Automated Test Case Generation for Spreadsheets

Marc Fisher, Mingming Cao, Gregg Rothermel, Curtis R. Cook, Margaret M. Burnett

Computer Science Department
Oregon State University
Corvallis, Oregon
grother@cs.orst.edu

ABSTRACT

Spreadsheet languages, which include commercial spread-
sheets and various research systems, have had a substantial
impact on end-user computing. Research shows, however,
that spreadsheets often contain faults. Thus, in previous
work, we presented a methodology that assists spreadsheet
users in testing their spreadsheet formulas. Our empirical
studies have shown that this methodology can help end-
users test spreadsheets more adequately and efficiently; how-
ever, the process of generating test cases can still represent
a significant impediment. To address this problem, we have
been investigating how to automate test case generation for
spreadsheets in ways that support incremental testing and
provide immediate visual feedback. We have utilized two
techniques for generating test cases, one involving random
selection and one involving a goal-oriented approach. We
describe these techniques, and report results of an experi-
ment examining their relative costs and benefits.

1. INTRODUCTION

Perhaps the most widely used programming paradigm to-
day is the spreadsheet paradigm. Little research, however,
has addressed the software engineering tasks that arise in
creating and maintaining spreadsheets. This inattention is
surprising given the role played by spreadsheets on signifi-
cant matters such as budgets, grades, and business decisions.

In fact, recent research reports that spreadsheets often
contain faults. A survey of the literature [20] provides de-
tails: in four field audits of operational spreadsheets, faults
were found in an average of 20.6% of the spreadsheets au-
dited; in eleven experiments in which participants created
spreadsheets, faults were found in an average of 60.8% of
those spreadsheets; in four experiments in which partici-
pants inspected spreadsheets for faults, an average of 55.8%
of those faults were missed. Compounding these problems
is the unwarranted confidence spreadsheet users have in the
correctness of their spreadsheets [3, 29].

Permission to make digital or hard copies of all or part of this work for

To help address these problems, in previous work we pre-
sented a methodology for testing spreadsheet formulas [22,
24]. Our “What You See Is What You Test” (WYSIWYT)
methodology lets spreadsheet users incrementally apply test
inputs and validate outputs, and provides visual feedback
about the effectiveness of their testing. Empirical studies
have shown that this methodology can help users test their
spreadsheets more adequately and more efficiently [25].

As presented to date, the WYSIWYT methodology has
relied solely on the intuitions of spreadsheet users to iden-
tify test cases for their spreadsheets. In general, the process
of manually identifying appropriate test cases is laborious,
and its success depends on the experience of the tester. This
problem is especially serious for users of spreadsheet lan-
guages, who typically are not experienced programmers and
lack background in testing. Existing research on automated
test case generation (e.g., [6, 8, 10, 13, 14, 15, 21]), how-
ever, has been directed at imperative languages, and we can
find no research specifically addressing automated test case
generation for spreadsheet languages.

To address this problem, we have been investigating how
to automate the generation of test cases for spreadsheets in
ways that support incremental testing and provide immedi-
ate visual feedback. We have utilized two techniques for test
case generation: one using random selection and one using
a goal-oriented approach [10]. We describe these techniques
and their integration into our WYSIWYT methodology, and
report results of experiments examining their efficiency and
effectiveness.

2. BACKGROUND

Users of spreadsheet languages “program” by specifying
cell formulas. Each cell’s value is defined by that cell’s for-
mula, and as soon as the user enters a formula, it is evaluated
and the result is displayed. The best-known examples of
spreadsheet languages are found in commercial spreadsheet
systems, but there are also many research systems (e.g. [4,
5, 16, 27]) based on this paradigm.

In this article, we present examples of spreadsheets in the
research language Forms/3 [4]. Figure 1 shows an example
of a Forms/3 spreadsheet, GrossPay, which calculates an
employee’s weekly pay given a payrate and the hours they

personal or classroom use is granted without fee provided that copies areworked during that week. As the figure shows, Forms/3
not made or distributed for profit or commercial advantage and that copies spreadsheets, like traditional spreadsheets, consist of cells;

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 2001 ACM 1-58113-472-X $5.00.

however, these cells are not restricted to grids. Also, in the
figure cell formulas are displayed, but in general the user
can display or hide formulas.

0% Tested |

=]

b [
L3

(== K I CONN O GO iy O

Mon Tues ‘e Thurs Fri
-
PayRate TotalHours [mie

Mon + Tues + Wed + Thurs + Fri

0 7
GrossPay [

if TotalHours <= 40
then PayRate * TotalHours
else PayRate * 40 + (TotalHours - 40) * PayRate * 1.5

66% Tested

PayRate TotalHours [mie

fton + Tues + Wed + Thurs + Fri
=
380 i
GrossPay |

if [otalHourdyc- oo

then PayRate * TotalHours
else IPayRate * 40 4+ (TotalHours - 40) * PayBate * l.S‘

Figure 1: Forms/3 spreadsheet GrossPay.

2.1 The WYSIWYT Methodology

In our “What You See Is What You Test” (WYSIWYT),
methodology for testing spreadsheets [22, 24, 25], as a user
incrementally develops a spreadsheet, he or she can also test
that spreadsheet incrementally. As the user changes cell for-
mulas and values, the underlying engine automatically eval-
uates cells, and the user validates the results displayed in
those cells. Behind the scenes these validations are used to
measure the quality of testing in terms of a dataflow ad-
equacy criterion, which tracks coverage of interactions be-
tween cells caused by cell references.

The following example illustrates the process. Suppose
the user constructs the GrossPay spreadsheet by entering
cells and formulas, reaching the state shown in Figure 1.
Note that at this point, all cells other than input cells have
red borders (light gray in this paper), indicating that their
formulas have not been (in user terms) “tested”. (Input
cells are cells whose formulas contain no references and are,
by definition, fully tested; thus, their borders are thin and
black to indicate to the user that they aren’t testable.)

Suppose the user looks at the values displayed on the
screen and decides that cell GrossPay contains the correct
value, given the current input values. To communicate this
fact, the user checks off the value by clicking on the decision
box in the upper right corner of that cell. One result of this
“validation” action, shown in Figure 2, is the appearance of
a checkmark in the decision box, indicating that the cell’s
output has been validated under current inputs. (Two other
decision box states, empty and question mark, are possible:
each indicates that the cell’s output has not been validated
under the current inputs. In addition, the question mark
indicates that validating the cell would increase testedness.)

A second result of the user’s “validation” action is that the
colors of the validated cell’s borders become more blue, in-
dicating that interactions caused by references in that cell’s
formula have been exercised in producing validated outputs.
In the example, in the formula for GrossPay, references in
the then clause have now been exercised, but references in
the else clause have not; thus, that cell’s border is par-
tially blue (dark gray in this paper). Testing results also
flow upstream in the dataflow to other cells whose formulas

'Other criteria are discussed in [23].

Figure 2: Forms/3 spreadsheet GrossPay with test-
ing information displayed after a user validation.

have been used in producing a validated value. In our exam-
ple, all interactions ending at references in the formula for
TotalHours have been exercised; hence, that cell’s border is
now fully blue (black in this paper).

If users choose, they can also view interactions caused by
cell references by displaying dataflow arrows between cells
or subexpressions in formulas; in the example, the user has
chosen to view interactions ending at cell GrossPay. These
arrows depict testedness information at a finer granularity,
following the same color scheme as for the cell borders.

If the user next modifies a formula, interactions poten-
tially affected by this modification are identified by the sys-
tem, and information on those interactions is updated to
indicate that they require retesting. The updated informa-
tion is immediately reflected in changes in the various visual
indicators just discussed (e.g., replacement of blue border
colors by less blue colors).

Although a user of our methodology need not be aware of
it, the methodology is based on the use of a dataflow test
adequacy criterion adapted from the output-influencing-all-
du-pairs dataflow adequacy criterion defined for imperative
programs [9]; for brevity we call our adaptation of this cri-
terion the du-adequacy criterion. We precisely define this
criterion in [22]; here, we summarize that presentation.

The du adequacy criterion is defined through an abstract
model of spreadsheets called a cell relation graph (CRG).
Figure 3 shows the CRG for spreadsheet GrossPay. A CRG
consists of a set of cell formula graphs (enclosed in rectangles
in the figure) that summarize the control flow within formu-
las, connected by edges (dashed lines in the figure) summa-
rizing data dependencies between cells. Each cell formula
graph is a directed graph, similar to a control flow graph
for imperative languages, in which each node represents an
expression in a cell formula and each edge represents flow of
control between expressions. There are three types of nodes:
entry and exit nodes, representing initiation and termination
of the evaluation of the formula; definition nodes, represent-
ing simple expressions that define a cell’s value; and pred-
icate nodes, representing predicate expressions in formulas.
Two edges extend from each predicate node: these represent
the true and false branches of the predicate expression.

A definition of cell C is a node in C’s formula graph repre-
senting an expression that defines C, and a use of C is either

,,

&)

©

23: if TotalHours <= 40

i
|

|

|

|

|

:

|

| T F

|

! -
|

|

|

|

|

|

|

|
|

|

I

I

I

I

|

|

!

|

24: Payrate * TotalHour 25: Payrate * 40 + (TotalHours - 40) * Payrate * 18
\ |

|

|

|

|

|

,,

GrossPay

Figure 3: Cell relation graph for GrossPay

a computational use (a non-predicate node that refers to C)
or a predicate use (an out-edge from a predicate node that
refers to C). A definition-use association (du-association)
links a definition of C' with a use of C' which that definition
can reach. A du-association is ezercised by a test when in-
puts have been found that cause the expressions associated
with its definition and its use to be executed, and where this
execution produces a value in some cell that is pronounced
“correct” by a user validation. Under the du-adequacy cri-
terion, testing is adequate when each du-association in a
spreadsheet has been exercised by at least one test.

In this model, a test case for a spreadsheet is a tuple (I,C),
where I is a vector of input values corresponding to input
cells in the spreadsheet, and C' is a cell whose value the user
has validated under that input configuration. A test (the
user’s act of applying a test case) is an explicit decision by
the user that C’s value is correct, given the current config-
uration I of input cell values.

It is not always possible to exercise all du-associations in
a spreadsheet; those that cannot be exercised by any inputs
are called infeasible du-associations. In general, the problem
of identifying such du-associations is undecidable [12, 28].

2.2 ATCG techniques forimperative languages

There has been much research on techniques for automatic
test case generation (ATCG) for imperative languages. Fer-
guson and Korel [10] classify test case generation techniques
according to their mechanism of generation into three cate-
gories: random, path-oriented and goal-oriented.

Random test case generation techniques [2] generate test
cases by randomly selecting input values.

Path-oriented test case generation techniques first select
a program path that will meet a testing requirement, and
then attempt to find input values that cause that path to be

executed. Ferguson and Korel distinguish two types of path-
oriented techniques: those based on symbolic execution, and
those that are ezecution-oriented. Techniques based on sym-
bolic execution [6, 8, 13, 18] use symbolic execution to find
the constraints, in terms of input variables, that must be sat-
isfied in order to execute a target path, and attempt to solve
this system of constraints. The solution provides a test case
for that path. A disadvantage of these techniques is that
they can waste effort attempting to find inputs for infeasi-
ble paths; they can also require large amounts of memory
to store the expressions encountered during symbolic execu-
tion, and powerful constraint solvers to solve complex equal-
ities and inequalities. They may also have difficulties han-
dling complex expressions. Execution-oriented techniques
[15] alleviate some of these difficulties by incorporating dy-
namic execution information into the search for inputs, us-
ing function minimization to solve subgoals that contribute
toward an intended coverage goal.

Goal-oriented test case generation techniques [10, 14], like
execution-oriented techniques, are also dynamic, and use
function minimization to solve subgoals leading toward an
intended coverage goal; however, goal-oriented techniques
focus on the final goal rather than on a specific path, concen-
trating on executions that can be determined (e.g. through
the use of data dependence information) to possibly in-
fluence progress toward the goal. Like execution-oriented
methods, these techniques take advantage of the actual vari-
able values obtained during execution to try to solve prob-
lems with complex expressions; however, by not focusing on
specific paths, the techniques gain effectiveness [10].

3. AUTOMATED TEST CASE GENERATION
FOR SPREADSHEETS AND WYSIWYT

In any testing methodology for end users that does not au-
tomatically generate test cases, the users themselves must
generate useful test inputs, and this can be difficult. To help
with this, we have developed a test case generation method-
ology for spreadsheets, integrated support for that method-
ology with our WYSIWYT approach, and implemented that
methodology in Forms/3. To present our methodology, we
begin by describing the user actions and system responses
that comprise a basic version of that methodology. Sections
3.2 and 3.3 then present refinements.

3.1 Basic Methodology

Suppose a user desires help increasing the testedness of a
spreadsheet. With our methodology, a user may select any
combination of cells or arrows on the visible display (or, se-
lecting none, express interest in the entire spreadsheet), then
push the “Help Me Test” button in the Forms/3 toolbar.

At this point the underlying test case generation sys-
tem responds, and its first task is to determine the set
UsefulDUs of du-associations relevant to the user’s request
(du-associations in the area of interest that have not been
validated). If the user has not indicated specific cells or ar-
rows, UsefulDU s is the set of all unvalidated du-associations
in the spreadsheet. If the user has selected one or more cells
in the spreadsheet, UsefulDUs includes each unvalidated
du-association that has its use node in one of those cells.
Finally, if the user has selected one or more arrows in the
spreadsheet, UsefulDUs includes each of the unvalidated
du-associations associated with each such arrow.

The second task of the system is to determine the set
of input cells, InputCells, that can potentially cause du-
associations in UsefulDUs to be exercised; these are the
cells whose values a test case generation technique can prof-
itably manipulate. Because this information is maintained
by spreadsheet evaluation engines to perform updates fol-
lowing cell edits (this is true of most other spreadsheet lan-
guages as well as of Forms/3 [22]), it is available in data
structures kept by the engine, and is retrieved from there.

Given UsefulDUs and InputCells, the test case genera-
tion system can attempt to generate a test case. The sys-
tem saves the existing configuration of input cell values for
restoration if generation fails, and then invokes a test case
generation technique.

As Section 2.2 indicates, there are many test generation
techniques that could be utilized; the simplest of these is
to randomly generate input values. We implemented this
technique in our prototype; we refer to it as Random. (We use
Random here to illustrate our overall methodology; Section
3.2 describes a second technique.)

Random randomly assigns values to the cells in InputCells,
invokes the spreadsheet’s evaluation engine to cause the ef-
fects of those values to be propagated throughout the spread-
sheet, and determines whether the subsequent evaluation
causes any du-associations in UsefulDUs to be executed.
If no such du-association is executed, Random repeats this
process with a new set of random values, iterating until a
set of values that execute a du-association of interest has
been found, or until a built-in time limit is reached. As the
system applies these new input values, the values appear
in the spreadsheet itself and also in the “Help Me Test”
window, along with messages detailing the activities of the
system. Displaying the values being tried carries a perfor-
mance penalty, but an advantage is that it communicates
to the user approximately what the system is doing, an un-
derstanding of which is often a significant factor in users’
effectiveness and continuing use of a system [1, 7].

If Random exercises a du-association in UsefulDUs, the
system has generated a potential set of test inputs. How-
ever, this is not yet a test — recall that a test consists of
the user validating an output value. Hence, the system now
needs to communicate not only the generated test inputs to
the user, but also which cell(s) that use this set of inputs
can be validated. Even without automatic test case genera-
tion, the WYSIWYT system already maintains information
about the cells whose validation could increase testedness,
and uses this to display advice to the user (in the form of
question marks in decision boxes as detailed in Section 2.1).
However, this information pertains to, and is displayed on,
all cells in the spreadsheet. To direct the user to cells whose
validation would increase the coverage of the elements the
user selected, the test generation system determines the set
of relevant validatable output cells resulting from the new
test inputs, and presents a list of these, along with the in-
put cells it ultimately changed to generate them, to the user.
(The relevant validatable output cells are also displayed with
question marks in the spreadsheet itself.) Relevant validat-
able output cells include the selected cells themselves, as
well as downstream cells whose validation would cover the
selected cells. For example, if the user requested help test-
ing cell GrossPay in Figure 2, the system would manipulate
the values in cells Mon, Tues, etc., and would present only
GrossPay as the relevant validatable cell.

If, on the other hand, the system reaches a built-in time
limit without Random finding a useful set of test inputs, it
restores the previous input state and tells the user that it
has been unable to generate a test case. Whether or not the
system has succeeded in generating a test case, the user at
this point can validate an output value, or can ignore the
generated values (such as due to dislike of the input set gen-
erated) and choose to try again with the same or different
cells or arrows selected, in which case the test case genera-
tion technique attempts again using new seeded values.

3.2 Goal-oriented test case generation

Random is easy to implement and gave us a way to quickly
prototype our methodology. Moreover, it was suggested
that Random might be sufficient for spreadsheets, since most
spreadsheets do not use loops, aliasing, or other language
features that complicate test case generation for imperative
programs.” On the other hand, spreadsheets and the WYSI-
WYT approach lend themselves naturally to goal-oriented
test case generation, which requires dynamic execution traces
(already tracked by WYSIWYT) and the ability to quickly
re-execute a program under various inputs (already provided
by a spreadsheet evaluation engine). We therefore also in-
vestigated goal-oriented test case generation techniques. Ul-
timately, we adapted Ferguson and Korel’s “Chaining Ap-
proach” [10] for our purpose; we call our adaptation Chaining.

Like Random, Chaining is invoked, in our methodology, to
find a set of inputs that exercise one or more du-associations
in UsefulDUs. Unlike Random, Chaining accomplishes its
task by iterating through UsefulDUs, considering each du-
association in turn. (In contrast, Random simply generates
inputs for all cells in InputCells, and then checks whether
any du-association in UsefulDUs is exercised.) On find-
ing such a set, Chaining terminates, and the visual devices
described above for indicating relevant validatable output
cells are activated. If Chaining fails on all du-associations
in UsefulDUs, then like Random, it indicates this to the
system, which reports that it could not find a test case.

We now describe the process by which, in considering a
du-association (d,u), Chaining proceeds.® In spreadsheets,
the problem of finding input values to exercise (d,u) can be
expressed as the problem of finding input values that cause
both the definition d and the use u to be executed.* For
example, to exercise du-association (20,25) in GrossPay (see
the CRG in Figure 3 and its associated spreadsheet in Figure
2), input values must cause node 20 in the formula graph for
TotalHours to be reached (any set of input values achieves
this), and they must also cause node 25 in the formula graph
for cell GrossPay to be reached.

The conditions that must most immediately be met to ex-
ecute d (or u) can be expressed in terms of a constraint path
in the cell formula graph for the cell containing d (or), con-
sisting of the entry node e for that formula graph, any pred-
icate nodes lying on the direct path from e to d (or u), and d

2Personal communication, Jeff Offutt.

®Due to space limitations the description is somewhat abbre-
viated; a more detailed version, with additional description
of Ferguson and Korel’s approach, can be found in [11].

% An additional requirement present for imperative programs
— that the definition “reach” the use — is achieved auto-
matically in spreadsheets of the type we consider, provided
the definition and use are both executed, since these spread-
sheets do not contain loops or “redefinitions” of cells [22].

(or u). For example, the constraint path for nodes 20 and 25
in the CRG for GrossPay are (19,20) and (22,23,25), respec-
tively. The constraint path for du-association (d,u) consists
of the concatenation of the constraint paths for d and w.
Thus, for example, the constraint path for du-association
(20,25) in GrossPay is (19,20,22,23,25).

When considering du-association (d, u), Chaining first con-
structs the constraint path for (d,u). Given our method-
ology, it is necessarily the case that under current inputs,
(d,u) is not exercised — if (d, u) were exercised, it would not
be included in UsefulDUs. Thus, it must be the case that
under current inputs, one or more predicates in the con-
straint path are being evaluated in a manner that causes
nodes in the constraint path to not be reached. Chaining’s
task is to alter this situation, by finding inputs that cause
all nodes on the constraint path to be reached.

To do this, Chaining compares the constraint path for
(d,u) to the path built by concatenating the ezecution traces
for the cells containing d and u. These execution traces
consist of the lists of CRG nodes executed in the cells dur-
ing the cells’ most recent evaluations, and they can be re-
trieved from the spreadsheet engine, which previously col-
lected them for use by the WYSIWYT subsystem. In the ex-
ample we have been considering, the relevant concatenated
execution trace, assuming the spreadsheet’s input cells have
values as shown in Figure 2, is (19,20,22,23,24). Chaining
identifies the break point in the constraint path: the pair of
nodes consisting of the first node in the concatenated ex-
ecution traces not present in the constraint path, together
with the predicate node immediately preceding it (or, less
formally, the earliest “incorrectly taken branch” in the exe-
cution traces). In our example, the break point is (23,24).

Given a break point (ni,n2), Chaining’s next task is to
find inputs that cause the predicate in n; to take the op-
posite branch. To do this, the technique uses a constrained
linear search procedure over the input space; we describe
this procedure later in this section. Three outcomes of this
search procedure are possible. (1) The search does not suc-
ceed. In this case, n: is designated a problem node and dealt
with by a procedure described momentarily. (2) The search
succeeds, and du-association (d,u) is now executed. In this
case, the technique has succeeded and terminates. (3) The
search succeeds, and inputs that cause the desired branch
from the predicate in n; have been found, but a subsequent
predicate on the constraint path has not been satisfied (i.e.,
another break point exists), and (d,u) has not yet been ex-
ecuted. In this case, Chaining repeats the above process,
finding the next break point and initiating a new search, to
try to make further progress.’

In the example we have been considering, the only out-
comes possible are outcomes 1 and 2: the search fails, or

®A variation on this algorithm lets Chaining report success
on executing any du-association in UsefulDUs, an event
which can occur if UsefulDUs contains more than one du-
association and if, in attempting to execute one specific
du-association, Chaining happens on a set of inputs that
execute a different du-association in UsefulDUs. The re-
sults of this variation make sense from an end-user’s point
of view, because the fact that Chaining iterates through
du-associations is incidental to the user’s request: the user
requested only that some du-association in a set of such du-
associations be executed. Our prototype in fact implements
this variation; however, to simplify the presentation we focus
here on the single du-association being iterated on.

it succeeds causing du-association (20,25) to be exercised.
If, however, cell GrossPay had contained another predicate
node p in between nodes 23 and 25, such that node 25 is
reached only if p evaluates to “true”, then outcome 3 could
have occurred, e.g., if the inputs found to cause 23 to eval-
uate to “false” did not also cause p to evaluate to “true”.

When a problem node is encountered, Chaining cannot
make progress on the current break point. It is possible,
however, that by exercising some other du-association that
influences the outcome of the predicate in the break point,
Chaining will be able to make progress. Thus, faced with
a problem node ni, Chaining collects a set ChainDUs of
other du-associations (d',u') in the spreadsheet that have
two properties: (1) ' is the predicate use associated with
the alternate branch of ni, i.e. the branch we wish to take
(recall from Section 2.1 that a predicate use is an out-edge of
a predicate node, and represents either the “true” or “false”
outcome of that predicate); (2) d’ is not currently exercised.
These du-associations, if exercised, necessarily enable the
desired branch to be taken. Chaining iterates through du-
associations in ChainDUs, applying (recursively) the same
process described for use on (d,u) to each.’

The Search Procedure

The search procedure used by Chaining to find inputs that
cause predicates to take alternative branches involves two
steps. First, a branch function is created, based on the pred-
icate, to guide the search, and second, a sequence of input
values are applied to the spreadsheet in an attempt to satisfy
the branch function. We describe these steps in turn.

A branch function should have two characteristics. First,
changes in the values of the branch function, as different
inputs are applied, should reflect changes in closeness to
the goal. Second, the rules used to judge whether a branch
function is improved or satisfied should be consistent across
branch functions; this allows branch functions to be com-
bined to create functions for complex predicates. To satisfy
these criteria we defined branch functions for relational op-
erators in spreadsheets, similar to those presented in [10],
as shown in Table 1. With these functions: (1) if the value
of the branch function is less than or equal to 0, the desired
branch is not exercised; (2) if the value of the branch func-
tion is positive, the desired branch is exercised, and (3) if
the value of the branch function is increased, but remains
less than or equal to 0, the search that caused this change
is considered successful.

Ferguson and Korel did not consider logical operators
when defining branch functions. However, logical operators
are common in spreadsheets, so it is necessary to handle
them. To accomplish this we defined the branch functions
shown in Table 2. The purpose of these functions is to com-
bine other branch functions in a meaningful way. (The func-
tions are further described in [11].)

After calculating the branch function for a break point,
the search procedure seeks a set of inputs that satisfy that
branch function without violating a constraint, in the con-
straint path, that is already satisfied. This search involves
a constrained linear search over inputs in InputCells, in
which, following the procedure used by Ferguson and Ko-
rel [10], a sequence of “exploratory” and “pattern” moves

®As discussed in [10], a bound can be set on the depth of
this recursion to limit its cost; however, we did not set such
a bound in our implementation.

Relational Operator Branch Function
I <r r—1
I>r l—r
1 <r ifr—1>0thenr —[l+1lelser —1
L >r ifl—r>0thenl—r+1lelsel —1r
l=r if] = r then 1 else — |l — 7|
X |l — 7]

Table 1: Branch functions for true branches of rela-
tional operators.

Logical
Operator Branch Function
land r True branch: if f(I,true) < 0 and f(r,true) <0

then f(l,true) + f(r,true)
else min(f(l,true), f(r, true))
False branch: if f(I, false) < 0 and f(r, false) <0
then f(I, false) + f(r, false)
else max(f(l, false), f(r, false))
lorr True branch: if f(I,true) <0 and f(r,true) <0
then f(l,true) + f(r,true)
else max(f(l,true), f(r, true))
False branch: if f(I, false) < 0 and f(r, false) <0
then f(I, false) + f(r, false)
else min(f(l, false), f(r, false))
not e True branch: f(e, false)
False branch: f(e,true)

Table 2: Branch functions for logical operators.

are applied over time. (For efficiency, the search considers
only those input cells in InputCells that could affect the
target break point.) Exploratory moves attempt to deter-
mine a direction of search on an input, by incrementing or
decrementing the input and seeing whether the value of the
branch function improves, testing relevant inputs in turn un-
til a candidate is found. Pattern moves act on the results of
successful exploratory moves, incrementing or decrement-
ing values of a candidate input (by potentially increasing
or decreasing deltas), and seeing whether the value of the
branch function improves. If any move causes the value of
the branch function to become positive, the break point has
been covered, and the search terminates. This search pro-
cedure is described in detail in [10] and we refer the reader
there for further description.

Comparison of Approaches

Space does not permit a detailed comparison of Ferguson
and Korel’s [10] Chaining technique and our adaptation of
that technique. For readers familiar with that approach,
however, we summarize the differences between approaches.

For brevity in the following, we refer to Ferguson and
Korel’s technique as CF-Chaining, due to its use of control
flow information.

e Given a problem node, CF-Chaining requires data-flow
analysis to compute definitions of variables that may
affect flow of control in that problem node. Such com-
putation can be expensive, particularly in programs
where aliasing must also be considered [19]. In con-
trast, Chaining takes advantage of data dependence
information computed incrementally by the spread-
sheet engine during its normal operation. Such com-
putation adds O(1) cost to the operations already per-
formed by that engine [22] to update the visual display.

e CF-Chaining builds event sequences that encode lists
of nodes that may influence a test case’s ability to ex-

ecute a goal node; these sequences are constructed as
problem nodes are encountered and used to guide at-
tempts to solve constraints that affect the reachability
of problem nodes. For reasons just stated, Chaining
is able to take a more direct approach, as the informa-
tion encoded in event sequences is already available in
the CRG (which also is computed by the spreadsheet
engine, at O(1) cost above the operations it already
must perform [22]).

e CF-Chaining’s algorithm is complicated by the pres-
ence of loops, which create semi-critical branches that
may or may not prevent reaching a problem node.
CF-Chaining uses a branch classification scheme to
differentiate semi-critical branches, critical branches
which necessarily affect reachability, and non-essential
branches which require no special processing. Since
our spreadsheets do not contain loops, Chaining does
not need this branch classification; instead it can build
constraint paths directly from branches occurring in
the defining and using cells.

e The presence of loops in imperative programs also re-
quires CF-Chaining to impose a limit on depth of chain-
ing which Chaining does not need to impose.

e CF-Chaining does not, as presented, include a tech-
nique for handling logical operators; the technique we
present here for use with Chaining could be adapted.

These differences primarily involve simplifications to Fergu-
son and Korel’s approach, made possible by the spreadsheet
evaluation model. As such, this work illustrates the poten-
tial suitability of Ferguson and Korel’s overall approach to
that evaluation model. These simplifications improve the ef-
ficiency of the approach, which is a critical matter in spread-
sheets, which feature rapid response.

3.3 Supplying and using range information

The random test case generation technique requires ranges
within which to randomly select input values, and the chain-
ing technique needs to know the edge of its search space.
One scenario is that no range information is available. In
that case, our test case generation techniques consider all
possible cell values within the default range of the data type.

A second possible scenario is that via a user’s help or
a range information analysis tool, the test case generation
techniques could obtain more precise knowledge of range
information. With such (explicit) ranges, both techniques
limit their search space to the specified ranges and generate
test cases exactly within these ranges.

We believed that availability and use of range information
might affect the efficiency and effectiveness of test case gen-
eration techniques. Thus, our implementations of both the
random and chaining techniques supported both of these
scenarios, and our empirical studies investigated the tech-
niques with and without range information.

4. EMPIRICAL STUDIES

Our test case generation methodology is intended to help
users achieve du-adequate testing, which is communicated to
the user with devices such as cell border colors. Determining
whether this methodology achieves this goal requires user
studies; however, before undertaking such studies we must
first address more fundamental questions: namely, whether
the methodology can in fact generate inputs that exercise

DU- Feasible Expres- | Pred-
Spreadsheets | Cells | assoc’s | DU-assoc’s sions icates
Digits 7 89 61 35 14
Grades 13 81 79 42 12
MicroGen 6 31 28 16 5
NetPay 9 24 20 21 6
Budget 25 56 50 53 10
Solution 6 28 26 18 6
NewClock 14 57 49 39 10
FitMachine 9 121 101 33 12
RandomJury 29 261 183 93 32
MBTI 48 784 780 248 100

Table 3: Data about subject spreadsheets

a sufficient number of feasible du-associations, and whether
it can do so sufficiently efficiently. If the answers to these
questions are negative, there is no reason to pursue studies
involving human subjects. We must also determine whether
either Random or Chaining is more efficient or effective than
the other, and whether provision of range information is
necessary. Therefore, in our initial empirical studies, we
focus on these fundamental questions:

RQ1: Can our test case generation methodology efficiently
generate test cases that execute a large proportion of
the feasible du-associations of interest?

RQ2: How do Random and Chaining compare, within our
methodology, in terms of effectiveness and efficiency?

RQ3: Does the provision of range information alter the ef-
fectiveness and efficiency of Random and Chaining?

To investigate these questions, we prototyped our test
case generation methodology, including both the Random and
Chaining techniques, in Forms/3. Our prototypes allow test
case generation at the whole spreadsheet, selected cell, or
selected du-association levels. In the experiments reported
here, we focus on test case generation at the whole spread-
sheet level.

4.1 Subjects

We used ten spreadsheets as subjects (see Table 3). These
spreadsheets were created by experienced Forms/3 users to
perform a wide variety of tasks: Digits is a number to digits
splitter, Grades translates quiz scores into letter grades, Fit-
Machine and MicroGen are simulations, NetPay calculates
an employee’s income after deductions, Budget determines
whether a proposed purchase is within a budget, Solution is
a quadratic equation solver, NewClock is a graphical desktop
clock, RandomJury determines statistically whether a panel
of jury members was selected randomly, and MBTI imple-
ments a version of the Myers-Briggs Type Indicator (a per-
sonality test). Table 3 provides data indicating the complex-
ity of the spreadsheets considered, including the numbers of
cells, du-associations, expressions, and predicates contained
in each spreadsheet.

Our test case generation prototype handles only integer
type inputs; thus, all input cells in these subject spread-
sheets are of integer type. Since commercial spreadsheets
contain infeasible du-associations, all subject spreadsheets
in our experiments also contain infeasible du-associations.
To measure the effectiveness of our techniques at exercising
feasible du-associations in this experiment, we determined
all the infeasible du-associations through inspection.

4.2 Measures

To investigate our research questions we use two measures:
effectiveness and efficiency. Since our underlying testing
system uses du-adequacy as a testing criterion, we measured
a test case generation technique’s effectiveness by the per-
centage of feasible du-associations exercised by the test cases
it generated. To measure a test case generation technique’s
efficiency, we measured the amount of (wall clock) time re-
quired to generate a test case that exercises one or more
du-associations.

4.3 Experiment Methodology

When employed by an end user under our methodology,
our test case generation techniques generate one test case
at a time. However, the user may (and we expect will) con-
tinue to invoke a technique to generate additional test cases.
We expect that within this process, as the coverage of the
feasible du-associations in a spreadsheet nears 100%, the
remaining du-associations will be more difficult to execute,
and the time required to generate a new useful test case
will increase. We wish to consider differences in efficiency
across this process. Further, it is only through a process of
repeated application of a technique that we can observe the
technique’s overall effectiveness. Thus, in our experimenta-
tion, we simulate the process of a user repeatedly invoking
“Help Me Test”, by applying our test case generation tech-
niques repetitively to a spreadsheet in a controlled fashion.
To achieve this, we use automated scripts that repeatedly in-
voke our techniques and gather the required measurements.
This approach raises several issues, as follows.

4.3.1 Automatic validation

The testing procedure under WYSIWYT is divided into
two steps: finding a test case that executes one or more un-
exercised du-associations in the spreadsheet, and validating
output cells as prompted. In these studies, since we are in-
terested only in the test input generation step and do not
have users performing validation, our scripts automatically
validate all output cells whose validation causes some du-
association to be marked “exercised”. This approach sim-
ulates the effects of user validation under the assumption
that, given a generated test case, the user validates all vali-
datable cells for that test case. We do not measure validation
time as part of our efficiency measurement.

4.3.2 Time limit

To simulate a user’s repetitive calls to test case genera-
tion techniques during incremental testing, our scripts re-
peatedly apply the techniques to the subject spreadsheet af-
ter each (automatic) validation of du-associations exercised
by the preceding test case. In practice, a user or internal
timer might stop a technique if it ran “too long”. In this
study, however, we wish to examine effectiveness and ef-
ficiency more generally and discover what sort of internal
time limits might be appropriate. Thus, our scripts must
provide sufficient time for our techniques to attempt to gen-
erate test cases, and time out when a limit is reached.

To determine what time limits to use, we performed sev-
eral trial runs with extremely long limits (several hours) per
script. We then determined the time after which (in these
runs) no additional test cases were found, and used this to
set our limits. We chose a time limit of 1200 seconds for all
spreadsheets other than MBTI and RandomJury; for these

spreadsheets we chose time limits of 10000 and 5000 seconds,
respectively.”

4.3.3 Feasible and infeasible du-associations

For the purpose of measuring effectiveness, we consider
only coverage of feasible du-associations: this lets us make
effectiveness comparisons between subjects containing dif-
fering percentages of infeasible du-associations. We can take
this approach because we already know, through inspection,
the infeasible du-associations for each spreadsheet. In prac-
tice, however, our techniques would be applied to spread-
sheets containing both feasible and infeasible du-associations,
and might spend time attempting to generate cases for both.
Thus, when we apply our techniques we do not distinguish
between feasible and infeasible du-associations; this lets us
obtain fair efficiency measurements.

4.3.4 Range information

Our research questions include questions about the effects
of input ranges, and our experiments investigate the use of
techniques with and without range information. For cases
where no range information is provided, we used the default
range for integers (-536870912 to +536870911) on our sys-
tem. We determined that this range was large enough to
provide inputs that execute every feasible du-association in
each of our subject spreadsheets.

To investigate the use of ranges, we needed to provide
reasonable ranges, such as could be provided by a user of
the system. To obtain such range information for all input
cells in our subject spreadsheets, we carefully examined the
spreadsheets, considering their specifications and their for-
mulas, and created an original range for each input cell that
seemed appropriate based on this information. To force con-
sideration of input values outside of expected ranges, which
may also be of interest in testing, we then expanded these
initial ranges by 25% in both directions. (In practice, such
an expansion might be accomplished by the user, or by the
test generation mechanism itself.)

4.3.5 Initial values

Another consideration that might affect the effectiveness
and efficiency of our techniques is the initial values present in
cells when a test case generator is invoked. Random randomly
generates input values until it finds useful ones, whereas
Chaining starts from the current values of input cells and
searches the input space under the guidance of branch func-
tions until it finds a solution. Thus, Random is independent
of initial values whereas initial values could affect Chaining.
To control for the effects of initial values, and allow fair
comparisons of our techniques, we performed multiple runs
using different initial cell values on each spreadsheet. Fur-
ther, to control for effects that might bias comparisons of
the techniques, we apply runs of techniques in pairs, with
each pairing starting from the same sets of initial values.

4.4 Experiment Design

Our experiment evaluated our automatic test case gener-
ation methodology on ten subject spreadsheets at the whole

"Obviously, we cannot guarantee that longer time limits
would not allow the techniques to exercise additional du-
associations. However, our limits likely exceed the time
which users would be willing to wait for test case generation
to succeed, and thus for practical purposes are sufficient.

spreadsheet level. The three independent variables manipu-
lated in this experiment are:

e The ten spreadsheets
e The test case generation technique
e The use of range information

We measured two dependent variables:

e effectiveness
e efficiency

The experiment employed a 10 x 2 x 2 factorial design
with 35 different initial input configurations per spread-
sheet. For each subject spreadsheet, we applied each of our
two test case generation techniques starting from 35 sets of
initial inputs without range information. We then did the
same using ranges. On each run, we measured the times at
which untested du-associations were exercised; these mea-
surements provided the values for our dependent variables.
These runs yielded 1400 sets of effectiveness and efficiency
measurements for our analysis. All runs were conducted,
and all timing data collected, on a Sun Microsystems Ultra
10 with 128 MB of memory.

4.5 Results and Analysis

We now present our results and analysis, first considering
effectiveness, and then considering efficiency.

45.1 Effectiveness

We consider two different views of effectiveness. First,
we consider the ability of our techniques to generate test
cases to cover all the feasible du-associations in the subject
spreadsheets — we refer to this as their ultimate effective-
ness. Table 4 lists, for each of the subject spreadsheets,
the ultimate effectiveness of Random and Chaining with and
without range information, averaged across 35 runs.

Random Random Chaining | Chaining

without with without with

Range Range Range Range
Digits 59.44% 97.89% | 100.00% | 100.00%
FitMachine 50.50% 50.50% 97.93% 97.90%
Grades 67.10% 99.82% 99.71% 99.89%
MBTI 25.64% | 100.00% 99.87% 99.64%
MicroGen 71.43% 99.18% | 100.00% | 100.00%
NetPay 40.00% | 100.00% | 100.00% | 100.00%
NewClock 57.14% | 100.00% 99.01% 99.36%
Budget 96.57% | 100.00% | 100.00% | 100.00%
RandomJury 78.78% 83.23% 94.29% 92.69%
Solution 57.69% 78.79% | 100.00% | 100.00%

Table 4: Ultimate effectiveness of techniques per
spreadsheet, with and without explicit range infor-
mation, on average over 35 runs.

As the table shows, Chaining without range information
achieved over 99% ultimate effectiveness on all but two of the
spreadsheets (FitMachine and RandomJury). On these two
spreadsheets the technique achieved ultimate effectiveness
over 97% and 94%, respectively.

We had expected that the addition of range information
would improve the effectiveness of Chaining. However, com-
paring the values in the two rightmost columns in Table 4
indicates that there was little difference in ultimate effec-
tiveness between Chaining with and without range infor-
mation. In fact, on FitMachine and RandomJury, the two

cases in which there was the greatest potential for improve-
ment, addition of range information actually decreased (by
less than 2%) ultimate effectiveness. To determine whether
the differences in ultimate effectiveness between Chaining
with and without range information were statistically sig-
nificant, we used unpaired t-tests on pairs of effectiveness
values per technique per spreadsheet. The differences be-
tween the techniques were statistically significant only for
MBTI (o < .05).%

Random without range information behaved much differ-
ently than Chaining. In only one case did Random without
range information achieve an ultimate effectiveness greater
than 90% (Budget), and in six of ten cases it achieved an
ultimate effectiveness less than 60%. Ultimate effectiveness
also varied widely for this technique, ranging from 25.64% to
96.57%. On all ten spreadsheets, the ultimate effectiveness
of Random without ranges was less than that of Chaining
without ranges; differences between the techniques ranged
from 3.4% to 74.2% across spreadsheets (average overall dif-
ference 38%.) Unpaired t-tests showed that the effectiveness
differences between Random without ranges and Chaining
without ranges were all statistically significant (o < .05).

In contrast to the results observed for Chaining, addition
of range information to Random did affect its performance,
in all but one case increasing ultimate effectiveness, and in
seven of ten cases increasing it by more than 20%. Unpaired
t-tests showed that all increases were statistically significant;
effectiveness remained unchanged only on FitMachine.

Addition of range information to Random also helped its
performance in comparison to Chaining. On two spread-
sheets, MBTI and NewClock, Random with range information
achieved greater ultimate effectiveness than Chaining with
range information; however, this difference, though statis-
tically significant, was less than 1%. On five spreadsheets
(Digits, FitMachine, MicroGen, RandomJury, and Solution)
on the other hand, Chaining with range information resulted
in statistically greater ultimate effectiveness than Random
with range information, and in two of these cases the dif-
ference exceeded 20%. (On Grades, NetPay, and Budget,
differences were not statistically significant.)

Our second view of effectiveness (Table 5) considers the
ability of the four test case generation techniques, across all
ten subject spreadsheets, to generate test cases reaching four
different levels of effectiveness. The table shows the number
of times, out of 350 runs, each technique achieved at least
50%, 75%, 90%, or 100% effectiveness. As the table shows,
Random without range information is the only technique to
sometimes fail to reach 50% effectiveness, and is far less
successful than the other techniques at reaching higher levels
of effectiveness. Also, Chaining techniques achieved 75%,
90%, and 100% effectiveness more often than Random with
range information, and Chaining without range information
achieved 90% and 100% effectiveness a few more times than
does Chaining with range information.

4.5.2 Efficiency

We also consider two views of efficiency. First, Table 6
reports response time characteristics of the test case gener-
ation techniques; that is, the amount of time the user must
wait after pushing the “Help Me Test” button until a suit-

8Statistical data was obtained using StatView 5.0; further
details on the analysis technique applied and the data ob-
tained are available in [11].

50% 75% 90% | 100%
Random without Range 274 76 35 5
Random with Range 350 312 245 218
Chaining without Range 350 349 347 252
Chaining with Range 350 350 342 239

Table 5: Number of runs (out of 350) in which tech-
niques exceeded specific levels of effectiveness.

Total Test cases Test cases
test cases generated generated
generated in < 4 secs in < 10 secs

Random w/0 Range 1318 1026 (77.8%) 1114 (84.5%)

Random w Range 9731 6886 (70.8%) 8239 (84.7%)
Chaining w/o Range 12750 10354 (81.2%) | 11262 (88.3%)
Chaining w Range 12115 11001 (90.8%) | 11605 (95.8%)

Table 6: Number and percentage of test cases gen-
erated in less than 4 and less than 10 seconds, across
all 10 spreadsheets.

able test case is displayed. The table shows, for each tech-
nique, the number of total test cases successfully generated
by that technique, and the numbers and percentages of the
times in which test case generation succeeded in less than 4
seconds, and less than 10 seconds, respectively.’

As the table illustrates, with all techniques, a test case was
generated within 4 seconds over 70% of the time, and within
10 seconds over 84% of the time. With or without range
information, Chaining achieved faster response times more
often than Random. The table also shows that Random with-
out ranges was more responsive than Random with ranges at
the 4 second mark; however, this should be qualified by the
fact that Random without ranges was able to generate only
about one-eighth as many test cases as Random with ranges.
Finally, the table shows that the use of range information
did improve Chaining’s response time: in fact, Chaining
with range information achieved the greatest number of low
response times, succeeding within 4 seconds on over 90% of
the runs, and within 10 seconds on over 95% of the runs.

Table 7 provides a second view, showing the efficiencies of
techniques relative to various levels of coverage across all ten
subject spreadsheets as the techniques are applied repeat-
edly; that is, how long test generation might take to attain
the desired level of coverage. For each of the four tech-
niques, four levels of coverage (50%, 75%, 90%, and 100%)
are considered.

As the table shows, both Chaining techniques achieved
100% coverage much more quickly (over 400 seconds more
quickly) than their Random counterparts. Chaining with
range information was fastest, reaching each level of cover-
age more quickly than Chaining without range information;
however, the time differences between the two Chaining
techniques never exceeded 94 seconds. Further, Chaining
without range information was somewhat slower than Random
with range information at reaching the 50%, 75%, and 90%
levels of coverage, although the difference never exceeded 54
seconds, and decreased as coverage level increased.

Two entries in this table bear further scrutiny. Random
without range information appears surprisingly fast at the
90% coverage level; however, this should be interpreted in
light of the small number of cases in which the technique

°In the literature on usability, 4 seconds is cited as an ap-
propriate limit for common tasks [26], and 10 seconds as a
limit for keeping a user’s attention focused on a task [17].

50% 75% 90% | 100%
Random without Range 66.3 79.9 13.0 | 622.4
Random with Range 9.9 62.9 93.8 | 521.1
Chaining without Range 63.9 | 102.3 | 130.7 | 119.4
Chaining with Range 15.2 27.7 45.7 25.9

Table 7: Average cumulative time (seconds) re-
quired to achieve given levels of coverage, consid-
ering only test cases that reached those levels (see
numbers reported in Table 5).

achieved that level of coverage (see Table 5). Specifically,
the technique reached the 90% coverage level on only 35
test cases (all on one spreadsheet), so these results simply
show that on that one spreadsheet, 90% coverage could be
achieved quickly. Similarly, results for Random without range
information at the 100% coverage level are based on only the
five test cases on which the technique reached that level.

4.6 Threats to Validity

This experiment, like any other, has limitations (threats
to validity) that must be considered when assessing its re-
sults. The primary threats to validity for this experiment are
external, involving subject and process representativeness,
and affecting the ability of our results to generalize. Our
subject spreadsheets are of small and medium size, with in-
put cells only of integer type. Commercial spreadsheets with
different characteristics may be subject to different cost-
effectiveness trade-offs. Our experiment uses scripts that
automatically validate all relevant output cells; in practice
a user may validate some or none of these cells. Our range
values were created by examining the subject spreadsheets,
but may not represent the ranges that would be assigned by
users in practice. The initial values we assigned to cells fall
within these ranges, but might not represent initial values
that would typically be present when a user requested help
in test generation. Threats such as these can be addressed
only through additional studies using other spreadsheets,
and studies involving actual users.

Threats to internal validity involve factors that may af-
fect dependent variables without the researcher’s knowledge.
We considered and took steps to limit several such factors.
First, test case generation techniques may be affected by
differences in spreadsheets and formulas; to limit this threat
our experiments utilized a range of spreadsheets that per-
form a variety of tasks. Second, initial input cell values
can affect the success and speed of Chaining; we address
this threat by applying techniques repeatedly (35 times per
spreadsheet) using different initial values. Finally, timings
may be influenced by external factors such as system load
and differences among machines; to control for this we ran
our experiments on a single machine on which our processes
were the only user processes present. Also, to support fair
timing comparisons of our techniques, our implementations
of techniques shared code wherever possible, differing only
where required by the underlying algorithms.

Finally, threats to construct validity occur when measure-
ments do not adequately capture the concepts they are sup-
posed to measure. Degree of coverage is not the only possible
measure of effectiveness of a test case generation technique;
fault detection ability and size of the generated test suite
may also be factors. Moreover, certain techniques may gen-
erate output values that are easier for users to validate than
others, affecting both effectiveness and efficiency.

4.7 Discussion

Keeping in mind the limitations imposed by the threats to
validity just described, our results have several implications.

First, our results suggest that, from the point of view
of effectiveness and efficiency, automated test case genera-
tion for spreadsheets seems to be feasible. In the cases we
considered, Chaining was highly effective (both with and
without range information) at generating test cases, achiev-
ing 100% coverage of feasible du-associations on half of the
spreadsheets considered, greater than 97% coverage on all
but one spreadsheet, and greater than 92% coverage on that
one spreadsheet. In a high percentage of cases, Chaining
achieved this coverage within reasonable time limits. These
results thus motivate further work on test case generation
techniques for spreadsheets, and on the Chaining technique,
and suggest that studies of whether end users can profit from
the use of such techniques would be appropriate.

Our results also highlight several tradeoffs between tech-
niques. First, we had initially conjectured that with spread-
sheets, random test case generation might perform nearly
as well as a more complex heuristic, thus providing a more
easily implemented approach to test case generation. Our
experiments suggest that this conjecture is false. In the cases
we observed, Random techniques were much less effective
at covering du-associations in spreadsheets than Chaining
techniques, over half of the time achieving less than 80% cov-
erage. Further, Random techniques were much less consistent
than Chaining techniques in terms of effectiveness: whereas
Chaining’s effectiveness ranged only from 92% to 100% cov-
erage, the effectiveness of Random techniques ranged from
25% to 100% coverage, a range nine times larger than that
of Chaining techniques. Random techniques also exhibited
fast response times less often than Chaining techniques,
and although a Random technique using range information
was capable of achieving low levels of coverage more quickly
than Chaining without range information, the latter out-
performed the former at high levels of coverage.

At the outset of this work we also postulated that provi-
sion of range information would benefit both test case gener-
ation techniques. Where Random was concerned, this proved
correct: Random with ranges often achieved far greater lev-
els of coverage than Random without ranges. We were sur-
prised, however, that Chaining did not benefit, in terms of
effectiveness, from the provision of range information. In
fact, Chaining without range information was marginally
better than Chaining with range information at achieving
higher coverage levels. Also, while range information did
help Chaining achieve results more quickly than Chaining
without such information, the speedup was not large. On re-
flection, we suspect that the Chaining algorithm, restricted
by ranges, is less able than its unrestricted counterpart to
jump beyond local minima/maxima and find solutions, though
when it does find solutions it can do so in fewer steps.

Overall, these results support some stronger suggestions
about automated test case generation for spreadsheets:

e Given a choice, one should implement Chaining rather
than Random.

e If one can implement only Random, one should make
provision for providing range information.

e If one chooses to implement Chaining, provision of
range information might marginally harm effectiveness,
but might marginally improve efficiency.

5. CONCLUSIONS AND FUTURE WORK

We have presented an automated test case generation
methodology for spreadsheet languages. Our methodology
uses an incremental generation strategy, and is driven by
the end user’s request, allowing the user to generate test
cases for a specific du-association or cell, or at the whole-
spreadsheet level. Our methodology is tightly integrated
with the highly interactive spreadsheet programming envi-
ronment, presenting test data visually. We have utilized
two test case generation techniques within our methodol-
ogy, one based on random generation and the second on a
dynamic, goal-oriented approach. The details of these tech-
niques, however, do not need to be known by the end users
of our system. We have prototyped our methodology, and
our empirical studies suggest that it can effectively and ef-
ficiently generate test cases.

Given these results, our next step in this research is the
design and performance of additional experiments, including
(1) experiments with a wider range of spreadsheets, includ-
ing representatives of commercial spreadsheet applications,
(2) experiments using our methodology at the individual du-
pair and individual cell levels, and (3) experiments involving
human users of our methodology. The results presented in
this paper motivate the choice, for that experimentation,
of the Chaining technique for test case generation, with no
provision of range information. Such studies will help us
assess whether our methodology can be used effectively by
end users on production spreadsheets.

Acknowledgments

We thank the Visual Programming Research Group for their
work on Forms/3 and their feedback on our methodologies.
This work has been supported by the National Science Foun-
dation by ESS Award CCR-9806821 and ITR Award CCR-
0082265 to Oregon State University.

6. REFERENCES

(1] N. Belkin. Helping people find what they don’t know.
Communications of the ACM, 41(8):58—-61, Aug. 2000.

[2] D. Bird and C. Munoz. Automatic generation of random
self-checking test cases. IBM System Journal,
22(3):229-245, 1983.

[3] P. Brown and J. Gould. Experimental study of people
creating spreadsheets. ACM Transactions on Office
Information Systems, 5(3):258-272, July 1987.

[4] M. Burnett, J. Atwood, R. Djang, H. Gottfried,

J. Reichwein, and S. Yang. Forms/3: A first-order visual
language to explore the boundaries of the spreadsheet
paradigm. Journal of Functional Programming,
11(2):155-206, 2001.

[5] E. H. Chi, P. Barry, J. Riedl, and J. Konstan. A
spreadsheet approach to information visualization. In IEEE
Symposium on Information Visualization, Oct. 1997.

[6] L. Clarke. A system to generate test data and symbolically
execute programs. IEEE Transactions on Software
Engineering, 2(3):215-222, Sept. 1976.

[7] C. Corritore, B. Kracher, and S. Wiedenbeck. Trust in the
online environment. In Proceedings of HCI International,
pages 15481552, Aug. 2001.

[8] R. DeMillo and A. Offutt. Constraint-based automatic test
data generation. IEEE Transactions on Software
Engineering, 17(9):900-910, Sept. 1991.

[9] E. Duesterwald, R. Gupta, and M. L. Soffa. Rigorous data
flow testing through output influences. In Proceedings of
the 2nd Irvine Software Symposium, Mar. 1992.

[10] R. Ferguson and B. Korel. The chaining approach for
software test data generation. ACM Transactions on
Software Engineering and Methodology, 5(1):63-86, Jan.
1996.

[11] M. Fisher, M. Cao, D. Brown, G. Rothermel, C. R. Cook,
and M. M. Burnett. Integrating automated test case
generation into the WYSIWYT spreadsheet testing
methodology. Technical Report TR: 02-60-01, Oregon State
University, Jan. 2002.

[12] P. Frankl and E. Weyuker. An applicable family of data
flow criteria. IEEE Transactions on Software Engineering,
14(10):1483-1498, Oct. 1988.

[13] A. Gotlieb, B. Botella, and M. Reuher. Automatic test data
generation using constraint solving techniques. In
Proceedings of the ACM International Symposium on
Software Testing and Analysis, pages 53—62, Mar. 1998.

[14] B. Korel. A dynamic approach of automated test data
generation. In Proceedings of the International Conference
on Software Maintenance, pages 311-317, Nov. 1990.

[15] B. Korel. Automated software test data generation. IEEE

Transactions on Software Engineering, 16(8):870-897, Aug.

1990.

J. Leopold and A. Ambler. Keyboardless visual

programming using voice, handwriting, and gesture. In

Proceedings of the 1997 IEEE Symposium of Visual

Languages, pages 28—35, Sept. 1997.

[17] J. Nielsen. Usability Engineering. Morgan Kaufmann, San
Francisco, CA, 1994.

[18] A. J. Offutt. An integrated automatic test data generation
system. Journal of Systems Integration, 1(3):391-409, Nov.
1991.

[19] H. Pande, W. Landi, and B. Ryder. Interprocedural def-use
associations in C programs. IEEE Transaction on Software
Engineering, 20(5):385-403, May 1994.

[20] R. Panko. What we know about spreadsheet errors. Journal
of End User Computing, pages 15-21, Spring 1998.

[21] C. Ramamoorthy, S. Ho, and W. Chen. On the automated
generation of program test data. IEEE Transactions on
Software Engineering, 2(4):293-300, Dec. 1976.

[22] G. Rothermel, M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A methodology for testing spreadsheets. ACM
Transactions on Software Engineering, pages 110-147, Jan.
2001.

[23] G. Rothermel, L. Li, and M. Burnett. Testing strategies for
form-based visual programs. In Proceedings of the 8th
International Symposium on Software Reliability
Engineering, pages 96-107, Nov. 1997.

[24] G. Rothermel, L. Li, C. DuPuis, and M. Burnett. What
you see is what you test: A methodology for testing
form-based visual programs. In Proceedings of the 20th
International Conference on Software Engineering, pages
198-207, Apr. 1998.

[25] K. J. Rothermel, C. R. Cook, M. M. Burnett, J. Schonfeld,
T. R. G. Green, and G. Rothermel. WYSIWYT testing in
the spreadsheet paradigm: An empirical evaluation. In
Proceedings of the 22nd International Conference on
Software Engineering, June 2000.

[26] B. Shneiderman. Designing the User Interface.
Addison-Wesley, Reading, MA, 3rd edition, 1998.

[27] T. Smedley, P. Cox, and S. Byrne. Expanding the utility of
spreadsheets through the integration of visual programming
and user interface objects. In Advanced Visual Interfaces
'96, May 1996.

(28] E. J. Weyuker. More experience with dataflow testing.
IEEE Transactions on Software Engineering, 19(9), Sept.
1993.

[29] E. Wilcox, J. Atwood, M. Burnett, J. Cadiz, and C. Cook.
Does continuous visual feedback aid debugging in
direct-manipulation programming systems? In ACM
CHI’97, pages 22-27, Mar. 1997.

[16

