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Abstract

This paper focuses on mining human strategies by ob-

serving their actions. Our application domain is an HCI

study aimed at discovering general strategies used by soft-

ware users and understanding how such strategies relate to

gender and success. We cast this as a sequential pattern

discovery problem, where user strategies are manifested as

sequential patterns. Problematically, we found that the pat-

terns discovered by standard algorithms were difficult to in-

terpret and provided limited information about high-level

strategies. To help interpret the patterns and extract general

strategies, we examined multiple ways of clustering the pat-

terns into meaningful groups, which collectively led to inter-

esting findings about user behavior both in terms of gender

differences and problem-solving success. As a real-world

application of data mining techniques, our work led to the

discovery of new strategic patterns that are linked to user

success and had not been revealed in more than nine years

of manual empirical work. As a case study, our work high-

lights important research directions for making data mining

more accessible to non-experts.

1. Introduction

How can data mining be applied to better understand hu-

man behaviors? To understand how humans interact with

computers, researchers in the Human-Computer Interaction

(HCI) field often collect log data, which records user actions

while using software. Often such data is manually analyzed

by HCI researchers in order to understand how effective the

software is at supporting different users in achieving their

goals. In this paper, we applied data mining to a set of

HCI log data collected in a particular problem-solving set-

ting, namely users debugging spreadsheet formulas. We had

the following goals. First, we wanted to automatically ex-

tract the general strategies used by software users for the

problem-solving task they were performing. Second, we

wanted to relate these strategies to user gender and problem-

solving success, which can then be used to help design bet-

ter software that encourages the use of successful strategies

and supports both genders. Finally, as a case study, we

wanted to investigate the applicability of data mining tech-

niques to this type of human behavior data, with a special

focus on the interpretability of the mined results.
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Figure 1. Our data mining process. Arrows

represent the information flow.

Figure 1 summarizes our data mining process, which has

two major parts. The first part finds basic behavioral pat-

terns from the data. The second part interprets these pat-

terns, extracts general strategies and relates them to gen-

der and problem-solving success. Using this framework we

discovered interesting high-level strategic patterns. Some

of our main findings include: 1) Discovering patterns that

match the verbalizations of users regarding strategy in an

independent user study; 2) Discovering a strategic phe-

nomenon that was hypothesized but not yet statistically ver-

ified by HCI researchers in more than three years of manual

empirical work. 3) Discovering two new strategic patterns

that are linked to user success and had not been revealed in

more than nine years of manual empirical work.

While our application was successful, a significant

amount of effort and data mining expertise was required.

In particular, the existing data mining tools would not have
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been sufficient for HCI researchers, without data mining

expertise, to have made our discoveries. In this respect,

our work highlighted an important research direction for

making data mining tools more useful to the data-mining

novices. Key to our success was the use of a diversity of

grouping mechanisms for the low-level patterns discovered

by standard data mining tools. This provided insights that

were not available from any single grouping. However,

selecting the grouping mechanisms was largely human-

directed and quite tedious. This suggests that automated

techniques for generating diverse and potentially interest-

ing groupings of low-level patterns is a key direction toward

making data mining more accessible and easier to apply.

This paper makes following contributions. First, we ap-

plied data mining to a challenging problem - identifying and

understanding human strategies from noisy HCI log data.

Second, its primary focus is on producing interpretable re-

sults. There has been a significant amount of work devoted

to the interpretability issues; however, we rarely see them

applied to a real-world challenging application like ours.

Third, as a case study of a pre-existing, ongoing project by

seasoned HCI researchers, the lessons learned are of signif-

icant practical value to future real world applications and

suggest important research directions in data mining.

2 Case Study Setting

Our case study is situated in an HCI research project

termed the “Gender HCI” project [2]. For this project, HCI

researchers have conducted extensive empirical user stud-

ies to collect data about user activity when using problem-

solving software. The collected data has been and is contin-

uingly being manually analyzed by HCI researchers.

15:43:47, TooltipShowing, CELL31567926-2332 … 

15:44:12, CheckMark, CELL31567926-2332 …

15:44:57, CheckMark, CELL31567926-2332 …

Figure 2. An excerpt from the log file.

Independently from their efforts, we applied data mining

to this real world application, whose processes, data collec-

tion, specifications, and goals were all established by HCI

researchers, independently of any data mining considera-

tions and without regard to data mining suitability. We used

this project to examine how to mine and interpret the HCI

log data of human behaviors.

In particular, we focused on a research prototype exten-

sion of spreadsheets [4, 5], which is designed to aid users

in debugging spreadsheets. It provides functionalities for

systematically testing a spreadsheet and giving feedback to

help users identify the bugs. Please refer to [9] for more

information. The software has been instrumented to record

user actions into log files. A user action is defined as a user’s

physical interaction with a debugging feature. In total, there

Table 1. Commonly used actions
Action Name Explanation

PostFormula (PF) Open a cell to show its content

HideFormula (HF) Close a cell to hide its content

EditValue (EV) Edit a value cell

EditFormula (EF) Edit a formula cell

CheckMark (CM) Placing CheckMark on a cell to

mark its value as correct

XMark (XM) Placing XMark on a cell to mark

its value as incorrect

ArrowOn (AON) Toggle an arrow on to show

the dataflow dependency

ArrowOn (AOF) Toggle an arrow off to hide

the dataflow dependency

are 19 actions available and Table 1 shows a set of com-

monly used actions and their meanings. The log files con-

tain details about every user action, including a time stamp,

on which cell it operated, and various related parameters.

Figure 2 shows an excerpt of a log file, showing the time

stamp, the action name and the cell ID. We omit other in-

formation due to space limit. The data set used in this paper

was collected from 39 user-study participants performing a

given spreadsheet debugging task. On average, the log file

of each participant contained over 400 actions.

3 Mining Sequential Patterns

Typically a strategy refers to a reasoned plan for achiev-

ing a specific goal. Here we considered behavior as a sur-

rogate for strategy. That is, we considered sequences of ac-

tions that collectively achieve a specific goal to be evidence

of an underlying strategy. This led us to cast strategy min-

ing as a sequential pattern mining problem [1, 11]. Below

we describe our preprocess and pattern mining steps.

Preprocessing The log files contain detailed contextual

information about each user action. We removed all con-

textual information and retained only the action names to

form the action sequences. This allowed us to detect gen-

eral behavioral trends not restricted to particular cells.

Mining Sequential Patterns Sequential Pattern Mining

was first introduced in the context of retail data analysis [1].

Many different algorithms have been developed for various

types of sequential data. From these techniques, we chose

IPM2 [8], a method developed for mining interaction pat-

terns, because our HCI log data shares similar characteris-

tics with the interaction trace data targeted by IPM2.

In particular, given a set of action sequences, IPM2

incrementally searches for fully ordered action sequences

that satisfy pre-specified max-error and min-support crite-

ria. The min-support criterion specifies the minimum num-
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ber of times a pattern has to be observed to be considered

frequent. The max-error criterion specifies the maximum

number of insertion errors allowed for pattern matching.

For example, a pattern hA, B, Ci is only considered to be

present in sequence (A, E, D, B, C) if maxi-error � 2.

We set min-support to 30. The max-error threshold was

set to 1 to allow a single insertion. This threshold was cho-

sen to allow some flexibility in pattern finding. We further

removed the patterns shorter than 5 actions to ensure that the

output patterns are sufficiently long to provide enough in-

formation for interpreting the patterns. Finally, we removed

those patterns that were not maximal [10].

Table 2. A sample of the found patterns
PID Pattern

P58 HF, CM, CM, CM, PF, HF

P149 PF, HF, CM, CM, CM, PF

P179 AON, AOF, PF, HF, PF, HF

P206 HF, CM, CM, PF, HF, PF

P273 HF, PF, EF, HF, PF, EF, HF

We applied the above procedure to the HCI log data and

found 289 patterns. Table 2 shows five representative pat-

terns from these 289 patterns. Examining these patterns in-

dividually, we made the following observations.

First, there are many highly similar patterns. For ex-

ample, P58 and P149 differ only by two actions. Because

there is no super-pattern or sub-pattern relationship between

them, concepts such as maximal [10] and closed [14] pat-

terns do not provide further pruning. A key question is

whether such patterns should be considered equivalent. In

particular, we want to know whether they were used for sim-

ilar purposes. In reality, the same strategy may result in

different action sequences due to random variations among

users. If we do consider P58 and P149 equivalent, how

about P206? It differs from P58 by only two actions as well.

We need a principled way to address this issue.

Second, individual patterns carry limited information.

For instance, P179 describes the behavior of toggling on an

arrow closely followed by toggling off an arrow, followed

by some open- and close-cell operations. What does this tell

us about the user’s behavior? Hardly anything. It is difficult

to reach a general understanding of user behavior from a

single pattern like this. We need to go beyond the specifics

of individual patterns and detect general trends.

These observations led us to investigate possible ways

of clustering patterns into meaningful groups, which can

be collectively interpreted to reveal the general behavioral

trends that correspond to high level strategies.

4 Pattern Interpretation

The frequent pattern mining community has long recog-

nized that pattern interpretability (or lack thereof) is a ma-

jor bottleneck in application. Standard algorithms output

large numbers of patterns, prohibiting their detailed exami-

nation. Concepts such as maximal [10] and closed patterns

[14, 20] can reduce pattern redundancy. However, the quan-

tity is only one part of the story. Many applications need to

extract general phenomena, whereas individual patterns are

often single instances of such phenomena. Recently, new

techniques have emerged to address the interpretability is-

sues by compressing, grouping and summarizing the found

patterns [18, 19, 17, 13]. We consider such techniques more

appropriate for dealing with our problems. Still, they are de-

signed for frequent item set patterns. We adapted the basic

ideas behind these methods and applied them to sequential

patterns. In essence, we saught to cluster the patterns into

groups such that each group collectively provides some high

level understanding of user strategies. Below we present

how we achieved this goal using unsupervised clustering. 14.1 Unsupervised Clustering of Patterns
For unsupervised clustering, a critical question is how to

best capture pattern similarities. Note that there may exist

multiple ways for action sequences of the same strategy to

differ from one another. It is thus unlikely for a single simi-

larity measure to capture all possibilities. In fact, there is no

reason to limit ourselves to one particular measure. Differ-

ent measures may reveal different underlying connections

among patterns. In this study, we examined three different

ways to capture the similarity among patterns.

Pattern clustering based on edit distance. This ap-

proach considers the syntactic similarity among patterns.

Here patterns of similar action sequences are deemed to rep-

resent the same general behavior, only perturbed by limited

amounts of extraneous and irrelevant actions. Such syntac-

tic similarity can be captured by edit distance. We computed

the pairwise edit distance among all 289 patterns, producing

a 289 � 289 distance matrix. We then applied hierarchical

average link clustering to produce a dendrogram represent-

ing a hierarchy of clustering solutions. Visually inspecting

the dendrogram, we decided to cluster the patterns into 37

groups. In the remainder of the paper, we will refer to this

method as the edit distance method for pattern clustering.

Pattern clustering based on usage profiles. Another

way of judging the connection between a pair of patterns

is to look into how they are used. In particular, in this ap-

proach, we created a usage profile for each pattern by look-

ing at how frequently each pattern was used by the 39 users.

Patterns sharing similar usage profiles were then considered

to be related to each other. Specifically, we created a 39 di-

mensional usage profile to represent each pattern. Each di-

1We also examined supervised clustering [7] for finding groups of pat-

terns that were used differently by different user groups. Please refer to

our technical report [9] for details on this.
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Table 3. A summary of the pattern groups.
Method Group Representative Patterns Statistical Testing Results

Edit Dist. 1 h HF,PF,HF,CM,CM,CM,CM,CM ih PF,CM,CM,CM,CM,CM i Significant differences between successful andh PF,HF,CM,CM,CM,CM,CM,CM i unsuccessful users

Edit Dist. 2 h CM,CM,CM,CM,CM,PF,HF i (p-value = 0.032 and 0.003 respectively)h CM,CM,CM,XM,XM i Favored by successful usersh CM,CM,CM,CM, HF i
Edit Dist. 3 h HF,HF,PF,HF,PF,EF,HF i Significant difference between female and male

Cell Freq. h HF,PF,HF,PF,PF,EF,HF i users. (p-value=0.016)h HF,EF,HF,PF,EF i Favored by female users

Usage Freq. 4 h HF,PF,HF,PF,HF,HF,CM i Significant difference between successful and

Cell Freq. h PF,PF,HF,PF,HF,CM,PF i unsuccessful users (p-value=0.017)h HF,PF,HF,PF,HF,PF,HF,PF,HF,CM i Favored by unsuccessful users

Usage Freq. 5 h EV,HF,PF,EV,HF,CM,CM,CM i Significant difference between successful and

Cell Freq. h PF,EV,HF,PF,EV,CM i unsuccessful users (p-value=0.007)h HF,PF,EV,HF,CM,CM,CM,CM i Favored by successful usersh CM,CM,CM,XM,XM i
mension is the number of times that the pattern was used by

a particular user. We then applied K-means to the resulting

39 dimensional data set to group patterns that share similar

usage profiles together. Visually inspecting the plot of the

GAP statistics [16], we found 20 clusters in the data.

We will refer to this method as the usage profile method.

Note that if two patterns A and B are grouped together under

the usage profile method, it suggests that users who use A a

lot tend to use B a lot as well and vice versa.

Pattern clustering based on cell frequency. Finally, we

looked into another aspect concerning how patterns were

used. Here we inspected the cells on which each pattern

operated. In particular, given a pattern we looked at each

time that it was used, and found the cells on which it op-

erated. For instance, if a pattern consists of five actions,

every time we observed this pattern, the counts of the five

cells on which it operated were incremented accordingly. If

a cell was operated on multiple times within the pattern, its

count was incremented multiple times. In the end, we ob-

tained a cell frequency distribution for each pattern describ-

ing how many times the pattern operated on every cell of

the spreadsheet. In total, the spreadsheet contains 25 cells.

This results in a 25 dimensional representation of the pat-

terns. Similarly, we applied K-means to the 25 dimensional

data and found 20 clusters. Note that if two patterns A and

B are grouped together under this method, it suggests that

cells that are touched frequently by A are also touched fre-

quently by B and vice versa.4.2 Statistial Testing
Not all pattern groups necessarily correspond to interest-

ing user strategies. To find those interesting to our goal,

we related these pattern groups to user gender and problem

solving success. We used the unpaired t-test [6] to iden-

tify a subset of pattern groups whose usages showed sta-

tistically significant differences between female and male

users, and/or between successful and unsuccessful users.

Taking gender analysis as an example, we separated the

users based on their gender. Given a pattern group in con-

sideration, we counted how many times each user uses the

patterns from that group, giving a count for each user. We

considered the counts of the females as one sample X (the

size of the sample equals the number of female users), and

the counts of the males as another sample Y. Applying un-

paired t-test at 5% significance level, if we fail to reject the

null hypothesis (X and Y have the same mean), the pattern

group is deemed uninteresting because it showed no statis-

tically significant difference between males and females.

We tested each pattern group with respect to both gen-

der and success and selected only those that are significant

according to our tests for further inspection and interpre-

tation. This allowed us to quickly zoom in to the pattern

groups that are interesting to the gender HCI research.

5 Pattern Interpretation Results

Our clustering methods produced a number of highly in-

teresting clusters, which collectively led to insights about

user strategies, relating both to user gender and to problem-

solving success. Table 3 summarizes some of the most in-

teresting groups we found.

Pattern Groups 1 & 2: Pattern groups 1 and 2 were both

identified by the edit distance approach. We discuss them

together because the patterns in these two groups are simi-

lar. In particular, they can all be characterized by the behav-
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Figure 3. The usage frequency box-plots for different pattern groups and user groups.

ior of consecutively checking off cells as being correct (CM)

or incorrect (XM), i.e., a “batch” of checks made in a row

(termed here the “batch-checking” strategy). As indicated

in column 4 of Table 3, the statistical tests indicate both

pattern groups showing a significant difference between the

successful and unsuccessful user groups, with the batch-

checking strategy used more by successful users. See Fig-

ure 3(a) for the box-plot of the group 2 usage frequencies

by the successful and unsuccessful users respectively. The

group 1 plot is highly similar, thus omitted.

Pattern Group 3: Pattern group 3 was identified by both

the edit distance method and the cell frequency methods.

This suggests that this cluster is real and not a random ar-

tifact created by the clustering algorithms. Patterns in this

group are characterized by inspecting formula cells - Post-

Formula(PF) and HideFormula(HF) - followed by one or

more EditFormula (EF) operations. We further inspected

the cells that these patterns operate on, and found that 98%

of them are formula cells (i.e., cells containing formulas) as

opposed to value cells (i.e., cells containing constant val-

ues). This suggests a strategy we call “code inspection”,

which involves opening and closing formula cells to inspect

the code statically and making formula changes based on

the inspection results. Interestingly, in an independent user

study [3] in which the participants were asked to describe

their debugging strategies, “code inspection” was one of the

top strategies described by female participants, but not by

the males. This independent finding provides further evi-

dence of the validity of the cluster.

Pattern Group 4: Pattern group 4 was identified by both

the usage profile and the cell frequency methods. The pat-

terns in this group differ subtly from the patterns of group

3. In particular, these patterns also perform a number of for-

mula manipulations (e.g. PF, HF). However, these manipu-

lations were followed by one or more CheckMark (CM) op-

erations, as opposed to EditFormula (EF) operations. This

distinction is important. In fact, this group of patterns sug-

gest a different strategy we named “to-check-list behavior”,

which involves visually inspecting the formula cells and

then making a mark on the cells to indicate they are off

the “to-check-list”. An external data point regarding this

cluster’s validity is that this “to-check-list” strategy was ex-

plicitly mentioned by several participants in the indepen-

dent user study. (This information was not available to us

during our analysis.) Statistical testing shows that this pat-

tern group was used more frequently by the unsuccessful

users, as indicated by column 4 of Table 3 and Figure 3(c).

Pattern Group 5: This group was again identified by

both the usage profile and the cell frequency method. Pat-

terns in this group describe the behavior of testing formulas

by varying the inputs. (Note that testing is different from

code inspection — in the former, the user evaluates val-

ues and in the latter the user evaluates the source code.)

The testing nature of this pattern is suggested by the re-

peated EditValue (EV) operations accompanied by a set of

CheckMark (CM) operations. We refer to this as the “test-

and-check” strategy. (In the independent user study, many

participants explicitly described testing as a strategy.) Sta-

tistical testing indicates that it was favored by the success-

ful users (See Table 3 and Figure 3(d)). Comparing this

with the “to-check-list behavior”, it suggests that when the

Checkmark is correctly used as a marking for testing results,

users see more success. This is consistent with previous

HCI findings tying use of the CheckMark with successfully

testing and debugging spreadsheet formulas [5].

Summary of results: Unsupervised clustering signifi-

cantly improved the interpretability over individual pat-

terns. The resulting pattern groups revealed evidence of

four different high-level strategies. There are three main

points to note: 1) the match of the verbalizations in an in-

dependent user study strongly suggests that our findings are

not only real but also are at an appropriate abstraction level;

2) the code inspection result (Group 3), was not yet proven.

HCI researchers had begun to suspect its presence, but had

not been able to statistically show it in more than three years

of manual empirical work in the context of of gender HCI

[2]; 3) two of the results are new, namely the beneficial ef-

fects of batch checking (Groups 1 and 2) and the detrimental

effects of using the debugging features (CheckMarks and

XMarks) for to-do list purposes (Group 5). These results
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had not been revealed in more than nine years of manual

empirical work studying uses of these features as problem-

solving devices [5].

6 Conclusion

This paper described a complete data mining process ap-

plied to Human-Computer Interaction data. Our goal was

to identify interpretable human strategies. We applied se-

quential pattern mining as our initial step, which produced

a large number of patterns that were difficult to interpret and

lacked generality. This led us to explore a number of differ-

ent ways to summarize/generalize beyond individual pat-

terns via clustering, followed by statistical testing. We suc-

cessfully identified some highly interesting pattern groups

that corresponded well to strategies that have been identi-

fied by the users themselves when interviewed in a separate

user study.

As a case study, our practice led to the following under-

standing about applying frequent pattern mining to extract

interpretable general trends from data.

First, individual patterns found by standard algorithms

are difficult to interpret and they carry limited information

about the general trend. This is because an individual pat-

tern is often just an instance of a general phenomenon. To

understand the overall trend, we need to see many instances

to capture what is general and go beyond the specifics of in-

dividual patterns. This suggests that grouping patterns into

meaningful groups can increase the interpretability and the

generality of the findings.

Second, there often exists a variety of contextual infor-

mation that can be helpful in discerning the general trend

behind a set of patterns. Using one type of contextual

information (or criterion function) for clustering the pat-

terns should not exclude the possibility of using other in-

formation for clustering as well. We recommend leverag-

ing different ways to group the patterns because of the fol-

lowing potential benefits: 1) often times different methods

of grouping reach consensus about some clusters, provid-

ing strong support for the validity of the results; 2) dif-

ferent groupings collectively may reveal insights not avail-

able from any single grouping. This suggests that an im-

portant research direction is to develop automated or semi-

automated approaches to producing a diversity of low-level

pattern groupings that are potentially of interest.
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