
WYSIWYT Testing in the Spreadsheet Paradigm:

An Empirical Evaluation

Karen J. Rothermely, Curtis R. Cooky, Margaret M. Burnetty,

Justin Schonfeldy, T. R. G. Greenz, Gregg Rothermely

yDepartment of Computer Science

Oregon State Universit y

Corvallis, OR 97331

zComputer-Based Learning Unit

Universit yof Leeds

Leeds LS2 9JT, U.K.

yfrotherka,cook,burnett,schonfju,grotherg@cs.orst.edu
z thomas.green@ndirect.co.uk

ABSTRACT

Is it possible to achieve some of the bene�ts of formal
testing within the informal programming conven tions of
the spreadsheet paradigm? We have been working on an
approach that attempts to do so via the development of
a testing methodology for this paradigm. Our \What
You See Is What You T est" (WYSIWYT) methodol-
ogy supplements the conven tion by which spreadsheets
provide automatic immediate visual feedback about val-
ues by providing automatic immediate visual feedback
about \testedness". In previous work we described this
methodology; in this paper, w e present empirical data
about the methodology's e�ectiveness. Our results show
that the use of the methodology w asassociated with
signi�cant improvement in testing e�ectiveness and e�-
ciency ,even with no training on the theory of testing or
test adequacy that the model implements. These results
may be due at least in part to the fact that use of the
methodology was associated with a signi�cant reduction
in overcon�dence.

Keywords

spreadsheets, testing, visual programming, empirical
studies

1 INTRODUCTION

P erhaps themost widely used programming paradigm
toda y is the spreadsheet paradigm. Y et, almost no
w ork has been done to help with the softw are engineer-
ing tasks that arise in the creation and maintenance of
spreadsheets. This inattention is rather surprising given

the inuential role played by spreadsheets in decisions
about a variet yof real-world issues, suc h as those in-
volving budgets, student grades, and tax calculations.

Spreadsheet languages di�er from most other com-
monly used programming languages in that they pro-
vide a declarative approach to programming, character-
ized by a dependence-driven, direct-manipulation work-
ing model [1]. Users of spreadsheet languages create
cells and de�ne formulas for those cells. These formulas
reference values contained in other cells and use them
in calculations. As soon as a cell's formula is de�ned,
the underlying evaluation engine automatically calcu-
lates the cell's value and those of a�ected cells (at least
those that are visible), and immediately displays new
results. Spreadsheet languages are used for computa-
tional tasks ranging from simple \scratchpad" applica-
tions developed by single users to large-scale, complex
systems developed by multiple users [18].

Despite the perceived simplicity of the spreadsheet
paradigm, research shows that spreadsheets may often
contain faults. A survey of the literature provides de-
tails: in 4 �eld audits of operational spreadsheets, errors
w ere found in an average of 20.6% of spreadsheets au-
dited; in 11 experiments in which participants created
spreadsheets, errors were found in an average of 60.8% of
the spreadsheets; in 4 experiments in which the partici-
pants inspected spreadsheets for errors, the participants
missed an average of 55.8% of the errors [18].

Contributing to the problem of reliability is the unw ar-
ran tedcon�dence that spreadsheet programmers seem
to ha ve in the correctness of their spreadsheets [3, 28].
A possible cause of this overcon�dence could be re-
lated to the �ndings ofGilmore and of Svendsen, who
sho w ed that too much feedback and responsiveness, as
featured in the immediate visual feedback of values in
spreadsheet languages, can actually interfere with peo-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee.
ICSE 2000, Limerick, Ireland
© ACM 23000 1-58113-206-9/00/06 �$5.00

230

ple's problem-solving ability in solving puzzles [10, 25],
a task with much in common with programming.

To address the reliability problem associated with
spreadsheets, we are investigating the possibility of
bringing some of the bene�ts of formal testing to
the informal, highly interactive, declarative spreadsheet
paradigm. Our theory is that by providing feedback
about the \testedness" of a spreadsheet, as opposed to
just the values, we can cause programmers to have less
overcon�dence about the correctness of their spread-
sheets. This testing feedback may motivate program-
mers to test their spreadsheets more thoroughly, and
provide guidance that helps them test more e�ciently.
This could lead to better testing even in this informal
programming domain, and to a reduction in faults be-
fore a spreadsheet is relied upon in decision making.

We have therefore developed a \What You See Is
What You Test" (WYSIWYT) methodology for testing
spreadsheets [23]. Our methodology is designed to ac-
commodate the declarative evaluation model of spread-
sheet formulas, the incremental style of development,
and the immediate visual feedback expected of spread-
sheet languages. The methodology is designed for use by
the wide range of programmers using spreadsheet lan-
guages, especially taking into account the lack of formal
background of many of these programmers.

Given such a methodology, determining whether it can
be used in a way that brings any bene�t to programmers
requires answers to three questions:

First, is the methodology e�cient enough to coexist
with the immediate cell redisplay expected after each
formula edit? In our previous work, we showed that
most of our algorithms can be implemented in ways that
add only O(1) to the existing cost of maintaining the in-
teractive environment.

Second, will the methodology uncover faults in pro-
grams? Our methodology guides programmers (though
they need not be aware of it) in meeting a dataow test
adequacy criterion. (This criterion will be described
in the next section.) We used our implementation to
empirically study the fault detection characteristics of
test suites that meet this criterion. Our results suggest
that such test suites can provide fault detection rates for
spreadsheets at a signi�cantly higher rate than equiva-
lently sized randomly generated test suites [20, 23].

Third, will programmers who use the methodology be
less overcon�dent and be more e�ective, more e�cient
testers than programmers who do not use the methodol-
ogy? To investigate this third question, we have begun
a series of empirical studies with human subjects. The
�rst of these studies is now complete, and is the subject
of this paper.

2 BACKGROUND

The literature on testing primarily addresses the test-
ing of imperative programs (e.g. [7, 9, 11, 15, 19, 27]),
with a few attempts to address the testing of functional
and logic programs (e.g. [2, 12, 14, 17]). However, dif-
ferences between the spreadsheet and imperative lan-
guage paradigms directly impact the development of a
testing methodology for spreadsheets. First, evaluation
of spreadsheets is driven by data dependencies between
cells, and spreadsheets contain explicit control ow only
within cell formulas. This dependence-driven evalua-
tion model allows evaluation engines for spreadsheets
exibility in the scheduling algorithms and optimiza-
tion devices they employ to perform computations. A
methodology for testing spreadsheets must be compat-
ible with this exibility, and not rely upon any par-
ticular evaluation order. Second, spreadsheets are de-
veloped incrementally, and there is an immediate vi-
sual response after each addition of or modi�cation of a
formula. A testing methodology for spreadsheets must
be exible enough to operate upon partially-completed
programs and e�cient enough to support responsive-
ness. Third, and most critical, whereas most imperative
programs are developed by professional programmers,
spreadsheets are developed by a wide variety of users,
many of whom have no training in formal testing prin-
ciples. Our methodology for testing spreadsheets takes
these factors into account. We overview the foundations
of that methodology here; a detailed presentation can
be found in [22, 23].

Spreadsheet programmers are not likely to write spec-
i�cations for their spreadsheets; thus, our methodol-
ogy relies, behind the scenes, on code-based test ade-
quacy criteria. Code-based test adequacy criteria pro-
vide help in selecting test data and in deciding whether
a program has been tested \enough" by relating test-
ing e�ort to coverage of code components. Such crite-
ria have been well researched for imperative languages
(e.g. [9, 15, 19]), and several empirical studies (e.g.
[8, 11, 27]) have demonstrated their usefulness.

Our methodology incorporates a test adequacy crite-
rion adapted from the output-inuencing-all-du-pairs

dataow adequacy criterion de�ned originally for im-
perative programs [7]. This criterion, which we call
du-adequacy for brevity, focuses on the de�nition-use
associations (du-associations) in a spreadsheet, where
a du-association links an expression (in a cell formula)
that de�nes a cell's value with expressions in other cell
formulas that reference (use) the de�ned cell. The crite-
rion requires that each executable du-association in the
spreadsheet be exercised by test data in such a way that
the du-association contributes (directly or indirectly) to
the display of a value that is subsequently pronounced
correct (validated) by the programmer.

231

It is not always possible to exercise all du-associations;
those that cannot be exercised are called nonexecutable.
Determining whether a du-association is executable is
provably impossible in general and frequently infeasible
in practice [9, 27]; thus, data ow test adequacy criteria
typically require that test data exercise (cover) only ex-
ecutable du-associations. In this respect, our criterion is
no exception. In our experience with spreadsheets, how-
ever, most of the nonexecutable du-associations we have
encountered have involved direct contradictions between
conditions that are relatively easy for persons capable
of creating those spreadsheets to identify.

The appropriateness of the du-adequacy criterion for
spreadsheets stems from the fact that by relating test
coverage to interactions between de�nitions and uses of
cells, the criterion requires these interactions to be ex-
ercised; since such interactions are a primary source of
faults in spreadsheets this is valuable. Moreover, the cri-
terion does not enforce any expectation of a particular
cell execution order: the du-associations in a spread-
sheet are the same regardless of the order in which the
evaluation engine executes cells. Further, by linking test
coverage to cell validation, the criterion avoids problems
in which du-associations inuencing only values that are
hidden or o�-screen are considered exercised simply by
applying test inputs; instead, the du-association must
participate in producing a visible result judged correct
by the programmer. Finally, the criterion facilitates the
incremental testing of spreadsheets, allowing a test to
involve entry of values into a small subset of the poten-
tially large set of input cells in a spreadsheet, followed
by validations of multiple cells.

3 EXPERIMENT DESIGN

The objectives of our study were to investigate the fol-
lowing research questions:

RQ 1: Do programmers who use our testing methodol-

ogy create test suites that are more e�ective in terms

of du-adequacy than programmers who use an ad hoc

approach?

RQ 2: Do programmers who use our testing methodology

create test suites more e�ciently than programmers who

use an ad hoc approach?

RQ 3: Are programmers who use our testing methodol-

ogy less overcon�dent about the quality of their testing

than programmers who use an ad hoc approach?

These questions were translated directly into hypothe-
ses. We also took care that the design of our experiment
would provide insight into the following question:

Is training in the underlying test adequacy criterion and

its relationship to the visual devices needed in order for

spreadsheet programmers to gain testing e�ectiveness or

e�ciency from using our methodology?

Figure 1: Spreadsheet for calculating student grades.

To investigate these questions, we conducted a con-
trolled laboratory experiment. In the experiment, the
subjects tested spreadsheets. Half of the subjects did
so using a spreadsheet environment that includes the
WYSIWYT methodology, and the other half used the
same environment minus the testing methodology.

We collected the actions of each subject throughout the
testing sessions, automatically recorded in transcript
�les; the test suites created by the subjects' actions (de-
rived from the information in the transcript �les); sub-
ject background questionnaires; and post-experiment
questionnaires in which all subjects rated how well they
thought they tested the spreadsheet and WYSIWYT
subjects answered additional questions about their use
and understanding of our methodology's feedback.

The Experimental Environment

We have prototyped our WYSIWYT testing methodol-
ogy in the research language Forms/3 [4], one of many
spreadsheet language research systems (e.g. [4, 5, 13, 16,
24, 26]). This choice is motivated partly by the fact that
we have access to the implementation of Forms/3, and
thus, we can implement and experiment with various
testing technologies within that environment. More im-
portant, however, is that by working with Forms/3, we
can investigate language features common to commer-
cial spreadsheet languages as well as advanced language
features found in research spreadsheet languages.

As in other spreadsheet languages, Forms/3 spread-
sheets are a collection of cells; each cell's value is de-
�ned by the cell's formula. The programmer enters a
cell's formula and receives immediate visual feedback as
to the cell's value. In Forms/3, ordinary formulas can
be used for both numeric and graphical computations.
Figure 1 shows a gradebook spreadsheet that computes
averages for each student and for the class. Figure 2
shows a spreadsheet that translates numeric input val-
ues for hour and minute into a graphical clock face with
hour and minute hands. As this �gure shows, the pro-
grammer can freely reposition a cell and can choose to
display or hide the cell's formula. In the Clock spread-

232

Figure 2: Spreadsheet for displaying a clock face.

sheet, the programmer has chosen to display all of the
non-constant formulas. Eventually, when the program-
mer has �nished testing the Clock spreadsheet, the in-
put cells (those whose formulas contain only constants)
could be replaced with references to the system clock.

Suppose that a programmer has begun creating the
graphical clock shown in Figure 2, and has entered a
few of the cells and formulas. During this process, the
underlying evaluation engine has not only been display-
ing cell values, but has also been calculating the du-
associations that come into existence as new formulas
are created, and tracking the du-associations that inu-
ence calculations. Using this information, visual devices
keep the programmer continually informed as to tested-
ness status, to draw attention to the untested sections
of the evolving spreadsheet, and to suggest where test-
ing activity will provide new progress (according to our
adequacy criterion) over previous testing activities.

For example, suppose the spreadsheet programmer now
decides that cell MinuteHand's displayed value is cor-
rect, given the other cells' current values, and clicks on
the check box in the upper right corner of cell Minute-
Hand to validate it. The system responds with imme-
diate visual feedback as to the new testedness of each
visible cell1 and arrow, as well as for the spreadsheet, as
shown in Figure 3. The underlying validation algorithm
is given in [23]; the overall notion is that it recurses back
through the du-associations that a�ect, directly or in-

1Formally, du-adequacy does not de�ne test adequacy at the
granularity of cells. When we refer to a cell being tested in this
paper, this is a shortcut for saying that all the du-associations
whose uses are in the cell have contributed to a value that the
programmer pronounced correct.

directly, the currently computed value of MinuteHand,
and marks them tested (covered). The system depicts
a fully tested cell with blue borders (black in this pa-
per), an untested cell with red borders (light gray), and
a partially tested cell with borders shading from red
through purple to blue (darker gray). If the program-
mer chooses to display arrows among some of the cells,
the arrows follow the same color scheme. We provide
additional testing information through the marks in the
cell's check box: a question mark indicates that vali-
dating this cell's value will increase the spreadsheet's
testedness, a blank indicates that validating the cell's
value will not increase testedness, and a check mark in-
dicates that the user's validation was recorded.

The methodology also accounts for the retesting that
may be required whenever the spreadsheet programmer
edits a non-input formula, but this aspect was not in-
cluded in the experiment, so we do not discuss it here.

Half of the subjects used the environment described
above. The other half used an identical environment
minus the colors, arrows, question marks, check marks,
and \% Tested" indicator. A check box was still present
(to allow the subjects to communicate their testing de-
cisions), and the system gave a quick ash of feedback
to indicate that the decision was recorded.

The Subjects

We have previously pointed out that the spreadsheet
paradigm serves a range of audiences, from end users to
professional programmers. In this experiment we have
chosen to focus on the professional programmers side
of this range, choosing advanced Computer Science stu-
dents as our subjects. Programmers are one segment

233

Figure 3: \Under construction" Clock after a validation.

of the population served by spreadsheets, and are an
especially interesting group of subjects for exploration
of our research questions because of their previous ex-
perience with testing. That is, programmers and CS
students are typically more experienced in testing than
are end users; hence, because of their previous experi-
ence and practice with testing, they might already be
e�cient and e�ective at testing without much room for
improvement due to our methodology.

78 subjects participated in the experiment, drawn from
three Computer Science courses: two upper-division un-
dergraduate courses and one graduate course in Com-
puter Science. The subjects had very little or no pre-
vious exposure to the experimental environment. The
subjects were randomly divided into two groups, subject
to balancing the number of undergraduate and gradu-
ate students between the groups. The control (Ad Hoc)
group did not have access to our WYSIWYT methodol-
ogy and represents programmers who test in an ad hoc
fashion. The treatment (WYSIWYT) group did have
access to our methodology.

Of the 78 subjects, the Ad Hoc group and WYSIWYT
groups contained 37 and 41 subjects, respectively. The
di�erence in group size was due to a few subjects failing
to arrive for their appointments. The group sizes were
subsequently reduced when we decided to omit data for
subjects whose measurable activity level was zero (as
revealed by transcripts of the sessions), whose computer
crashed during the experiment, or who inadvertently
corrupted their data in other ways. The removal of these
subjects reduced the number of subjects in the Ad Hoc
and WYSIWYT groups to 30 and 39, respectively.

To ascertain whether the subjects in the two groups
had reasonably similar backgrounds, we administered a
background questionnaire to each subject and analyzed
the data. Results are summarized in Table 1. Our anal-
ysis showed homogeneity between the groups except for
the GPA category, where we found that the Ad Hoc
subjects had signi�cantly higher GPAs than the WYSI-
WYT subjects. Since the GPAs were self-reported by
the subjects and approximately one-third of the subjects
did not report a GPA, this non-homogenity of GPAs is

tenuous. More to the point, however, is that if anything,
the di�erence in GPAs would work against the hypoth-
esis that the methodology would improve subjects' test-
ing ability; hence the presence of this non-homogeneity
would only further strengthen our results.

The Tutorial

The experiment was conducted in a lab with subjects
seated one per workstation, using Forms/3. The ex-
periment began with a 20-minute tutorial of Forms/3,
in which each subject worked with the example spread-
sheets on their workstations following instructions given
by the lecturer. Throughout the tutorial the partici-
pants had access to a handout containing a quick refer-
ence of the spreadsheet features they were being taught.
They could make notes on these handouts which re-
mained available to them throughout the experiment.

The �rst part of the tutorial introduced the subjects
to language features (e.g., basic syntax of formulas)
and environmental features (e.g., how to edit cells) that
would eventually be needed in testing the spreadsheets.
The second part of the tutorial described how to record
testing decisions. Testing was described as the process
of trying various input values and recording decisions
made about the correctness of values in the other cells.
All subjects were instructed to use the check boxes to
record decisions about correct cell values and to record
information about incorrect cell values in a special cell
named BugRecorder. All subjects received the same in-
formation in the �rst and second parts of the tutorial.

The third part of the tutorial explained how to inter-
pret the testing feedback and here the instructions for
the Ad Hoc subjects diverged from those for the WYSI-
WYT subjects. For the Ad Hoc subjects, the lecturer
described the feedback (a quick ash) from validating a
cell's value as indicating that the system had recorded
the decision. After several examples of trying inputs
and recording decisions, the Ad Hoc subjects were given
unstructured time to practice their Forms/3 skills.

In designing this third tutorial part for the WYSI-
WYT group, we were faced with an important decision:
whether or not to provide a technical explanation of the
underlying concepts of such things as du-associations.
Because one of our goals is that our testing method-
ology not require an understanding of the underlying
theory, we chose to explain only that red means \not
tested", blue means \tested", and purple means \par-
tially tested". The question marks were described as
meaning \recording a decision here will help test part
of the spreadsheet that has not been tested", check
marks as \you have recorded a decision here", blanks
as \you have previously recorded a decision that covers
this case". We did not mention the underlying concepts
of du-associations, nor did we describe nonexecutable

234

No. of Overall CS programming grad students subjects with subjects with
Subjects GPA GPA languages known per group spreadsheet experience professional experience

Ad Hoc 30 3.45 3.7 4 10 12 11
WYSIWYT 39 3.2 3.5 4 8 10 20

Table 1: Subject group demographics (medians).

Figure 4: Version of Grades spreadsheet used in experiment.

du-associations. At the end of these explanations, the
WYSIWYT subjects were given unstructured time to
practice their Forms/3 skills.

Regardless of which group a subject was in, the total
time of training received was identical; subjects not
receiving explanations of our methodology's feedback
were given more unstructured time to practice using
Forms/3. It was important to equalize the total time,
because the additional instructions given the WYSI-
WYT subjects in the third part also provided them
with additional practice in Forms/3 skills, and addi-
tional practice time could have confounded the results.
Since the subjects had very little or no previous expo-
sure to the experiment's environment, at the conclusion
of the tutorial the subjects could be considered equal in
their knowledge of Forms/3.

Task and Materials

Following the tutorial, the subjects were asked to test
two spreadsheets, Clock and Grades. Using two di�er-
ent spreadsheets reduced the chances that the results
of our study would be tied to any one spreadsheet's
particular characteristics. The Clock spreadsheet was
shown in Figure 2 and discussed earlier in this section.
The Grades spreadsheet (Figure 4) is a single-student
variant of the spreadsheet presented in Figure 1; it cal-
culates the �nal letter grade for a student.

The di�erences between Clock and Grades are that (1)
they represent di�erent problem domains (numeric and

graphics), (2) the formulas for Grades are relatively
easy to understand (lending themselves to straightfor-
ward reasoning by examining the code) whereas those of
Clock are relatively di�cult to understand, and (3) the
oracle problem|determining whether the displayed an-
swer is correct|may be more di�cult for Grades than
for Clock. Both spreadsheets were tested by all subjects.

The numeric domain is of interest because of the tra-
ditional uses of spreadsheets. The graphical domain is
of interest because of the increasing use of spreadsheets
to produce graphics (e.g., [5, 24]). The two particular
spreadsheets were deliberately designed to be di�erent
from each other in this respect and in the other respects
enumerated above. They were designed to be similar in
the familiarity of their problem domains (grades and
clocks) to the subjects and to be of reasonable size and
complexity given a limited amount of time.

The subjects were given 15 minutes per spreadsheet.
The experiment was counterbalanced with respect to
problem type: subjects in each group worked both prob-
lems, but half the subjects in each group tested Grades
�rst, whereas the other half tested Clock �rst. At the
beginning of each testing session we instructed the sub-
jects to read a description of the spreadsheet they were
about to test. The descriptions included details of what
the spreadsheet was to accomplish, the range of ac-
cepted input and output values and the error messages
expected for out-of-range inputs.

235

Clock Grades

Ad Hoc

WYSIWYT

du
-a

de
qu

ac
y

Figure 5: E�ectiveness data for Clock and Grades. The boxplots
are composed of 5 horizontal lines at the 10th, 25th, 50th, 75th
and 90th percentiles; values above the 90th or below the 10th
percentiles are plotted separately.

4 RESULTS

E�ectiveness

Our �rst research question considers whether using
our methodology increased our subjects' testing e�ec-
tiveness. We measured e�ectiveness in terms of du-
adequacy: given spreadsheet S that contains D exe-
cutable du-associations, and test suite T that exercises
DT of those associations, the du-adequacy of T with
respect to S is given by DT =D:

We examined the data (Figure 5) to see whether it satis-
�ed the requirements for using normal-theory analyses
such as t-tests and analysis of variance. There were
some indications of skew, but the analysis of variance is
robust against moderate skew; however, to be on the
safe side, non-parametric alternatives were also used
where possible, and gave identical patterns of results.2

We analyzed e�ectiveness using analysis of variance
with two factors, Environment (WYSIWYT or Ad Hoc)
and Problem (Clock or Grades). Each subject experi-
enced only one environment and attempted both prob-
lems, so the Environment factor was treated as inde-
pendent groups and the Problem factor was treated as
having repeated measures.

Analysis of variance showed that the e�ectiveness of the
WYSIWYT group was signi�cantly higher than the ef-
fectiveness of the Ad Hoc group (F=8.56, df= 1,67, p=
0.0047). There was a signi�cant di�erence between ef-
fectiveness on the two problems (F=9.632, df= 1,67, p=
.0028) but no signi�cant interaction e�ect (that is, the
WYSIWYT subjects showed the same pattern of greater
e�ectiveness on both Clock and Grades). Independent
non-parametric tests (Mann-Whitney) were performed
on the two problems considered separately and also on

2The results from two of the subjects appeared to be outliers,
and further investigation showed that one was not following the
instructions and the other had limited experience with English.
The analyses that follow include results from these two subjects,
but the same pattern of results emerged from analyses in which
their scores were eliminated.

Clock # Tests Redundancy
Ad Hoc 20 61.3%
WYSIWYT 19 15.4%

Grades # Tests Redundancy
Ad Hoc 14 44.0%
WYSIWYT 18 4.3%

Table 2: Medians for the redundancy data.

Clock - Ad Hoc

Clock - WYSIWYT

Grades - WYSIWYT

Grades - Ad Hoc

1st 2nd 3rd

du
-a

de
qu

ac
y

Figure 6: Speed of coverage for Clock and Grades over 3 �ve-
minute time intervals.

the pooled data, con�rming the highly signi�cant di�er-
ences between environments (Clock, p=0.0001; Grades,
p=0.0083; Pooled Data, p<0.0001).

E�ciency

Our second research question considers whether using
the methodology increased the subjects' e�ciency. One
view of e�ciency measures \wasted e�ort" in running
redundant tests that do not increase coverage. This
measure implies that multiple test cases exercising the
same du-association do not increase testing e�ective-
ness. Some evidence exists to suggest that this assump-
tion is overly simplistic [21]; however, this assumption
is common to the use of structural coverage criteria.

An analysis of variance on the redundancy data showed
that the percentage of redundant test cases created by
the WYSIWYT subjects was signi�cantly lower than
the percentage of redundant test cases in the test suites
created by the Ad Hoc subjects (F= 47.987, df= 1,67,
p < 0.0001). There was a signi�cant di�erence be-
tween the percentage of redundant test cases on the two
problems (F= 8.37, df=1,67, p= 0.0045) but no signi�-
cant interaction e�ect (that is, the WYSIWYT subjects
showed the same pattern of lower redundancy on both
Clock and Grades). See Table 2. As with the e�ective-
ness data, we performed independent non-parametric
tests (Mann-Whitney) on the two problems considered
separately and on the pooled data, again con�rming the
signi�cant di�erences between environments.

Another view of e�ciency is the speed with which cov-
erage was obtained. The data for coverage speed was

236

Clock
Overcon�dent Not Overcon�dent

Ad Hoc 16 14
WYSIWYT 10 29

Grades
Overcon�dent Not Overcon�dent

Ad Hoc 20 10
WYSIWYT 14 25

Table 3: Overcon�dence: Number of subjects in group, cate-
gorized according to overcon�dence.

derived by dividing the 15 minute testing sessions into
three 5-minute intervals and determining the subjects'
du-adequacy at the end of each interval. Figure 6 shows
the WYSIWYT subjects achieved coverage faster than
the Ad Hoc subjects; however, the di�erence is not
signi�cantly larger until the third time period (Mann-
Whitney, p=0.0001 (Clock), p=0.0083 (Grades)).

Overcon�dence

The above results show that the WYSIWYT subjects
achieved higher coverage more e�ciently. However,
earlier in this paper, we pointed out that spreadsheet
programmers have been shown to have unwarranted
con�dence in the accuracy of their spreadsheets. The
methodology may be of little use in practice if subjects'
overcon�dence causes them to stop working on their
spreadsheets before making much use of its guidance.
For this reason, reducing overcon�dence has been an
important goal of the WYSIWYT methodology.

At the end of each testing session we asked the subjects
to answer the following question:

How well do you think you tested the spreadsheet?
a) Really, really well. (If you graded it, I'd get an A)
b) Better than average. (If you graded it, I'd get a B)
c) About average. (If you graded it, I'd get a C)
d) Worse than average. (If you graded it, I'd get a D)
e) Poorly. (If you graded it, I'd get an F)

We compared each subject's answer to this question to
our \grading" of their du-adequacy. We assigned grades
of A - F based on a standard grading scale, coverage of
90-100%)A, 80-89%)B, ... 0-59%)F. If a subject's
self-grade was higher than our grade for the subject,
the subject was categorized as \overcon�dent", other-
wise the subject was categorized as \not overcon�dent";
see Table 3. We analyzed the overcon�dence data us-
ing Fisher's Exact Test. The WYSIWYT group had
signi�cantly fewer than expected subjects in the over-
con�dent category while the Ad Hoc group had signi�-
cantly more than expected subjects in the overcon�dent
category (p= 0.025 (Clock), p= 0.0155 (Grades)).

5 DISCUSSION

Given such strong results, a natural question that arises
is whether particular portions of our methodology's
communication devices are key to the results. For ex-
ample, would it be possible to attain the same results

How helpful were: Very Helpful Helpful Not Helpful
question marks 69% 31% 0%
clicking to validate 64% 36% 0%
colored cell borders 56% 44% 0%
colored arrows 51% 41% 8%
check marks 44% 49% 8%
\Tested" indicator 36% 56% 8%
blanks 23% 51% 26%

Table 4: WYSIWYT subjects' helpfulness ratings: percent of
subjects who rated the device in each of the possible helpfulness
categories.

A red cell border indicates that the cell
is (not tested) 100%
A question mark in a cell's check box indicates
that (the current input tests part of the
spreadsheet not previously tested) 87%
A blue arrow between cells indicates (the
relationship between the two cells is fully tested) 64%

Table 5: Subjects' opinions of the meanings of the visual devices.
Percentages reect the number of subjects who chose the correct
response (shown in parentheses). The questions were multiple
choice and directed the subjects not to guess at the answer.

without the colors to attract attention to untested ar-
eas, using only the check marks and question marks to
guide the user through the testing activities? Although
we do not have a rigorous answer to this question, we
do have the subjects' opinions about which aspects were
the most helpful, as reported on their questionnaires.
These are given in Table 4, in descending order of the
subjects' votes in the \Very Helpful" category. In the ta-
ble, the choices listed are abbreviations of the question-
naire wording: to distinguish ideas of outputs from user
actions in the questions, we worded the choices about
output devices with the words \seeing the..." (e.g., \see-
ing the colored cell borders"), as opposed to actions the
user could take such as \clicking to validate."

Still, the subjects' opinions of helpfulness could be mis-
leading if the subjects badly misunderstood what the vi-
sual devices are intended to communicate. Given that
the subjects had only 20 minutes to learn the entire
environment and receive their task instructions, this
was a possibility. To help assess their understanding,
and provide some insight into the understandability of
our methodology, we asked several questions about the
meanings of the di�erent devices. The results, which
are summarized in Table 5, suggest that WYSIWYT
subjects understood the features reasonably well.

Our methodology's usefulness would be limited if a
steep learning curve prevented bene�ts without a time-
consuming initial e�ort. To gain some insights into the
possibility of this problem, we compared the Ad Hoc and
WYSIWYT subjects' performance on the �rst problem
(the left half of Table 6). As the table shows, despite
whatever learning curve is associated with the method-
ology, WYSIWYT subjects still had greater e�ective-
ness and greater e�ciency in the �rst problem than

237

Problem 1 Problem 2
Tested # Tests Redundant Tested # Tests Redundant

Ad Hoc 69.0% 13 51.3% 71.6% 22 56.3%
WYSIWYT 82.7% 20 11.1% 97.8% 18 7.7%

Table 6: Learning E�ects: compare the medians of Problem 1 and Problem 2.

did the Ad Hoc subjects (Mann-Whitney, p=0.0083
(p<0.0001 (Redundancy)). Additional bene�ts came
with experience for the WYSIWYT subjects. In partic-
ular, the WYSIWYT subjects learned to improve their
testing on the second problem. They generated about
the same number of test cases for each problem but sig-
ni�cantly increased their coverage (by 15%) from the
�rst problem to the second problem. In contrast, the
Ad Hoc subjects, despite generating about one third
more tests, did not signi�cantly increase their coverage
(Wilcoxon, p=0.26 (Ad Hoc), p=0.0005 (WYSIWYT)).

6 THREATS TO VALIDITY

In our experiment we attempted to address threats to
internal validity by balancing the two groups of sub-
jects according to year in school and class, by counter-
balancing with respect to problem type, by equalizing
training time, and by selecting problems from familiar
domains. However, as in most controlled experiments,
threats to external validity are more di�cult to address
given the need to control all other factors. For exam-
ple, Computer Science students may not be representa-
tive of any sizable segment of the population of spread-
sheet programmers. In particular, they cannot be said
to be representative of end-user spreadsheet developers.
Similarly, the spreadsheets used in the experiment may
not be representative of the population of spreadsheets.
However, although the spreadsheets may seem rather
simple, given the limited testing time of the experiment,
few subjects achieved 100% du-adequacy (Clock: 21.7%;
Grades: 1.4%). To determine whether the results of this
study generalize to a larger segment of the spreadsheet
programming population and to other spreadsheets, we
are planning to conduct additional studies.

As we have mentioned before, our methodology does
not currently handle non-executable du-associations in a
way that is helpful to the task of testing; yet, they do oc-
cur in spreadsheets. A large number of non-executable
du-associations in a spreadsheet would be a barrier to
the e�ectiveness of the methodology, and the experi-
ment did not address this issue. Instead, we circum-
vented it to the extent possible by attempting to mini-
mize the number of such du-associations in each spread-
sheet: Grades contained 2 (out of 95), and Clock con-
tained 10 (out of 83).

Because the focus of the study was on e�ectiveness
and e�ciency of testing, the spreadsheets contained
no faults. This may be unrealistic; however, includ-
ing faults in the spreadsheets would have confounded

the data about testing e�ectiveness and e�ciency since
the subjects would not be focused on the single task
of testing the spreadsheets. Moreover, to enable a clear
analysis of this task, we did not allow subjects to change
formulas; including faults without allowing corrections
would not be realistic. A separate study of debugging
tasks can be found in [6]. To motivate our subjects,
however, the subjects were informed that their spread-
sheets \might or might not" contain faults. In fact,
several subjects did report faults of a cosmetic nature.

Testing e�ectiveness was measured by the percentage of
the du-associations covered by the test cases, but this is
not the only possible measure. Another measure of ef-
fectiveness is the number of faults detected; however, as
discussed above, that measure also presents threats to
validity. A correlation between e�ectiveness in terms of
du-adequacy and e�ectiveness at �nding faults is sup-
ported by evidence in empirical studies of imperative
programs [8, 11, 27]) and in previous empirical work we
performed in the spreadsheet paradigm [23].

7 CONCLUSION

Spreadsheet languages have rarely been studied in terms
of their software engineering properties. This is a seri-
ous omission, because these languages are being used
to create production software upon which real decisions
are being based. Further, research shows that many
of the spreadsheets created with these languages con-
tain faults. For these reasons, it is important to pro-
vide support for mechanisms, such as testing, that can
help spreadsheet programmers determine the reliability
of values produced by their spreadsheets.

In this paper we reported empirical results about a test-
ing methodology aimed at this need. The results were:

� Subjects using the WYSIWYT methodology per-
formed signi�cantly more e�ective testing than did
the Ad Hoc subjects, as measured by du-adequacy.

� Subjects using the WYSIWYT methodology were
signi�cantly more e�cient testers than the Ad Hoc
subjects, as measured by redundancy and speed.

� Subjects using the WYSIWYT methodology were
signi�cantly less overcon�dent than were the Ad
Hoc subjects.

Further, it was possible for WYSIWYT subjects to
achieve these bene�ts even without training on the un-
derlying testing theory. These results are encouraging,
because they suggest that it is possible to achieve at
least some bene�ts of formal notions of testing even
without formal training in the testing principles behind

238

a testing methodology. However, this experiment is the
�rst step in a series of planned experiments, and thus
includes only one slice of the population using spread-
sheet languages. Future experiments will be required
before it will be clear whether the methodology brings
similar bene�ts to other kinds of users, especially end
users, working on larger, more complex spreadsheets.

ACKNOWLEDGEMENTS
We thank the members of the Visual Programming Re-
search Group for their help with experiment adminis-
tration and implementation and their feedback on the
testing methodology. We also wish to express our grat-
itude to the students in Fall 1999 CS381, CS411, and
CS511 who participated in the study. This work was
supported in part by NSF under CCR-9806821, CA-
REER Award CCR-9703108, and Young Investigator
Award CCR-9457473. Patent pending.

REFERENCES

[1] A. Ambler, M. Burnett, and B. Zimmerman. Opera-
tional versus de�nitional: A perspective on program-
ming paradigms. Computer, 25(9):28{43, Sept. 1992.

[2] F. Belli and O. Jack. A test coverage notion for logic
programming. In The 6th Intl. Symp. Softw. Rel. Eng.,
pages 133{142, 1995.

[3] P. Brown and J. Gould. Experimental study of people
creating spreadsheets. ACM Trans. O�ce Info. Sys.,
5(3):258{272, July 1987.

[4] M. Burnett and H. Gottfried. Graphical de�nitions: Ex-
panding spreadsheet languages lhrough direct manip-
ulation and gestures. ACM Trans. Computer-Human

Interaction, pages 1{33, Mar. 1998.

[5] E. H. Chi, P. Barry, J. Riedl, and J. Konstan. A spread-
sheet approach to information visualization. In IEEE

Symp. Info. Visualization, Oct. 1997.

[6] C. Cook, K. Rothermel, M. Burnett, T. Adams,
G. Rothermel, A. Sheretov, F. Cort, and J. Reichwein.
Does Immediate Visual Feedback about Testing Aid De-
bugging in Spreadsheet Languages? Technical Report
TR: 99-60-07, Oregon State University, Mar. 1999.

[7] E. Duesterwald, R. Gupta, and M. L. So�a. Rigorous
data ow testing through output inuences. In Proc.

2nd Irvine Softw. Symp., Mar. 1992.

[8] P. Frankl and S. Weiss. An experimental comparison of
the e�ectiveness of branch testing and data ow testing.
IEEE Trans. Softw. Eng., 19(8):774{787, Aug. 1993.

[9] P. Frankl and E. Weyuker. An applicable family of data
ow criteria. IEEE Trans. Softw. Eng., 14(10):1483{
1498, Oct. 1988.

[10] D. Gilmore. Interface design: Have we got it wrong?
In K. Nordby, D. Gilmore, and S. Arnesen, editors, IN-
TERACT'95. Chapman and Hall, London, 1995.

[11] M. Hutchins, H. Foster, T. Goradia, and T. Os-
trand. Experiments on the e�ectiveness of dataow-

and controlow-based test adequacy criteria. In 16th

Intl. Conf. Softw. Eng., pages 191{200, May 1994.

[12] W. Kuhn and A. U. Frank. The use of functional pro-
gramming in the speci�cation and testing process. In
Intl. Conf. and Wkshp. Interoperating Geographic Info.

Systems, Dec. 1997.

[13] J. Leopold and A. Ambler. Keyboardless visual pro-
gramming using voice, handwriting, and gesture. In
1997 IEEE Symp. Vis. Lang., pages 28{35, Sept. 1997.

[14] G. Luo, G. Bochmann, B. Sarikaya, and M. Boyer.
Control-ow based testing of prolog programs. In The

3rd Intl. Symp. Softw. Rel. Eng., pages 104{113, 1992.

[15] M. Marre and A. Bertolino. Reducing and estimating
the cost of test coverage criteria. In 1996 IEEE 18th

Intl. Conf. Softw. Eng., pages 486{494, Mar. 1996.

[16] B. Myers. Graphical techniques in a spreadsheet for
specifying user interfaces. In ACM CHI '91, pages 243{
249, Apr. 1991.

[17] F. Ouabdesselam and I. Parissis. Testing techniques
for data-ow synchronous programs. In AADEBUG'95:
2nd Intl. Wkshp. Automated and Algorithmic Debug-

ging, May 1995.

[18] R. Panko. What we know about spreadsheet errors. J.
End User Comp., pages 15{21, Spring 1998.

[19] S. Rapps and E. J. Weyuker. Selecting software test
data using data ow information. IEEE Trans. Softw.

Eng., 11(4):367{375, Apr. 1985.

[20] G. Rothermel, M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A methodology for testing spreadsheets.
Technical Report TR: 99-60-02, Oregon State Univer-
sity, Jan. 1999.

[21] G. Rothermel, M. Harrold, J. Ostrin, and C. Hong. An
empirical study of the e�ects of minimization on the
fault detection capabilities of test suites. In Proc. Int'l.

Conf. Softw. Maint., pages 34{43, Nov. 1998.

[22] G. Rothermel, L. Li, and M. Burnett. Testing strategies
for form-based visual programs. In The 8th Intl. Symp.

Softw. Rel. Eng., pages 96{107, Nov. 1997.

[23] G. Rothermel, L. Li, C. DuPuis, and M. Burnett. What
you see is what you test: A methodology for testing
form-based visual programs. In The 20th Intl. Conf.

Softw. Eng., pages 198{207, Apr. 1998.

[24] T. Smedley, P. Cox, and S. Byrne. Expanding the utility
of spreadsheets through the integration of visual pro-
gramming and user interface objects. In Adv. Vis. Int.

'96, May 1996.

[25] G. Svendsen. The inuence of interface style on
problem-solving. Intl. J. Man-Machine Studies, 35:379{
397, 1991.

[26] G. Viehstaedt and A. Ambler. Visual representation
and manipulation of matrices. J. Vis. Lang. and Comp.,
3(3):273{298, Sept. 1992.

[27] E. J. Weyuker. More experience with dataow testing.
IEEE Trans. Softw. Eng., 19(9), Sept. 1993.

[28] E. Wilcox, J. Atwood, M. Burnett, J. Cadiz, and
C. Cook. Does continuous visual feedback aid debug-
ging in direct-manipulation programming systems? In
ACM CHI'97, pages 22{27, Mar. 1997.

239

