in many cases these criteria are defined in a
manner that renders them orthogonal to whether or not
programs involve any recursive calls.

Some test adequacy criteria, however, do consider
interactions among procedures. Dataflow test adequacy
criteria are among these: Some interprocedural data
dependence analysis techniques [7, 10] specifically
calculate interprocedural du-associations. For such
techniques, given a du-association, the all-uses dataflow
test adequacy criterion [12] (the criterion most closely
analogous to ours) calculates cases where definitions can
(statically) reach uses. However, it considers all cases
where definitiond reaches useu as a single equivalence
class, even thoughd may reachu by multiple paths. In
contrast to this, the two approaches presented in this paper
both take context into account.

6. Conclusion

In this paper, we have presented two visual approaches
to testing recursive spreadsheets. The approaches
presented both extend the basic WYSIWYT approach to
support recursion. The Extended WYSIWYT approach is
dataflow-based, as is the original WYSIWYT
methodology but has several testing-theoretic issues.
However, its consistency with basic WYSIWYT could
have caused it to be the most useful to the humans actually
using it. The Copy Representative approach honors not
only dataflow dependencies, but also shares testedness
information among multiple copies of the same cell. This
allows the user to avoid duplicating testing of identical
logic and also avoids the theoretical problems raised in
the Extended WYSIWYT approach.

To help inform our choice between these two
approaches, we implemented both and conducted an
empirical study. Users of the Copy Representative
approach achieved more testing coverage. Their efforts to
achieve this included more redundant testing, which can
be viewed as either a greater “safety net” or wasted effort.
Neither group predicted behavior accurately, but their
expectations of propagation of testedness were that of the
Copy Representative approach. These results, combined
with its theoretical advantages, lead us to view the Copy
Representative approach as the best choice for supporting
testing of recursive programs in this kind of language.

References
[1] A. Ambler, The Formulate visual programming language,

Dr. Dobb’s Journal, 21-28, Aug. 1999.
[2] M. Burnett and H. Gottfried, Graphical definitions:

Expanding spreadsheet languages through direct
manipulation and gestures,ACM Trans. Computer-Human
Interaction5(1), 1-33, Mar. 1998.

[3] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J.
Reichwein, and S. Yang, Forms/3: A first-order visual
language to explore the boundaries of the spreadsheet
paradigm, J. Functional Programming11(2), 155-206,
Mar.2001.

[4] M. Burnett, A. Sheretov, G. Rothermel, Scaling up a ‘what
you see is what you test’ methodology to testing spreadsheet
grids,IEEE Symp. Vis. Lang., 30-37, Sept. 1999.

[5] E. Chi, J. Riedl, P. Barry, and J. Konstan, Principles for
information visualization spreadsheets,IEEE Computer
Graphics and Applications, July/Aug. 1998.

[6] T. Green, M. Burnett, A. Ko, K. Rothermel, C. Cook, J.
Schonfeld, Using the cognitive walkthrough to improve the
design of a visual programming experiment,IEEE Symp.
Vis. Lang., Seattle, WA, 172-179, Sept. 2000.

[7] M. J. Harrold and M. L. Soffa, Efficient computation of
interprocedural definition-use chains,ACM Trans.
Programming Languages and Systems16(2), 175-204, Mar.
1994.

[8] V. Krishna, C. Cook, D. Keller, J. Cantrell, C. Wallace, M.
Burnett, G. Rothermel, Incorporating incremental validation
and impact analysis into spreadsheet maintenance: An
empirical study,Intl. Conf. Software Maint., Nov. 2001 (to
appear).

[9] B. Myers, Graphical techniques in a spreadsheet for
specifying user interfaces,ACM Conf. Human Factors in
Computing Systems, 243-249, May 1991.

[10] H. D. Pande, B. G. Ryder and W. Landi, Interprocedural
Def-Use Associations in C programs,IEEE Trans. Software
Eng.20(5), 385-403, May 1994.

[11] R. Panko, What we know about spreadsheet errors,J. End
User Computing, 15-21, Spring 1998. (Also available at:
http://panko.cba.hawaii.edu/ssr/).

[12] S. Rapps, and E. Weyuker, Selecting software test data
using data flow information,IEEE Trans. Software Eng.11,
367-375, Apr. 1985.

[13] G. Rothermel, M. Burnett, L. Li, C. DuPuis, and A.
Sheretov, A methodology for testing spreadsheets,ACM
Trans. Software Eng. and Methodology, 110-147, Jan. 2001.

[14] G. Rothermel, L. Li, C. DuPuis, and M. Burnett, What you
see is what you test: A methodology for testing form-based
visual programs,Intl. Conf. Software Eng., 198-207, Apr.
1998.

[15] K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. Green,
and G. Rothermel, An empirical evaluation of a
methodology for testing spreadsheets,Intl. Conf. Software
Eng., 230-239, June 2000.

[16] T. Smedley, P. Cox, and S. Byrne, Expanding the utility of
spreadsheets through the integration of visual programming
and user interface objects,ACM Wkshp. Advanced Visual
Interfaces, 148-155, May 1996.

[17] S. Yang and M. Burnett, From concrete forms to
generalized abstractions through perspective-oriented
analysis of logical relationships,IEEE Symp. Vis. Lang., St.
Louis, MO, 6-14, Oct. 1994.

