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Abstract

How can rigorous forms of testing be supported in a way
that is both compatible with the visual aspect of visual pro-
gramming languages, and usable by the audiences using
those languages — even when the audience has no back-
ground in software engineering? Visual programs are likely
to contain at least some errors, and supporting a visual
form of testing would give users a way to spot those er-
rors early in the program’s life. In previous work, we have
developed a visual testing methodology known as WYSI-
WYT, for use in visual spreadsheet languages, and in this
work, we show formally that this methodology can be gen-
eralized to screen transition diagrams. The algorithms and
accompanying proof of the coverage equivalence that they
ensure provide the mechanisms needed for the screen tran-
sition paradigm to incorporate WYSIWYT testing for both
professional and end-user programming audiences.

1. Introduction

Visual programming languages (VPLs) are becoming in-
creasingly common in several domains. For example, VPLs
or sublanguages are becoming the most common way to
do some kinds of GUI programming, the most common
way of specifying visualization graphics depicting scientific
data, and a common vehicle for macro generation for end-
user applications. Despite the increase in the use of VPLs
for these and other programming tasks, there has been al-
most no attention to providing software engineering support
mechanisms to programmers working in these languages.

Two issues relevant to VPLs have particular implications
for software engineering in VPLs. The first is diversity of
audience: while some users of VPLs are professional pro-
grammers, some are end users with no training in profes-
sional software engineering notions and methods. The sec-
ond is the need to develop rigorous testing approaches that
are fully compatible with the non-traditional paradigms and
mechanisms used in VPLs, such as the specification of pro-
gram semantics by directly manipulating objects or demon-
strating with concrete examples.

We have previously worked to bring some of the bene-
fits of applying formalized notions of testing to the infor-
mal, incremental, development world of spreadsheet-like
VPLs through a highly interactive visual testing mechanism
known as the “What You See Is What You Test” (WYSI-
WYT) methodology [4, 15]. The methodology is com-
pletely visual, and is designed to support end users as well
as more sophisticated programmers.

WYSIWYT has mainly been explored in the spread-
sheet paradigm. There has also been work to adapt it to
the dataflow paradigm [8], but since “underneath the hood”
the spreadsheet paradigm uses a dataflow evaluation en-
gine, this adaptation does not prove very much about the
potential generality of WYSIWYT. In this paper, we con-
sider whether WYSIWYT can be used for another visual
paradigm, namely, the screen transition paradigm.

The screen transition paradigm uses screen transition di-
agrams to specify program behavior. These are an adap-
tation of state transition diagrams in which output states
are represented via screen contents (and report contents
and database contents), and transitions among these output
states specify the conditions under which state changes oc-
cur. Screen transition diagrams are the primary communi-
cation device by which customer requirements are entered
into the Lyee methodology [11], a program generation fa-
cility used by a major Japanese software corporation1 for
commercial software development. The real-world needs
of the Lyee methodology provide the context for the work
reported here. In addition, the screen transition paradigm
has been prototyped in a system called SILK for GUI de-
velopment, and SILK empirical work shows that it can be
effectively used by end-user programmers [10]. Finally, as
a screenshot of SILK will demonstrate, the screen transition
paradigm bears a visual similarity to another important VPL
paradigm, namely, the visual rule-based paradigm. The
similarity between these two paradigms, which has been ex-
ploited in part by Altaira [13] and Kara [6], implies that our
findings for the screen transition paradigm may well extend
to visual rule-based languages as well.

We begin our consideration of generalizing WYSIWYT
to screen transition languages by summarizing WYSI-
WYT and the screen transition paradigm. We then define
the properties of screen transition diagrams necessary for
WYSIWYT, and sketch WYWISYT’s visual aspects in this
paradigm as an example. Finally, we explore the viability
of this approach through translation to a formalism and ver-
ification of that translation from a testing perspective.

2. Background: The WYSIWYT Testing Methodology

In previous work [4, 15], we presented the “What You
See Is What You Test” (WYSIWYT) methodology for test-
ing spreadsheets. The WYSIWYT methodology provides
feedback about the “testedness” of cells in spreadsheets in
a manner that is incremental, responsive, and entirely vi-
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sual, and its effectiveness has been demonstrated empiri-
cally [9, 15, 16].

The underlying assumption behind the WYSIWYT
methodology has been that, as the user develops a spread-
sheet incrementally, he or she could also be testing incre-
mentally. We have integrated a prototype of WYSIWYT
into our research spreadsheet language Forms/3 [2]. In our
prototype, each cell in the spreadsheet is considered to be
untested when it is first created, except input cells. Test-
edness is reflected via border colors on a continuum from
untested (red or light gray) to tested (blue or black).

With WYSIWYT, the process of testing spreadsheets
such as the one in Figure 1 is as follows. During the user’s
spreadsheet development, whenever the user notices a cor-
rect value, he or she lets the system know of this decision
by validating the correct cell (clicking in the decision check
box in its right corner), which causes a check mark to ap-
pear, as shown in Figure 1. This communication lets the
system track judgments of correctness, propagate the impli-
cations of these judgments to cells that contributed to the
computation of the validated cell’s value, and reflect this in-
crease in testedness by coloring borders of the checked cell
and its contributing cells more tested (darker).

WYSIWYT is based on an abstract testing model we de-
veloped for spreadsheets called a cell relation graph (CRG)
[15]. A CRG is a pair (V, E), where V is a set of formula
graphs and E is a set of directed edges modeling dataflow re-
lationships between pairs of elements in V. A formula graph
models flow of control within a single cell’s formula, and is
comparable to a control flow graph. For example, Figure 2
shows a portion of the CRG for Figure 1.

We used the CRG model to define a test adequacy cri-
terion for spreadsheets [15]. (A test adequacy criterion is
a definition of what it means for a program to be tested
“enough.”) Ourdu-adequacy criterionis a type of dataflow
adequacy criterion [14]. Such criteria relate test adequacy
to interactions between definitions and uses in source code
(definition-use associations, abbreviateddu-associations).
A definition of cell C is a node in the formula graph for
C representing an expression that defines C’s value, and a

Figure 1: Visual depiction of testedness of a grades spreadsheet.

useof cell C is either acomputation use(a non-predicate
node that refers to C) or apredicate use(an out-edge from
a predicate node that refers to C). For example, in Figure 2,
nodes 2, 5, 8, 12, and 13 are definitions, nodes 12 and 13
are computational uses, and edges (11,12) and (11,13) are
predicate uses. Under this criterion, a cell X will be said
to have been tested enough when all of its du-associations
have been covered (executed) by at least one test. In this
model, atestis a user decision (which is communicated via
a checkmark) that a particular cell contains the correct value
given the inputs upon which it depends.

3. The Screen Transition Paradigm for WYSIWYT

In the screen transition paradigm, the general idea is that a
user can visually depict input- and output-based states by
explicitly sketching how the intended screens, reports, and
databases appear and behave. A screenshot from the SILK
system for user-interface specification [10] is shown in Fig-
ure 3. The difference from traditional state machines is that
in the screen transition paradigm, the event and conditions
that are required to execute the actions are only a partial
specification of state.

Those familiar with visual rule-based languages will
note the visual similarity between Figure 3 and rule-based
languages such as KidSim/Cocoa/Stagecast [7]. The for-
mer’s screen includes the latter’s graphical preconditions,
the former’s events and conditions correspond to the latter’s
additional preconditions, the former’s transition out-arrows
are shown as “then” arrows in the latter, and the former’s
screen at the end of the arrow along with its transition ac-
tions represents the latter’s postconditions. This similarity
extends below the surface, which we exploit in Section 5.

To consider how WYSIWYT might be applied in the
screen transition paradigm, we begin by providing termi-
nology for the elements of screen transition diagrams.

Figure 2: A partial cell relation graph for the spreadsheet of Figure
1, showing the formula graphs for the top row (“Abbott, Mike”).



With screen transition diagrams, the user specifies a pro-
gram using screens, objects on those screens, and transi-
tions. A screenis a window containing a formatted collec-
tion of objects, whose values will be used and/or produced
by computations. For example, in Figure 4, the user has
placed and formatted six objects. In a manner similar to
the sketch of Figure 3, the user has also sketched the four
transitions of Table 1.2

There are two types of objects:input objectsandoutput
objects. Input objects are objects into which the user is al-
lowed to enter input, via the keyboard or the mouse, and

2We emphasize that the transition format shown throughout this article
is only for precision of this discussion, and is not suitable for end users.
End users are not very successful at using Boolean AND and OR, and do
not tend to understand the use of parentheses as ways to specify precedence
[12].

Figure 3: A SILK sketch (front) of a five-day weather forecast
and storyboard (rear) [10]. An experienced user-interface designer
created the sketch, including buttons, and arrows that show the
screen transitions that occur when the user presses the buttons. At
this stage, the designer has used wavy lines as placeholders for
where most of the text will be.

Figure 4: An example in a (hypothetical) language of what the
grades screen transition diagram might look like if the condition
(bottom) is met. The Testedness indicator depicts the ratio of val-
idated du-pairs in the spreadsheet. The center window shows the
current screen. From Transitions (left) are all transitions that can
reach the current screen and To Transitions (right) are all tran-
sitions that can be exercised from the current screen. Transition
Taken (bottom) is the transition most recently exercised.

are also updatable. A specialized kind of input object is an
event object, which generates a user event if the user inter-
acts with it. The user cannot modify output objects’ values.

Transitionsare defined by the tuple (source screen, desti-
nation screen, event, condition-action pairs). As such, tran-
sitions are slightly more powerful than is traditional. In
the tuple,source screenanddestination screenenumerate
the screens the transition connects. Aneventis a user ac-
tion or computational event under which the transition fires:
the condition-action pairs are processed and the destination
screen is displayed. Eachcondition-action paircontains a
condition and a corresponding action to take if the condi-
tion is fulfilled. A conditionis any arbitrary predicate, and
eachactionconsists of zero or more assignments to input or
output objects.

4. Testing Screen Transition Diagrams

As explained earlier, the WYSIWYT methodology uses
du-adequacy as its test adequacy criterion. The follow-
ing define the definitions and uses in the screen transition
paradigm in a manner that parallels those in Section 2, lead-
ing to a parallel notion of du-adequacy in this paradigm:

Definition 1: A definitionof input object A is:

the specification of A as an input value (including its ini-
tial value and any future values input), or
an assignment to A in an action (presence of A in the
action’s left-hand side).

Definition 2: A definitionof output object A is:

the specification of A’s initial value, or
an assignment to A in an action (presence of A in the
action’s left-hand side).

Definition 3: A useof object A is:

a reference to A in the right-hand side of an action (a
computational use), or
a reference to A in a condition (apredicate use).

Building on these definitions in the same manner as in
Section 2, du-associations are interactions between defini-
tions and uses, and the definition of du-adequacy, as in the
spreadsheet paradigm, is to cover each du-association by at
least one test.

How might a user pursue WYSIWYT testing in this
paradigm? Figure 4 sketches a WYSIWYT interface. Note
that, to be compatible with the WYSIWYT methodology,
# ScreenEvent Predicate Dest Actions
1 Main Edit any(EC==0 AND Main Asgn = Asgn0 + Asgn1

object !(Error? Asgn0) AND Total = Asgn
!(Error? Asgn1))

2 Main Edit any(EC==1 AND Main Asgn = Asgn0 + Asgn1
object !(Error? Asgn0) AND Total = Asgn + AsgnEC

!(Error? Asgn1))
3 Main Edit any(Error? Asgn0) OR Main Asgn = Error

object OR (Error? Asgn1) Total = Error
4 Main Edit anyElse Main Asgn = Undefined

object Total = Undefined

Table 1: Transitions for example screen transition diagram grades



two constraints must be maintained: (1) the presentation of
testedness must be integrated with the screen transition dia-
grams, as in the original WYSIWYT methodology, and (2)
any update or test made by the user must be immediately
and visually reflected in the presentation.

In Figure 4, the user has assigned values to input objects
Asgn0, Asgn1, and AsgnEC and set the boolean EC to true.
The Transition Taken window shows that transition #2 is the
transition previously taken. The user has then validated ob-
ject Total which is denoted by the checkmark in the object.
In validating object Total, six of the 21 total du-associations
have been covered and thus the Testedness window shows
the screen transition diagram as being 28% tested. To test
further, the user then sets the boolean object EC to false,
thus exercising transition #1. This new situation is shown
in Figure 5. Now there is a “?” in each object in which val-
idation will increase testedness. If the user again validates
Total, seven more du-associations will be covered.

Two properties must be satisfied to apply WYSIWYT to
the screen transition paradigm. First, spreadsheets are de-
terministic. In part, this is accomplished by nesting “if” ex-
pressions. One way to ensure that this property holds in the
screen transition paradigm is to specify the order in which
transitions’ predicates are checked. (In fact, this is common
in visual rule-based languages.) Second, in the spreadsheet
paradigm, there is a distinguished well-defined value “un-
defined” that is assigned to cells in which no predicate is
satisfied and no “else” clause is reachable. We introduce
a similar mechanism in the screen transition paradigm for
compatibility. For example, Transition 4 in Table 1 ensures
that all values are well defined. We refer to such transitions
asfall-throughtransitions.

5. Translating Screen Transition Diagrams to CRGs

To precisely define WYSIWYT in the screen transition
paradigm, a formal model for testing screen transition dia-
grams is needed. WYSIWYT for spreadsheets already has a
formal model, the CRG. Can the same formal model be used
to reason about WYSIWYT in screen transition diagrams?
This section presents a translation method that starts with

Figure 5: The user has changed the boolean EC to false. The
system tells the user that this situation has not been fully validated
by placing a “?” in objects in which testedness can be increased
through validation.

an arbitrary screen transition diagram and produces a CRG;
Section 6 then considers its equivalence from a testing per-
spective to the original screen transition diagram. The dia-
gram in Figure 4 and the associated Table 1 will serve as a
running example.

5.1. The Translation Method

The translation method (1) translates the screen transition
diagram to a set of rules, (2) translates the rules to a spread-
sheet, and (3) translates the spreadsheet to its formal model,
the CRG.

The first step of the translation method exploits the simi-
larity between the rule-based paradigm and the screen tran-
sition paradigm. The outcome of this step is a set of rules,
and the particular form of rules we choose is FAR rules.
FAR (Formulas and Rules) is an end-user VPL that sup-
ports programming in both the spreadsheet and rule-based
paradigms by representing the same code in both paradigms
[3]. FAR rules are used because FAR’s translation model
provides the vehicle needed for translating FAR rules to a
spreadsheet and hence to WYSIWYT’s formal model, the
CRG. Figure 6 presents an algorithm to translate a screen
transition diagram to an ordered collection of FAR rules.
Its result on our running example is shown in Figure 7.

The derived FAR rules can now be translated to a spread-
sheet via the algorithm shown in Figure 8. This translation
algorithm is based on the translation model presented in [3],
but adds support for “else”.

Applying the algorithm in Figure 8 to the example’s re-
sults produces a set of cells with size equal to the number of

1. Define a FAR rule of the form (C, predicate, consequence expression)
for each transition action preserving the order per assignment action.
C is the LHS of the assignment action,predicateis the predicate of
the transition andconsequence expressionis the RHS of the transition
action.

2. Define a FAR rule of the form (C, predicate, consequence expression)
for each input variable, whereC is the name of the variable,predi-
cateis “always” andconsequence expressionis the constant that has
previously been input.

Figure 6: Translating a screen transition diagram to FAR rules.

• An ordered set of transition action rules (one per action in Table 1):
– (Asgn, (EC == 0 AND !(Error? Asgn0) AND !(Error? Asgn1)),

Asgn0 + Asgn1)
– (Asgn, (EC == 1 AND !(Error? Asgn0) AND !(Error? Asgn1)),

Asgn0 + Asgn1)
– (Asgn, ((Error? Asgn0) OR (Error? Asgn1)), Error)
– (Asgn, Else, Undefined)
– (Total, (EC == 0, !(Error? Asgn0) AND !(Error? Asgn1)), Asgn)
– (Total, (EC == 1, !(Error? Asgn0) AND !(Error? Asgn1)), Asgn

+ AsgnEC)
– (Total, ((Error? Asgn0) OR (Error? Asgn1)), Error)
– (Total, Else, Undefined)

• Input rules (one for each input in Figure 4):
– (EC, Always, 1)
– (Asgn0, Always, 56)
– (Asgn1, Always, 20)
– (AsgnEC, Always, 12)

Figure 7: FAR rules derived by applying the algorithm in Figure 6
to the screen transition diagram of Figure 4 and Table 1.



unique C’s in the FAR rules created by the algorithm shown
in Figure 6. Figure 9 sketches the resulting spreadsheet.

The algorithm for translating a spreadsheet to a CRG
is given in [15]. The input cells’ resulting formula graphs
have three nodes: an entrance node, a constant node, and an
exit node. The remaining cells’ formula graphs have control
flow between the entrance and exit nodes. See Figure 10.

5.2. Comparing Du-Associations

The set of du-associations in a screen transition diagram
was defined in Section 4. The methodology presented in
[15] defines the set of du-associations in a CRG. A surpris-
ing outcome of the translation is that these sets for a screen
transition diagram and its CRG produced by the translation
do not match! There can be more du-associations in the new
CRG than in the original diagram.

Definitions are mapped 1:1 from screen transition dia-
grams to CRGs, as are computational du-associations. The
difference is in the predicate du-associations. In our running
example, there are 8 predicate uses (p-uses) in the screen
transition diagram and 32 p-uses in the CRG. There are two
reasons for this difference. First, the CRGrepeatspredi-
cates for each cell affected. For example, each transition
in Table 1 affects two cells. Thus, the predicate that ap-
pears only once in the screen transition diagram is repeated
for both Asgn and Total in the CRG (as pointed out in the
caption of Figure 10). Second, screen transition diagrams
have only true du-associations in their conditions, whereas

1. For each FAR rule of the form (C, “always”, consequence expres-
sion), translate to cell C with formula “consequence expression”.

2. For each collection of two or more FAR rules containing the same
LHS C:
(a) Create a cell C with formula empty string.
(b) Preserving the order of Figure 6’s algorithm:

i. For each FAR rule of the form (C, predicate, consequence
expression) except for the fall-through, append to C’s for-
mula “if predicatethenconsequence expressionelse”.

ii. For the fall-through FAR rule of the form (C, “else”, con-
sequence expression), append to C’s formula “consequence
expression”.

Figure 8: Translating FAR rules to a spreadsheet.

Total

  then Error

  then Asgn

  then Asgn + EC
else if (EC==1 && !(Error? Asgn0) && !(Error? Asgn1))

if (EC==0 && !(Error? Asgn0) && !(Error? Asgn1))

else if ((Error? Asgn0) && (Error? Asgn1))

Else
  Undefined

88

Asgn

76

  then Asgn0 + Asgn1

  then Asgn0 + Asgn1

if (EC==0 && !(Error? Asgn0) && !(Error? Asgn1))

else if (EC==1 && !(Error? Asgn0) && !(Error? Asgn1))

else if ((Error? Asgn0) && (Error? Asgn1))
  then Error
else
  Undefined

EC

1

Asgn0

56

56

Asgn1

20

20

AsgnEC

12

12

1

Figure 9: Sketch of Grades translated to a spreadsheet via FAR
rules. Cells show values, each cell’s name is above the cell, and
each formula is depicted at the cell’s lower right.

both true and false du-associations are explicit in CRGs, as
Figure 10 shows. (Complete lists of du-associations in this
example are given in [1].)

This difference leaves us with two choices. The first is
to directly define a new formal model (CRG-like or not)
for screen transition diagrams that exactly matches the di-
agram’s du-associations, perhaps drawing from previous
work on testing finite-state machines (e.g., [5]). However,
this work usually tests only control situations, not resulting
values. Also, this would remove the explicit tie between
the screen transition paradigm and WYSIWYT’s CRG.
This explicit tie is important, both because it establishes
WYSIWYT’s generalizability, and because it allows previ-
ous findings about WYSIWYT to transfer directly to the
screen transition paradigm. Thus, we take the other choice:
to consider whether the smaller set of du-associations in the
screen transition diagram actually provides as much cover-
age as the larger set in the CRG.

6. Coverage Equivalence of Translated Programs

The translation algorithms in Section 5 allow an increase
in du-associations when translating from the screen transi-
tion paradigm to the spreadsheet paradigm. Thus it must
be shown that the du-associations in the screen transition
paradigm subsume the du-associations in the spreadsheet
paradigm in order to equate all du-associations coverage
across the two paradigms. The proof requires a definition
of subsuming:

Definition 4: Let S be a set of du-associations in program
P. Let S′ be a subset of S. We say S′ is asubsuming setof S

9: X

7: E

Asgn1

5: Constant

Asgn0

6: X

4: E

2: Constant

EC

1: E

3: X

8: Constant

F

F

30: X

29: Unassigned28: Error

27: if ((Error? Asgn0) or (Error? Asgn0))26: Asgn + AsgnEC

25:  if (EC==1 && !(Error? Asgn0) && !(Error? Asgn0))24: Asgn

23:  if (EC==0 && !(Error? Asgn0) && !(Error? Asgn0))  

22: E

T

Total

T

FT

11: Constant

12: X

10: E

AsgnEC

Figure 10: Grades CRG. Arrows pointing off the diagram point to
cell Asgn, whose formula graph (not shown) is identical to Total’s
except for the contents of nodes 24 and 26.



if a set of tests that is adequate for S′ is also adequate for S,
and we say that S′ subsumesS.

We now show that the set of du-associations in the
screen transition paradigm, when translated to the spread-
sheet paradigm, constitutes a subsuming set in the spread-
sheet as defined by the spreadsheet’s CRG. This shows that
the CRG, which is the formal model defining WYSIWYT
for spreadsheets, generalizes to also define WYSIWYT for
the screen transition paradigm. This is a necessary step in
showing the feasibility of applying the WYSIWYT method-
ology to the screen transition paradigm.

We begin by considering the spreadsheet, as modeled by
its CRG. Section 6.1 shows the construction of a subsuming
set and proves that it subsumes the entire spreadsheet. We
show, in Section 6.2, that the du-associations in the screen
transition diagram are a subsuming set for the translated
spreadsheet.

6.1. Subsumption within the spreadsheet paradigm

We start by ignoring conditionals in Section 6.1.1, then we
include them in Section 6.1.2.

6.1.1. Coverage Equivalence without conditionals

We begin by considering basic constructs and properties
in the spreadsheet paradigm. Without control-altering con-
structs (conditionals are the only control altering constructs
in spreadsheets), spreadsheets are composed of combina-
tions of lines, forks, and sinks as shown in Figure 11.

Definition 5: A line is an ordered sequence of two or more
cells. Let program (spreadsheet)P be a line. Each cellPi

in P references only cellPi−1. Cell P0 references nothing.
Definition 6: A fork consists of a program, two lines, and
an intermediate connecting cell. LetP be a program with a
sink cellPn. Let Q andR each be line programs consisting
of m ando cells respectively. LetA be a single cell that
referencesPn. A is the connecting cell and bothQ0 andR0

referenceA.
Definition 7: A join consists of two programs, a line, and
an intermediate connecting cell. LetR be a line program
with o cells. LetP andQ each be programs including sinks
Pn andQm respectively. LetA be a single cell that refer-
ences bothPn andQm. A is the connecting cell andR0

referencesA.

Lemma 6.1. For two cellsC0 and C1 without condition-
als, such thatC1 referencesC0, a subsuming set ofC1 also
subsumesC0.
Proof. Exercising the du-associations whose uses are inC1

guarantees the exercising of the du-associations whose uses
are inC0. This follows directly from the definition of what
it is to exercise a du-association in the context of WYSI-
WYT [15]. Thus any set of tests that is adequate forC1 is
also adequate forC0. By the definition of subsumption,C0

is subsumed by any subsuming set forC1.

Theorem 6.1. For line programs, the subsuming set is the
du-association whose use is found in the sink cell.
Proof. The proof proceeds by induction.Base Cases.The

one-cell case is trivial, as the set of du-associations is null.
Consider a spreadsheet consisting of lineM composed of
two cells,M1 andM2. M2 is the sink.M2 contains a ref-
erence toM1. Exercising the du-associations contained in
M2 guarantees the exercising of du-associations inM1 by
Lemma 6.1.Inductive Hypothesis.Consider a programP
with only line N composed ofn cells,n > 2. Cell Nn is
the sink. The subsuming set consists of the du-association
whose use is contained in cellNn. Inductive Step. Con-
sider a programQ with only lineO composed ofn+1 cells,
n > 2. Cell On+1 is the sink. If the cellOn+1 is removed,
by the inductive hypothesis,On contains the subsuming set
for the entire spreadsheet. SinceOn+1 referencesOn, ex-
ercisingOn+1 guarantees exercising the subsuming set de-
fined forOn by Lemma 6.1. So a subsuming set forQ con-
sists of the du-association whose use is in cellOn+1.

Theorem 6.2. For programs without conditionals, the sub-
suming set is the set of all du-associations whose uses are
found in sink cells.
Proof. Theorem 6.1 showed this to be true for line pro-
grams. Without conditionals there are only two other pro-
gram structures that can occur in a program: a fork and a
join. It is helpful to note that in a spreadsheet without con-
trol flow altering constructs, reaching a cell without error
guarantees that all cells which it references directly or in-
directly must be executed. A spreadsheet without condi-
tionals can be considered a directed acyclic graph. Now
the proof becomes: In a connected, directed acyclic graph,
some sink node is reachable from each node in the graph.
The proof proceeds by induction on the depth of the graph.

.

n

P[1]

P[2]

P[n−1]

P[n]

0

P[0]+1

P[1]+1

P[n−2]+1
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0

1

2
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.

.

.
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A
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A

n
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R[1]
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n+1

A

n

P[n]

n
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Q[1]
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.
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P[o−1]+1
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R[o]
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.

..

n+m

n+m−1
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(b) fork

R[0]

A

R[1]
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R[0]+1
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A
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Figure 11: Examples of a line, fork and join in the spreadsheet
paradigm. Each cell is named with index notation (e.g. P[0]).
Below the name is a box containing the cell’s value, and below
the value is a box containing the cell’s formula. Arrows represent
dataflow dependencies between cells.



Base Cases: Depth = 0.The zero-depth case is trivial. Let
G(V,E) be a connected DAG with depth 0. V consists of
a single node N and E is an empty set. As N is the only
node in the graph and N is also a sink node, a sink node is
reachable from all nodes in the graph.Base Cases: Depth
= 1. Let G(V,E) be a connected DAG with depth 1. V can
be separated into two sets: let M be the set of source nodes
and N be the set of sink nodes. Obviously, as set N is the set
of sink nodes, sink nodes are reachable from every mem-
ber in set N. As the graph has depth 1, edges from a node
in M must end in N.Inductive Hypothesis. Let G(V,E) be
a connected DAG with depthn. Let N be the set of sink
nodes in G. Some sink node in G is reachable from every
node in G.Inductive Step. Let G′(V ∪ N ′, E ∪ A′) be a
connected DAG with depthn + 1. (Note thatN from the
inductive hypothesis is a subset ofV .) Let N ′ be a set of
sink nodes, each connected to a node in N of graph G with
an edge inA′. In removingN ′ andA′ from the graph, the
inductive hypothesis can be used to show that every node in
G can reach some sink in G. Now add backN ′ andA′. As
every edge inA′ is connected from some node in N to some
node inN ′, all nodes inN ′ are reachable fromN . As all
nodes in G can reachN , and all nodes inN which are not
sinks can reachN ′, all nodes in G′ can reach some sink.

Thus, a subsuming set of a spreadsheet without control
flow altering constructs is the set of du-associations whose
uses are contained in the sinks of a program.

6.1.2. Coverage Equivalence with Conditionals

Now we show the construction of a subsuming set for pro-
grams with conditionals. For precision, we define the du-
association types that conditionals introduce. Figure 12 il-
lustrates these types of du-associations.

Definition 8: A CDU-out is a computation-use du-
association whose definition is contained within a condi-
tional cell.
Definition 9: A CDU-in is a computation-use du-
association whose use is contained within a conditional cell.
Definition 10: A PDU-in is a predicate-use du-association
whose use is contained within a conditional cell.

Conditionals are the only control-flow-altering con-
structs in the spreadsheet paradigm. If we can show that
the set created by adding CDUs-out to the subsuming set
subsumes all du-associations introduced with conditionals,
then we can show that the set created by unioning the set of
CDUs-out with the subsuming set of the spreadsheet’s por-
tions without conditionals will subsume the spreadsheet.

Theorem 6.3.The subsuming set for spreadsheets with zero
or more conditionals is the set of du-associations whose
uses are in sink cells and the set of du-associations whose
uses reference conditional cells.
Proof. Proof proceeds by construction (four cases):
Du-associations not participating in conditionals: As
shown earlier, our subsuming set first consists of the du-
associations with uses in the sinks. As shown in Theorem
6.2, coverage is still guaranteed for all du-associations not
involving conditionals.CDUs-out: We add all CDUs-out

to the subsuming set. That is, we add all du-associations in
which the definition is a computation use in a conditional
cell. PDUs-in: No action is required, because of the re-
quirement for well-defined values that we elaborated on in
Section 4. By this requirement, all predicate branches are
followed by CDUs-out. By including all CDUs-out in the
subsuming set, both true and false PDUs-in will be reached
as well.CDUs-in: Again, no action is required. All CDUs-
in for a cell either end in sinks or are connected to the use
cell’s CDUs-out. This guarantees exercising the CDUs-in.

6.2. Subsumption in the Screen Transition Paradigm

We have shown that there exists a subsuming set construc-
tion for the spreadsheet paradigm. Now we show that given
our translation algorithms in Section 5, the du-associations
in the screen transition paradigm are a superset of the sub-
suming set in the spreadsheet paradigm. Thus, all-du-
association testing in the screen transition paradigm guaran-
tees all-du-association testing in the spreadsheet produced
by the translation, as modeled by the CRG.

Theorem 6.4. The du-associations in the screen transition
paradigm are a superset of the subsuming set in the spread-
sheet paradigm.
Proof. There are three cases.Case 1: Computation-
use du-associations:By Theorem 6.3, a subsuming setS
for a spreadsheet consists of the conditional cells’ CDUs-
out and all du-associations in sink cells. Obviously,
all computation-use du-associations inS are also in the
screen transition diagram, since the algorithms map all
computation-use du-associations 1-to-1.Case 2: Non-
sink predicate-use du-associations:Any predicate-use
du-associations inS that were translated directly are ob-
viously present in the screen transition diagram. The
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 1 : 0  2: 10

  3 : if X == 1 

4 : U 5 : U + 1

6 : Y

F
T

U

PDU−in

PDU−in

CDU−out CDU−out

CDU−in

CDU−in

Y

Figure 12: Definition-use association types: This is a modified
CRG to highlight the definition-use types added by conditionals.
We began with a cell relation graph, removing the cell dependency
arrows. We then removed the entry and exit nodes. Finally, we
added explicit depictions of definition-uses with dashed arrows.



translation algorithms can also add new predicate-use du-
associations to the spreadsheet, which can either be in non-
sink conditional cells or in sink conditional cells. Let C be
the set of all CDUs-out from a non-sink conditional cell.
The set C together subsumes all predicate du-associations
in the cell containing C’s definitions, by Theorem 6.3,
and we just showed that these CDUs-out are also in the
screen transition diagram.Case 3: Sink predicate-use
du-associations: Recall that one kind of these additions
came from duplicating du-associations in the translation al-
gorithms, but sinceS is a set, such duplicates cannot affect
S’s contents. The other kind of addition came from adding
a false predicate-use to the spreadsheet for each (true) pred-
icate in the screen transition paradigm. If this addition is
in a sink, it will be inS. However, the final else in a cell
always exists in the screen transition diagram, and since it
subsumes all previous else’s in the cell, the previous else’s,
whether additions or not, are not needed inS.

We have shown that the set of du-associations in the
screen transition diagram is a subsuming set in the trans-
lated spreadsheet. Thus, all du-associations testing in the
screen transition paradigm guarantees all du-associations
testing in the corresponding spreadsheet.

7. Conclusion

In this paper we considered the question of whether the
WYSIWYT visual testing methodology is general enough
to serve as a testing methodology for the screen transi-
tion paradigm. We showed that it is by showing that there
is a visual adaptation of WYSIWYT for a (hypothetical)
screen transition language, and by presenting a translation
from an arbitrary screen transition diagram to a coverage-
equivalent CRG. Thus, the CRG formalism defining WYSI-
WYT for spreadsheets also generalizes to define WYSI-
WYT for screen transition diagrams.

This result has two practical implications. First, the
screen transition paradigm is emerging for several purposes,
including for teaching (as in the Kara system), for inter-
face design by end users (as in the SILK system), and
for real-world communication about software needs (as in
the Lyee methodology); the ability to use WYSIWYT in
this paradigm immediately provides support for testing pro-
grams in this paradigm. Second, the paradigm’s strong rela-
tionship to rule-based programming and to more traditional
state transition diagrams suggests that WYSIWYT may be
general enough to support these paradigms as well.
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