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Abstract—The tools and infrastructure used in tech, including 
Open Source Software (OSS), can embed “inclusivity bugs”— 
features that disproportionately disadvantage particular groups 
of contributors. To see whether OSS developers have existing 
practices to ward off such bugs, we surveyed 266 OSS developers. 
Our results show that a majority (77%) of developers do not use 
any inclusivity practices, and 92% of respondents cited a lack of 
concrete resources to enable them to do so. To help fill this gap, 
this paper introduces A ID , a tool that automates the GenderMag 
method to systematically find gender-inclusivity bugs in software. 
We then present the results of the tool�s evaluation on 20 GitHub 
projects. The tool achieved precision of 0.69, recall of 0.92, an 
F-measure of 0.79 and even captured some inclusivity bugs that 
human GenderMag teams missed.

Index Terms—Gender inclusivity, automation, open source, 
information processing

I. I n t r o d u c t i o n

A new class of bug is beginning to gain visibility in software 
engineering literature: the inclusivity bug. An inclusivity bug 
is software behavior that disproportionately disadvantages a 
particular group of users of that software. To date, the most 
studied type of inclusivity bugs are gender-inclusivity bugs, 
most (but not all) of which disproportionately disadvantage 
women [1]-[8].

Some gender-inclusivity bugs in software manifest them
selves overtly, such as with non-inclusive language [9], 
[10], gender-stereotyped game characters [11], or gender- 
stereotyped job matches [12], [13]. Detecting overt gender- 
inclusivity bugs is relatively straightforward, by definition of 
the term “ overt”  (although actually fixing them is not always 
straightforward). However, non-overt gender-inclusivity bugs 
are not so obvious, such as software behaviors and workflows 
that are biased against cognitive or behavioral styles more 
common in one gender than another. For example, among the 
software-relevant gender differences pointed out in Stumpf et 
al.’s survey are gender clusters of differences in the colors and 
sounds people can distinguish, how people comprehend and 
interpret verbal/written communications, their spatial process
ing, their attitudes toward technological risks, and how they 
process information [10].

The extent to which such non-overt gender-inclusivity bugs 
permeate software is large. The lowest percentage we have 
been able to locate is one team’s report of inclusivity bugs in

“ only” 12% of the features they considered [14]; other teams 
have reported much higher rates of inclusivity bugs [4], [7], 
[14]. For example, in one recent study on a group of OSS 
projects, the rate of gender-inclusivity bugs reported by OSS 
professionals that were then verified by OSS newcomers was 
63% [15].

Fortunately, there are methods that can help software pro
fessionals find, fix, and/or avert inclusivity bugs (e.g., [16], 
[17]). One of these is GenderMag (Gender Inclusiveness 
Magnifier) [3], which provides the foundation of the tool 
presented in this paper. GenderMag is a method that enables 
developers to systematically find gender-inclusivity bugs in 
their software or workflow so that they can fix the bugs. 
GenderMag variants have been used in a variety of domains, 
including digital libraries [18], learning tools and websites [3], 
[14], [19], [20], machine learning interfaces [14], robotics [6], 
search engines [7], and OSS projects [15], [21].

Unfortunately, however, using any of these methods can 
be expensive, because they are entirely manual and labor
intensive. For example, GenderMag’s creators recommend that 
at least 3 evaluators spend 1-2 hours per session [22], where 
a session usually covers only 1-3 use-cases. In fact, finding 
ways to reduce the cost was a major theme in a recent field 
study of 10 teams’ work to integrate GenderMag into their 
development processes [20].

Can a software tool help to address this problem, to increase 
the viability of debugging inclusivity bugs that lurk in soft
ware? To find out, we conducted a survey of experienced OSS 
developers (OSS’ers), to learn what tools and other inclusivity 
debugging resources developers actually use.

Informed by the study, we then created AID, a tool that 
automates a “ vertical slice” of GenderMag. We used a vertical 
slice instead of all of GenderMag for two reasons. First, since 
this is the first of a new class of software tools (inclusivity bug 
detectors), we needed a tractable way to investigate whether 
this class of tools is even possible. Second, it enabled us to 
empirically investigate A ID ’s effectiveness under the strict 
controls that a single vertical slice affords. Specifically, this 
version of the tool uses a portion of all the components of 
GenderMag—a portion of its scope (OSS GitHub projects), 
one of its personas (Abi), and one of its cognitive styles (the in
formation processing style). We then empirically investigated
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TABLE I

T h e  Fa c e t s  & A b i ’s  v a l u e s  f o r  e a c h  (s e e  [3] f o r t h e  f o u n d a t i o n s

BEHIND EACH)

Facet A bi’s Values

Motivations Uses technology to accomplish tasks

Computer Self-Efficacy Low compared to peers

Attitude towards Risk Risk-averse

Information Processing Style Comprehensive

Learning Style Learns by process

the tool’s results on 20 OSS GitHub projects.

This paper presents AID and reports our empirical findings. 

The contributions of this paper are:

♦ A survey of 266 experienced OSS developers’ inclusivity 

debugging practices, and the tools/guidelines they use for 

these practices;

♦ AID, the first software tool to automate the detection of 

inclusivity bugs; and

♦ An empirical investigation of AID’s efficacy on 20 oSS 

GitHub projects.

II. Ba c k g r o u n d : Th e  Ge n d e r Ma g  M e t h o d

AID is a partial automation of the GenderMag method [3]. 

GenderMag is a process that enables software professionals 

to systematically locate gender-inclusivity “bugs” in the user-

facing portions of their software. Locating these bugs is 

a prerequisite to fixing them. GenderMag has been used 

successfully in a variety of domains, including university 

webware, educational software, machine-learning interfaces, 

mobile apps, digital libraries, search engines, and software 

tools [3], [7], [14], [18]—[21], [23].

At the core of GenderMag method are five problem solving 

styles, or facets, each backed by extensive foundational re-

search [3], [10]. The five facets are: Motivations for using 

technology, computer Self-Efficacy, Attitude towards Risk, 

Information Processing Style, and Learning Style. Each facet 

has a range of possible values, and GenderMag uses three 

multi-personas (Abi, Pat, and Tim) to bring different facet 

values to life (Table I and Figure 1). Each persona embodies 

a different set of values for the five facets. Facet values 

statistically more common among women are assigned to Abi, 

those more common among men are assigned to Tim, and a 

mix of various facet values are assigned to Pat. These facet 

values are what define each persona’s problem-solving style. 

other persona attributes (e.g., job, age, hobbies, preferred 

pronouns, etc...) are customizable.

Of particular interest to this paper is the Information Pro-

cessing facet as it pertains to the Abi persona, because the 

tool we present is a partial automation of that facet from 

Abi’s perspective. The information processing facet describes 

how a user receives new information to make decisions about 

actions to take, in order to accomplish a task. The Abi persona 

processes information comprehensively—that is, by gathering 

fairly complete information before proceeding. At the opposite 

end of the information processing spectrum of values is the 

Tim persona, who is more likely to process information

selectively and act upon the first promising information they 

find, then backtrack if needed [24].

To conduct a GenderMag session, a software team “chan-

nels” one of these personas, chooses a use-case (a task for 

the persona to try to accomplish), and walks through that 

use-case (task) using a specialized version of the cognitive 

Walkthrough (CW) family [25]. In this process, the team 

answers one question for each subgoal and two questions for 

each action that the software team is hoping a user will take 

to accomplish the task. The “action” questions are answered 

before and after performing the action. The questions are:

Background Knowledge and Skills

Abi tends towards a comprehensive information 
processing style when they need to get more information. 
So, instead of acting upon the first option that seems 
promising, Abi gathers information comprehensively to 
try to form a complete understanding of the problem 
before trying to solve it.

ie contributor to OSS 
I Cardiff, Wales

Abi has always liked music. On their way to work in 
the mornings, Abi listens to music that spans a wide 
variety of styles. But when Abi arrives at work, they 
turn it off, and begin their day by scanning all their 
emails first to get an overall picturebefore answering 
any of them. (This extra pass takes time but seems 
worth it.) Some nights Abi exercises or stretches, an< 
sometimes Abi likes to play computer puzzle games 
like Sudoku.

Information Processing Style

Fig. 1. The Abi persona, with their information processing style facet value 

enlarged for readability. (See supplemental materials at [26] for the full 

version.)

♦ Subgoal Question (S-Q): Will <persona> have 

formed this subgoal as a step to their overall goal? 

(Yes/No/Maybe, why, what facets did you use)

♦ Action Question#1 (A-Q#1): Will <persona> know to 

take the action? (Yes/No/Maybe, why, what facets did 

you use)

♦ Action Question#2 (A-Q#2): If <persona> takes the 

action, will they know they did the right thing and are 

making progress toward their goal? (Yes/No/Maybe, why, 

what facets did you use)

If the team answers as No/Maybe to any of these questions 

and attributes it to one of the <persona>’s facet, then (and 

only then) it is considered an inclusivity bug. AID automates 

the process described above for Abi’s information processing 

facet value.

III. Fo r m a t i v e  St u d y

To understand (1) the state of inclusivity evaluations in oSS 

and (2) the challenges behind incorporating such evaluations 

in the development process, we conducted a formative inves-

tigation in the form of a survey.

A. Survey Methodology
We recruited oSS developers as survey participants as 

our goals were to learn about inclusivity evaluation practices 

and needs inside oSS. We aimed to get the perspective of 

experienced oSS developers since in this version of AID we 

are using GitHub-based project pages as our test subjects.
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TABLE II
In c l u s iv i t y  p r a c t ic e  s u r v e y  d a t a  g r o u p e d  b y  d e m o g r a p h ic s .

Yes 23% No 77%
(61 of 266) (205 of 266)

1-49 (102 respondents) 18% 82%
50-999 (65 respondents) 25% 75%
1,000-5,000 (34 respondents) 21% 79%
>5,000 (65 respondents) 31% 69%
<3 months (7 respondents) 43% 57%
3-6 months (5 respondents) 0% 100%
7 mo.-1 yr. (4 respondents) 0% 100%
>1 year (250 respondents) 23% 77%

Participation Paid (221 respondents) 24% 76%
Type Unpaid (45 respondents) 20% 80%

When recruiting participants we used the number of follow
ers as a filtering criterion since experienced OSS developers 
are more likely than newcomers to accrue followers. For 
example, Blincoe et al. found that popular GitHub OSS’ers 
influence their followers and attract them to new projects [27].

We used the number of followers as a filter criterion because 
experienced OSS developers are more likely than newcomers 
to accrue followers. For example, Blincoe et al. found that 
popular GitHub OSS’ers influence their followers and attract 
them to new projects [27].

In order to do that, we used the GitHub search tool to 
retrieve 5,000 usernames that are among the top-followed 
GitHub OSS’ers. To get the contacts of this list 5,000 user
names, we modified a tool called Zen [28], which obtained 
email addresses for 3,124 of these usernames. We sent the 
survey to these 3,124 experienced OSS developers.

The survey had a total of eight questions, comprising 
Yes/No, multiple choice, and open-ended questions. In addi
tion to collecting demographic information, the survey used 
branching logic when asking about existing inclusivity eval
uation practices. I f  the participant indicated that their de
velopment practices include doing some form of inclusivity 
evaluation, we asked more about these; otherwise we asked 
what challenges prevent them from doing so. In pilot runs, 
the survey took about five minutes to complete.

We emailed this survey to 3,124 developers. 253 of the 
emails bounced or were unreachable, which resulted in 2,871 
recipients. At the end of the two weeks during which the 
survey remained open, we received 394 responses, or a re
sponse rate of 13.7% (394/2,871). This response rate com
pares favorably to the 7.9% survey response rate found in 
a previous software engineering study [29]. We removed the 
survey responses that had partial answers, leaving us with 266 
responses. The survey questions and the tool used to retrieve 
the developers’ email addresses are provided at [26].

B. Survey Results

Over three-fourths (77%) of the survey respondents reported 
that they do not incorporate inclusivity practices into their soft
ware development processes. As Table I l ’s rightmost column 
shows, the majority of every demographic group reported not 
using inclusivity practices.

When those who responded “No” were asked why, they 
responded as summarized in Figure 2. Almost half the reasons

related to lack of awareness/interest. Specifically, about 30% 
of the reasons were a lack of awareness of such practices or 
of the importance of doing so, another 12% reported lack of 
support from management, and 13% (“other, please specify” ) 
explained that such practices were up to individual developers, 
or that they were unnecessary, unimportant, or even harmful:

P84: “ Inclusivity happens on an ad-hoc basis and depends on 
the individual engineer...”

P123: “Everyone I  work with uses internet handles. I  have no 
clue i f  ‘LadyOTheLake’, is a guy, gal, minority, straight, gay,
... We just code and make good stuff.”
P145: “ Open source communities have never prioritized inclu
sivity.”

The above reasons are perhaps unsurprising, given that the 
concept of finding/fixing inclusivity bugs within technology 
itself, beyond accessibility (e.g., providing alt text), is a 
relatively recent one in software engineering. For example, 
to the best of our knowledge, the first paper in the software 
engineering community to even mention the concept of soft
ware’s inclusivity bugs was only a decade ago (2010) [30], 
and the first software engineering presentation of a systematic 
process for software developers to find such bugs wasn’t until 
2016 [31].

Reasons like the above are, at best, only indirectly ad
dressable by creating a new tool. However, the remaining 
46% of the reasons survey participants gave—lack of specific 
guidelines (26%), the costs of inclusivity evaluation (12%), 
and lack of tools (8%)—are all potential fodder for software 
engineering tools.

In fact, even the 23% of respondents who did report using 
inclusivity practices in their development processes did not 
have much in the way of concrete techniques in their existing 
inclusivity efforts. Only 28 of these Yes-respondents (less than 
one-third of the Yes’s) reported using a technique of any sort.

Of these 28 Yes-respondents, nine use mainly ad-hoc in- 
clusivity techniques (Figure 2, bottom four bars), such as 
inspecting their work for stereotyping language or character 
depictions; relying on user feedback or user study results; or 
following general codes of conduct. Another nine relied on 
internal/custom tools (Figure 2, second bar from the top).

only four public inclusivity techniques were reported by 
any respondents: GenderMag with/without the GenderMag 
Recorder’s Assistant (10 respondents), public guidelines for 
inclusive language in code [32] (one respondent), public 
guidelines for inclusive documentation [33] (one respondent), 
and public guidelines for ethical collection of training data [34] 
(one respondent). GenderMag was the only inclusivity tech
nique used by multiple respondents.

The above 28 respondents—the only respondents who re
ported using any specific techniques, tools, or guidelines— 
are only 8% of the total respondents. The other Yes’s instead 
described a lack of tools and/or guidelines in their inclusivity 
efforts:

P299: “ We don’t use specific techniques...”
P130: “Lack of knowledge and tools makes developers reinvent
ing the wheels all the time.”
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P60: “ ...there are no such guidelines or tools . . . I  hope that just 
as we have guidelines fo r code quality we [could] also have 
inclusivity principles...”

GenderMag 

Internal/ custom 

Inspection 

Codes of conduct 

User feedback 

User studies

No-respondents Yes-respondents

Fig. 2. (Left): No-respondents’ reasons/challenges for not using inclusivity, 
as a percentage of all challenges. (Note: Data shown totals 101%, due to 
rounding of each individual bar.) (Right): Yes-respondents’ uses of different 
inclusivity techniques.

IV. AID

Even the few survey respondents who reported using a 
concrete technique had only a little ammunition to address 
three of the tool-relevant challenges alluded to above: costs, 
lack of tools, and lack of concrete guidelines. Regarding 
costs, GenderMag was the only publicly available method 
used, and it is costly, requiring teams of multiple software 
professionals to work together in sessions that can last two or 
more hours [20]. Regarding tools, other than a few mentions 
of internal tools, no respondent reported tool usage other 
than the Recorder’ s Assistant, which is simply a note-taking 
organizational aid. Regarding guidelines, a few respondents 
pointed to concrete guidelines, but none went beyond language 
use and stereotyping issues. Together, these three categories 
accounted for 46% of the challenges reported by survey 
participants who do not use any form of inclusivity evaluation 
(Figure 2), and were also pointed out by some participants 
who do use some kind of inclusivity evaluation.

To overcome these challenges, we created AID, a tool 
whose ultimate goal is to automatically detect non-overt gen
der inclusivity bugs like those described in Section I. In this 
paper we report on our first step—automating a vertical slice 
of GenderMag inclusivity evaluations—toward this ultimate 
goal.

u c Subgoal S-Q Why UI Action A-Q#1 Why A-Q#2 Why

Find info 
about...

Yes - UI8 Read
Readme, md

Yes - No ...[no] ¡nfo...aboL 
issues or filino n

UI11 Click on 
"communitv

No ...no
mention

No ... thinks that it t( 
back to the same

CD
=3

UI4 Click on 
"How to file

Yes - No ...does not really 
mention how to 1

! File the 
issue

No ...[not]
enouah info...

UI5 Click on 
"oDen issue"

Yes - Yes -

CO U113 Click on 
"new issue"

Yes Yes -

i l i im» Voo _ Vac _

Fig. 3. A  snapshot of a spreadsheet with inputs and outputs from a manual 
GenderMag session (information processing facet only). AID uses the Subgoal 
and Action columns as input and produces similar outputs as the manual 
GenderMag session. Orange backgrounds: Use-case and Subgoal inputs; 
white backgrounds: Action inputs; blue backgrounds: GenderMag evaluation 
outputs.

Fig. 4. Overview of A ID ’s architecture

one choice that defined our vertical slice was the type of 
software we scoped our tool to. We scoped our tool to use 
OSS platforms, which is an important genre for inclusivity 
bug detection because (1) these platforms are the sole mecha
nism through which oSS community members can interact, 
and (2) oSS tools and technology have pervasive gender- 
inclusivity bugs [15], [21]. Another choice in defining our 
vertical slice was the persona. We chose GenderMag’s Abi 
persona as per the “Abi first” practice, commonly used because 
Abi has historically provided the most powerful lens for 
revealing inclusivity bugs [20]. The third choice was the facet. 
We decided on the information processing style facet, because 
OSS projects are information-rich environments.

For this vertical slice, AID takes as inputs the use-cases, 
subgoals, and actions for a GenderMag session as well as the 
URLs of the project’s GitHub pages (Figure 3). Using these 
inputs, AID evaluates the project’s GitHub pages against its 
model and produces an inclusivity bug report similar to the 
blue region of Figure 3.

A. Deriving the model

The question of how to automate GenderMag presents a 
number of challenges. First, there are an infinite number of 
platforms and UIs that could be evaluated, each of which have 
an infinite number of use-cases. Second, as a member of the 
CW family, GenderMag involves simulating (other) humans, 
a task that some people find difficult to accomplish [35]. The 
few researchers who have automated CWs for limited purposes 
(e.g., [36]) have done so under the assumption that users 
are homogeneous, and have not attempted to take into ac
count the range in people’s cognitive styles. Finally, extensive 
GenderMag session data does not yet exist, which prevents 
some kinds of approaches from being viable. For example, 
a machine-learning approach would require training a model 
using data from millions of GenderMag sessions, including 
the context associated with each (platform, UI elements, etc.)

Since AID is the first investigation into whether an in- 
clusivity bug detector is even possible, the tool’s feature- 
completeness was not a critical consideration. Thus, we coun
teracted the first and second challenges via the vertical slice 
already discussed. To address the third challenge, we turned 
to a decision-rule approach.

An advantage of decision rules is that beyond statistical 
patterns, they can also harness relevant theories, such as 
those in GenderMag’s foundational core (e.g., self-efficacy 
theory [37], information processing theory [24], etc.) Thus, 
they do not require nearly as much empirical data.
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That said, we still needed some empirical data to ground 
our decision rules in oSS-relevant data—the inclusivity bugs 
in real oSS projects and why they occur (recall Figure 3). 
Toward that end, we obtained GenderMag session data from 
two active OSS teams (Projects F and J) that have already used 
GenderMag to improve their projects’ inclusivity. Project F is 
a GitHub-based platform to help newcomers become familiar 
with OSS; it has 21 contributors and 2.5 million lines of 
code. Project J is a GitHub-based data science project with 
295 contributors and 1.3 million lines of code. The project 
teams shared their GenderMag session materials, which in
cluded their use-cases, customized GenderMag personas, and 
evaluation outputs (recall Figure 3). Together these teams’ 
data identified 19 inclusivity bugs related to Abi’s information 
processing style.

To supplement the data obtained from the external projects, 
we sought out additional GitHub-based OSS projects to con
duct additional GenderMag evaluations.

We turned to the classification by Fronchetti et al., which 
classified 450 OSS GitHub-based projects into three groups 
based on the average growth of newcomers: (1) Logarithmic 
growth (71 projects); (2) linear growth (322 projects); and 
(3) Exponential growth (57 projects) [38]. We randomly se
lected six projects from each group, resulting in 18 projects 
of varying maturity, size and domain (Table III).

We then manually conducted GenderMag sessions on them 
to produce data about the inclusivity bugs within these projects 
pertaining to the information processing style facet. In order 
to remain consistent with sessions from Projects F & J, we 
used the same Abi persona (which was customized to be a 
newcomer) and use-cases that they had used (Table IV). These 
sessions covered 255 actions and produced answers to a total 
of 510 questions—two questions per action (Section II). (The 
sessions also produced answers to 126 subgoal questions, but 
since none referred to information processing style, we did not 
include them in the analysis.) The answers to these questions 
revealed 257 inclusivity bugs— steps in the use-cases where 
OSS’ers with Abi’s comprehensive information processing 
style would be disadvantaged. These 257 inclusivity bugs plus 
the 19 inclusivity bugs from the Projects F & J, a total of 276 
inclusivity bugs, comprised the dataset from which we derived 
the model’s decision rules.

B. Reliability Safeguards

We used multiple strategies to safeguard the reliability of 
the GenderMag session outputs (see Figure 3) used to infer 
our decision rules and the empirical results from AID.

1) Inter-Rater Reliability of GenderMag Session Outputs: 
The first safeguard was inter-rater reliability, to ensure con
sistency of the GenderMag session outputs we conducted on 
the 18 projects. Two pairs of researchers had each conducted 
GenderMag sessions. To measure consistency of their Gen- 
derMag session outputs, we drew upon inter-rater reliability 
calculations often used with qualitative analysis [39]. Specif
ically, each team independently ran GenderMag sessions on 
20% of the use-cases. They then compared their outputs using

the Jaccard index [40] to calculate a consensus, which resulted 
in 83% agreement. Given this level of team consensus [40], 
the two teams divided the remaining projects.

2) Validation against OSS Teams’ GenderMag Session Out
puts: The above is a measure of consistency between the two 
teams of researchers. To measure consistency with real OSS 
teams’ GenderMag outputs, we validated our research teams’ 
outputs against those from Projects F & J. Recall that Teams F 
& J conducted the GenderMag sessions themselves on their 
own projects.

We grouped the 19 inclusivity bugs from Projects F & J 
into 9 categories for cross validation purposes (Table VIII, 
which will be discussed further in Section V) through three 
rounds of negotiated agreement [41] among four researchers. 
Validating the GenderMag sessions we conducted against 
those of Projects F & J, 69% of the inclusivity bugs from the 
sessions we conducted matched the inclusivity bug categories 
of Projects F & J. Validating in the other direction, 79% of 
the inclusivity bugs from Projects F & J’s GenderMag sessions 
matched the inclusivity bugs in the sessions we conducted.

3) Cross-validation of Tool Results: Finally, we cross- 
validated each individual inclusivity bug that A ID  identified 
for all 20 projects against the inclusivity bugs manually iden
tified in GenderMag sessions on all 20 projects. The results 
of this cross-validation are in Section V.

C. Model: Decision rules

To create the decision rules driving AID, the first and 
second authors analyzed the GenderMag data from the 20 
projects (F & J + 18 GenderMag’ed by the research team). 
They analyzed each inclusivity bug and the “whys” behind it, 
as well as the UI. Through inductive reasoning they abstracted 
the “whys” into a set of 11 decision rules. Then through 
three rounds of negotiated agreement they refined and merged 
similar rules to create the final set of five distinct rules, which 
form the foundation of AID.

AID  attempts to emulate a “real” GenderMag session by 
taking as input a spreadsheet that lists the data that humans 
would use when performing a GenderMag session. The first 
three columns are the use-case, subgoal, and action inputs, and 
the fourth column is the webpage URL for that step in the 
CW. (Section II details a GenderMag session process.) Figure 
4 displays the overview of AID’s architecture and Figure 3 
shows an example of an input sent to A ID  for the use-case 
“File an issue” .

From this input, AID extracts the sentence structure from 
the text in the subgoal and action. It does so through a com
bination of Natural Language Processing (NLP) techniques, 
such as lexical analysis [42], part-of-speech tagging [43] and 
dependency parsing [44]. Overall, AID uses Python 3.7.4 and 
associated libraries (spaCy, BeautifulSoup, gensim, xlrd) to 
implement the decision rules. The code is available at [26].

The implementation details of each rule are discussed next.
1) Cues to needed information: The first rule in our set 

checks for situations where OSS’ers like Abi would not find 
all the information they need to complete their task. For
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TABLE III
Ch a r a c t e r is t ic s  o f  t h e  18 p r o j e c t s  t h a t  r e s e a r c h e r s  e v a l u a t e d  u s in g  Ge n d e r M a g

Name Program ming Language L O C # Contributors Age Dom ain
imathis/octopress Ruby 3,734 118 11 application software
chaplinjs/chaplin CoffeeScript 13,390 82 8 web libraries and frameworks
antirez/disque C 68,192 54 5 non-web libraries and frameworks
sahat/satellizer TypeScript 101,984 129 6 web libraries and frameworks
winjs/winjs JavaScipt 252,912 40 6 web libraries and frameworks
ionic-team/ionic-framework TypeScript 193,047 385 7 non-web libraries and frameworks
scalaz/scalaz Scala 47,027 184 10 non-web libraries and frameworks

Exponential donnemartin/system-design-primer Python 10,382 103 3 web libraries and frameworks
Growth synrc/n2o Erlang 5,199 60 7 system software

tmux/tmux C 58,833 5 5 application software
sbt/sbt Scala 78,067 229 11 software tools
ubernetes/kubernetes Go 4,199,364 2,781 6 software tools
rails/rails Ruby 347,581 4,253 5 software tools

Linear symfony/symfony PHP 803,528 2,153 10 web libraries and frameworks
Growth definitelytyped/definitelytyped TypeScript 2,586,278 11,763 8 documentation

alpaca-lang/alpaca Erlang 13,513 16 4 software tools
libuv/libuv C 72,501 395 7 system software

TABLE IV
U s e -c a s e s  u s e d  f o r  Ge n d e r M a g  e v a l u a t io n s

# Use-case
UC1: Use-case 1 Find an issue to work on
UC2: Use-case 2 File an issue
UC3: Use-case 3 Make a documentation contribution

Fig. 5. A ID ’s approach for capturing inclusivity bugs (Rule 1)

example, the wording of the subgoal serves as the information 
that Abi seeks, and the words from actions serve as cues to 
direct Abi to a UI action. Without such cues, Abi would face 
difficulty finding all the information they need. For example, 
for Project4, UC1 (Find an issue to work on), S1 (Find 
the issue list)’s Action!, the human team reported, Project4- 
UC1S1A1: "There’s nothing about the ‘issue list’. ‘Issue’ is 
mentioned in one of the sections but in a different context” . 
Rule 1 captures this using the model shown in Figure 5.

Rule 1: Keywords from subgoals and associated actions 
should be present on the webpage.

To check if  the webpage includes the words from a subgoal 
and action sequence, A ID  extracts lexical features, including 
the Part-of-Speech (POS) tag of each word using spaCy [45].

It then adds the nouns and adjectives from the POS to a 
list of "keywords” that it searches for in the webpage. For 
example, in the third row of Table V, Abi’s subgoal (S2) is to 
"File a new bug report issue” and the associated action (A1) 
is: "Click on the tracker link” . AID parses these sentences to 
add ["new” , "bug” , "report” , "issue” ] and ["tracker” , "link” ] 
to the list of keywords.

The tool does not include verbs (e.g., "click” ), since these 
are usually commands to a human, not labels or content- 
oriented keywords. We also exclude DOM words (e.g., link, 
header, footer, etc.) and words like "information” and "data” 
from the list of keywords because these words can have overly 
broad interpretations.

The next step is to look for these keywords in the webpage. 
Our initial approach performed a simple string search. How
ever, this resulted in keyword matches that were on parts of 
the webpage that were irrelevant for the specific subgoal.

Thus, to detect relevant information to the specific subgoal 
and action under evaluation, we retrieve all the sentences on 
the webpage that contain any of the keywords. Then we use 
dependency parsing [44] to extract the relationship between 
the words in each sentence as shown in Figure 6. The term 
subtree refers to smaller syntactic units within these sentences.

AID then navigates the dependency parse tree (as shown in 
Figure 6) by extracting the subtree of each of the keywords in 
them. I f  one keyword is found in another keyword’s subtree, it 
shows a syntactic relationship between them and is considered 
relevant to the subgoal or action.

For example, Figure 6 shows the tree structure from a sen
tence in the webpage of Project-6: "Before submitting a pull 
request, we ask that you please create an issue that explains 
the bug or feature request” . This results in a dependency parse 
tree with "ask” as the root. We check the subtree of "issue” 
and see that "bug” (another keyword) is in the list of elements 
of the tree. Therefore, AID determines that this sentence is 
indeed about issues that are bugs and does not report an 
inclusivity bug when evaluating the action (A1) for subgoal 
(S2) in Table V.
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TABLE V
Ex a m p l e  o f  I n p u t  t o  A ID

Use-Case Subgoal Action URL
UC2: File an issue S1: Find information about filing an issue A1-Q#1: Click on reporting a bug symfony.com/doc/current/contributing/code/index.html
UC2: File an issue S1: Find information about filing an issue A1-Q#2: Click on reporting a bug symfony.com/doc/current/contributing/code/bugs.html
UC2: File an issue S2: File a new bug report issue A1-Q#1: Click on the tracker link symfony.com/doc/current/contributing/code/bugs.html
UC2: File an issue S2: File a new bug report issue A1-Q#2: Click on the tracker link github.com/symfony/symfony/issues

Fig. 6. The dependency parse tree for the sentence "Before submitting a 
pull request, we ask that you please create an issue that explains the bug or 
feature request.”  The dashed blue border encompasses all the elements in the 
subtree of the keyword "issue” . The keywords "issue” and "bug” are bordered 
in green.

2) Situating Abi in the context of the action performed: 
On clicking a link, the destination page should offer cues to 
help Abi’s understand that they have reached the right place. 
I f  a project page fails to use words similar to what a link label 
hinted at, OSS’ers like Abi could get confused. For example, 
when the team clicked on a link labeled "How to file an issue” 
but didn’t find relevant information on the resulting page, their 
inclusivity bug report said: Project1-UC2S1A3: "The link takes 
to a page that does not really mention how to file issues which 
is what the link said. Abi might not think that this is where 
she wanted to go.”

This team’s observation echoes others’ recommendations 
that words in a link’s label should be prominent on the link’s 
destination page [46], leading to our second rule:

Rule 2: Linked pages should contain keywords from link
labels.

AID  checks for Rule 2 for linked pages and thus, the pages 
that are an input to Action Question #2 (e.g., .../issues in 
S2:A1-Q#2 in Table V). But since it evaluates each page 
independently (it is agnostic of past CW steps) it needs to 
identify the link in the previous step that brought the OSS’er 
to this page. Therefore, it analyzes the webpage that was an 
input to the previous CW step (S2A1-Q#1, .../bugs.html). It 
also parses the text of S2A1-Q#1 and using the same parsing 
technique explained above extracts the nouns to create a list 
of keywords ("tracker” is the only noun in our example). 
Next it extracts all the link labels in this page (S2A1-Q#1, 
.../bugs.html) that match the nouns ("tracker” ). Note: this a 
step to remove nouns from (sometimes wordy) action text 
that do not match the link label. AID then searches for the

Fig. 7. AID ’s approach for capturing inclusivity bugs (Rule 2)

Fig. 8. AID’ s approach for capturing inclusivity bugs (Rule 3)

keywords in the linked page (i.e., S2A1-Q#2, .../issues). I f  
it cannot find that keyword anywhere in the page it reports 
an inclusivity bug. Figure 7 details the steps in which AID 
captures inclusivity bugs arising due to a Rule 2 violation.

3) Information link navigation: OSS’ers like Abi click on 
a link only after gathering enough information and planning 
their next step. Labeled links provide Abi with information 
about the webpage they are supposed to visit. As a team 
reported for Project15-UC1S1A1: "It [link] doesn’t talk about 
issue lists and there are a lot of links which don’ t say where 
they lead to.” The team felt that Abi would not know which 
link to navigate to since all the links in the page had non
descriptive labels.

Other work agrees, recommending that links should have 
descriptive yet unique link labels and begin with keywords 
[47]. Rule 3 captures this tenet.

Rule 3: Links should be labeled with a keyword or phrase. j
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AID checks i f  links on the page it is evaluating are labeled 
with a keyword or phrase. To extract the link labels, we wrote 
a custom web scraper using BeautifulSoup [48]. AID then 
checks the link labels and reports a bug i f  the URL of the link 
is the same as its label, as shown in Figure 8.

4) Cues about “ issue” characteristics: Our fourth and fifth 
rules focused on issues in GitHub. Past research has reported 
that finding a task to work on is especially difficult for some 
OSS’ers, such as newcomers [49] and mentors [50]. To address 
this problem, GitHub recommends using issue labels and 
provides a set of default labels (e.g., "bugs” , "documentation” , 
"good first issue” ). Figure 10 shows examples of issue labels.

When OSS’ers like Abi come to the issue page they look for 
cues from the issue labels to gather information about the task 
(e.g., the type of task, which part of the codebase are related 
to the issue, what skills are needed). When issues are not 
labeled they can get discouraged. As pointed out for Project7- 
UC1S3A1: "Neither issue seems to be...very clearly labeled. 
So because of her info processing style, Abi might not be able 
to gather enough information about the issues listed and give 
up” . This leads to our fourth rule (see Figure 9).

[ Rule 4: Issues should have labels.

AID checks for labels on open issues and reports a bug if  the 
issues are unlabeled. It checks for labels for the first 25 open 
issues1, which it extracts using the GitHub API.

However, simply having labeled issues might not be suffi
cient. The Cognitive Walkthrough at the core of GenderMag is 
about learnability to a first-time user—i.e., an OSS newcomer 
in this domain. Thus, the humans’ GenderMag sessions re
ported issues relating to newcomers, such as:

Project6-UC1S3A1: “ The issues are well labeled, but there is 
no sign as to what would be a good one fo r a first timer like 
Abi, she might feel unsure and not choose one.”

Rule 5: Issues should have newcomer-friendly labels 
(when appropriate).

Rule-5 evaluates the issue label text to check if  
it is newcomer-friendly by string-matching against the 
list of newcomer-friendly labels in "MunGell/awesome-for- 
beginners” GitHub repository [51]. This list is curated from 
187 projects in 22 programming languages.

We implemented this set of decision rules with some 
trepidation. They are text-processing rules done statically, and 
derived from GenderMag sessions of a relatively small set of 
projects. Would such rules be able to find the same kinds of 
inclusivity bugs in arbitrary OSS pages that humans bring to 
GenderMag sessions by stepping into the shoes of a persona?

V. A ID ’ S Ef f e c t i v e n e s s

We ran AID on the 20 projects described above which 
produced 353 inclusivity bugs. Compared with the inclusivity 
bugs identified by the humans who had conducted GenderMag 
sessions manually on the same projects and use-cases, A ID ’s

1GitHub shows 25 issues per page and an OSS’er newcomer like Abi is 
unlikely to look further i f  she doesn’t see any cues for her task.

Fig. 9. A ID ’s approach for capturing inclusivity bugs (Rule 4 & 5)

Fig. 10. Example of an inclusivity bug due to Rule 5 violation : Issue labels 
are not newcomer-friendly

precision was 0.69, recall was 0.92, and F-measure was 0.79. 
Table VI details precision, recall, and F-measures.

A. Precision: A closer look at false positives

AID disagreed with the human evaluators in 110 of the 
353 inclusivity bugs it reported. Since false positives play a 
critical role in developers’ dissatisfaction with current tools 
[52], A ID ’s precision, a measure of false positive rate, could 
be critical to its acceptance. In this section, we consider which 
of these 110 "extra” inclusivity bugs—i.e., those the tool found 
but the humans did not—really were false positives, and why.

AID indeed produced false positives for three reasons: 
(1) its use of static analysis instead of dynamic analysis, (2) its 
reliance solely on the HTML of the webpage, and (3) its 
semantic limitations. There were 49 of these false positives 
(45% of the total extra inclusivity bugs).

TABLE VI
A ID ’ S Pr e c is io n , Re c a l l  a n d  F-m e a s u r e , w i t h  h u m a n  

Ge n d e r M a g  s e s s io n s  a s  t h e  g o l d  s t a n d a r d  (Se c t io n  IV-B).

Precision Recall F-measure
Rule 1 0.64 0.89 0.74
Rule 2 0.75 1.00 0.86
Rule 3 0.70 1.00 0.83
Rule 4 0.74 1.00 0.85
Rule 5 0.53 1.00 0.69
Overall 0.69 0.92 0.79
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TABLE V II
61 INCLUSIVITY BUGS WHERE A ID  WAS CORRECT AND THE HUMAN 

TEAMS WERE INCORRECT.

C a te g o ry  o f  E v id e n ce # E x a m p le

Internal (Team activities):
N o information about contributions on the READ M E file.

Team mentioned the bug later 27 A ID  reported this bug earlier than a team did, 
but the team found the bug in  the next step.

Team didn’ t mention the bug, 
but they fixed i t  later

Team mentioned the bug earlier

3

20

Unlabelled issues on an issue list. Team didn’ t report it, 
but we could see from  the post-fix project version 
they had fixed it.
Tool reported a bug every time i t  found it, but teams did

but not here not bother to repeat.

External (Nielsen’s) 11
Unlabelled web lin k  was not in  the direct path a team was 
evaluating.

Static Analysis: Analyzing an action like “Make a change 
to the Readme.md” requires (human) input during the session’s 
walkthrough, and that human input affects what gets displayed 
next during the walkthrough. Because AID uses solely static 
analysis of the webpage HTML, it cannot take user inputs 
like the above into account, which can generate false positives. 
Addressing this type of false positive would require some way 
of gathering user input data, either "on the spot” or from 
a corpus of user inputs to this question. There were three 
instances of this type of false positives.

Reliance on text content/labels: AID does not currently 
do image analysis. For example, for the action "click on 
pencil icon” on the Readme page, AID looks for keywords 
"pencil”  and "icon” . I f  the image filename for the pencil 
icon is something like word "pencil”  or "icon” (e.g., <IMG 
src="Icons/pencil.png” >), AID would realize that it relates 
to the action; otherwise it does not. In contrast, the human 
evaluators easily recognized the icon from its appearance on 
their screen. Addressing this type of false positive would 
require adding some form of image processing. There were 
15 false positives of this type.

English semantics: AID does not currently address un
derlying semantics of English language usage. For example, 
"Find something to work on” would translate to "find an issue 
to work on” for many OSS’ers, but the tool does not know this. 
Some of A ID ’s semantic limitations could be improved though 
the use of synonym dictionaries or methods for detecting 
term similarity like Latent-Semantic Indexing or TF-IDF [53], 
[54]; others would require semantic analyses accounting for 
antecedents, referents, and/or context [55]. There were 31 false 
positives from the tool’s semantic limitations.

AID was actually right. The remaining 61 of the 110 
"extra” inclusivity bugs were not false positives. Rather, the 
tool was correct in the three categories: (1) evaluator false 
negatives, (2) repetitions of the same inclusivity bug, and 
(3) the tool going "beyond the call of duty” to find things it 
didn’t need to find. Table V II summarizes them. We identified 
the instances where AID was correct in the following manner. 
First, we looked at every bug AID found that the GenderMag 
teams did not. When evidence existed that AID was "right” , 
we associated the evidence with the instances of those bugs, 
as discussed next.

As Mahotody et al.’s survey of Cognitive Walkthroughs 
shows, although humans performing methods in the CW- 
family report few false positives (10% or below across numer

ous studies), their propensity for false negatives has run as high 
as 70% false negative rates [25], in which the humans simply 
miss seeing some of the problems. Likewise with GenderMag, 
although humans’ false positive rates are well below 10% [3], 
[7], human GenderMag users tend to miss some inclusivity 
bugs. The human evaluators in this investigation were also 
subject to this phenomenon. In 27 instances (see Table VII, 
Row2), the tool flagged a bug that the team missed, but the 
team mentioned the bug later in subsequent steps of their 
GenderMag sessions.

In another three inclusivity bugs that AID found, the 
Project-F team didn’t mention the bug, but they fixed it later 
as part of their overall changes (see Table VII, Row3). This 
suggests that the Project-F team eventually realized that it was 
problematic. From this we conclude that tool was right in 
identifying these three bugs. Thus, the total of human-tool 
team differences due to humans’ false negatives was 30.

There were 20 instances where AID identified bugs that 
humans did not report because of repetitions. AID does not 
realize when it reports the same bug more than once, such as 
i f  the same bug arises in more than one step of a use-case. In 
contrast, humans do realize it, and sometimes do not bother to 
report the same inclusivity bug i f  it occurs a second time. In 20 
such cases, the team mentioned the bug earlier, but not here 
(see Table VII, Row4). These repetitions can be potentially 
annoying, but they are not false positives.

Finally, sometimes AID reported inclusivity bugs that were 
unlabeled links in locations not directly in the direct path 
of the use-case (see Table VII, Row5). There would have 
been no reason for the human teams to find these inclusivity 
bugs if  they strictly followed the use-cases. Still, that does 
not mean that such bugs were false positives. We argue they 
were true positives: that unlabeled links can be inclusivity 
bugs for comprehensive information processors like Abi, who 
want to find all the relevant information. Without a clear label, 
Abi’s would be unable to predict whether information might 
lie behind the link. This may be why the Nielsen/Norman 
group emphasizes the need for links to use descriptive anchor 
text that uses keywords to facilitate information processing 
[47]. The tool’s "beyond the call of duty” to relax the strict 
boundaries of the use-case sequence resulted in 11 of these 
inclusivity bugs that the human teams did not find.

B. Recall: A closer look at false negatives

A ID ’s recall rate was extremely high, with a total recall of 
0.92. In Rules 2-5, A ID ’s recall was a perfect 1.0, perhaps 
because these rules implement straightforward string compar
isons. The tool noticed all instances of rules like these, so 
whenever the humans noticed it, AID would too.

The tool’s recall gaps all came from Rule 1, which produced 
20 false negatives. A ll of these came from the tool’s treatment 
of subgoals’ and actions’ use of verbs. We decided that, when 
a word was being used as a verb (e.g., "click” in "click on 
reporting a bug” in UC2S1A1, Table V) the tool would not 
treat them as keywords to be searched for in the webpage.
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TABLE V III
Tr ia n g u l a t i o n  o f  b u g s  f o u n d  b y  Te a m s  F &  J, t h e  18 

Ge n d e r M a g s  w e  c o n d u c t e d , a n d  A ID . Ov e r  70% o f  t h e

HUMAN-REPORTED BUGS HUMAN FELL INTO F &  J’S ORIGINAL 9
c a t e g o r ie s . A ID  FOUND 74% OF t h e  b u g s  t h e  h u m a n s  f o u n d .

Inclusivity Bugs F j 18 Projects A ID
N o t enough in fo rm a tio n : page / 38 32

R E A D M E : U nc lear path  to  the 

readme
/ / 17 17

R E A D M E : no in fo  about subgoal / 39 33

Lacks understanding o f  OSS terms: 

can’ t  m atch  to  subgoal
/ / 5 5

Tem plate: P u ll request: 

n o t enough instructions
/ / 1

Tem plate: F ilin g  an issue: n o t enough 

instructions
/ / 23 2

N o t enough in fo rm a tio n : to  choose 

options
/ / / 12 11

N o t enough in fo rm a tio n : to  take 

action
/ / / / 17 15

ISSU ES in  issue lis t: n o t enough 

in fo rm a tio n  fo r  users to  p ic k  a task
/ / 26 17

O ther 79 70

Total 12 7 257 203

However, in the subgoal (S1): "Find information about how 
to file an issue” , the verb "file” describes the process of 
reporting an issue. Thus, although the tool did not consider 
the word "file” to be worth looking for here, the human teams 
in their sessions did look for information about the process of 
filing an issue on the project page: Project3-UC2S1A1"...there 
is nothing that says [about] file a new issue so Abi might feel 
some uncertainty with her action.”  This issue accounted for 
all 20 of A ID ’s false negatives.

C. Results Triangulation

Table V III shows the inclusivity bugs reported by all sources 
in the categories of bugs the humans found, triangulated 
among Project F, Project J, the 18 sessions we conducted, and 
AID. Each bug category occupies a row of the table. (The table 
does not include the bugs that AID found that the humans did 
not.) A ID ’s low performance on Template bugs was due to its 
static-only analysis, as discussed earlier. Every category of bug 
was cross-validated by at least three of these four sources and, 
as the table shows, AID found 74% (203/(12+7+257)) of the 
bugs the humans reported.

VI. Th r e a t s  t o  Va l i d i t y

This section presents the different threats to validity and 
how we mitigated them.

First, two teams of researchers manually identified the 
inclusivity bugs using the GenderMag method, so subjectivity 
of the data can be considered a threat to validity. To minimize 
this threat, we calculated the inter-rater reliability among the 
two teams and also validated our data against inclusivity bugs 
found by two external OSS teams (F & J) using GenderMag.

The second threat to validity of our tool lies in the 110 
disagreements between A ID ’s findings and human evaluators’ 
findings. In order to mitigate that, we further analyzed these 
disagreements to understand their origin. We found different 
types of disagreements, some were linked to the limited scope 
of our tool (when the tool was wrong), others (where the tool

was more comprehensive than a human evaluator) originated 
from humans not capturing all possible inclusivity issues.

The final threat is the generalizability of AID in its current 
scope. AID can be applied to any OSS project in GitHub 
(28 million public repos) and other hosting sites (Gitlab, 
bitbucket). As a first step, AID focused on OSS Projects 
hosted on GitHub, thus, the applicability of our tool might not 
generalize to other version control platforms or other non-OSS 
technology. However, some of AID’s rules (e.g., Rule1) can 
be applied on any web app or webpage. AID also currently 
automates only a vertical slice of GenderMag, with the Abi 
persona and their specific information processing style. This 
scoping allowed us to investigate A ID ’s feasibility and effec
tiveness under stricter controls, but impacts its generalizability.

Most of these threats can be mitigated by (1) future work 
that addresses the limitations of the tool; (2) extending AID to 
also evaluate for Abi’s other cognitive facets, and to the other 
GenderMag personas (Pat, Tim); and (3) expanding the scope 
of software upon which AID runs beyond OSS platforms.

V II. Re l a t e d  W o r k

The nearest neighbours of the GenderMag method are 
the Williams recommendations and InclusiveMag. Williams 
pointed out several ways gender-inclusivity bugs can arise, 
such as hidden gender bias during the product cycle and 
women being reluctant to voice their opinions when they are 
outnumbered in a brainstorming session [16], [56]. Williams 
also offers concrete recommendations to head off such causal 
factors, such as assembling groups of at least 60% women 
during brainstorming sessions and having an equal vote distri
bution by gender when using informal voting systems [16]. 
InclusiveMag [17] is a meta-method that spawns methods 
like GenderMag, for under-served software users. It provides 
a step-by-step approach for researchers and practitioners to 
generate methods to evaluate their software. However, neither 
of these methods have been automated.

GenderMag is a member of the Cognitive Walkthrough 
family. Mahatody et al.’s [25] comprehensive literature survey 
of CWs describes many CW variations, some of which focus 
on reducing problems with the classic CW [57]-[59] such as 
by reducing the time it requires. Nielsen et al. recommended 
that a note-taking tool for CWs to address issues like these 
by guiding the analyst through each CW step, in order to 
avoid missing steps and to more accurately record results, 
integrating a CW tool into a prototyping tool [60]. When 
CWs were first introduced, Rieman et al. created a tool to 
record the results of a human-run CW [61]. The GenderMag 
Recorder’s Assistant [62] is a recent note-taking tool to help 
humans organize GenderMag session output—their answers to 
the CW questions, additional notes and screenshots pertinent 
to each question. These tools are for supporting humans doing 
a CW and not the automation of the method itself.

Farther afield, there is a variety of work relating to au
tomation of usability evaluation. For example, Mathur et al. 
introduced a "Usability Evaluation Framework” [63], a model 
to automate usability evaluation for mobile apps based on
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prevailing usability guidelines. Baker et al. created a prototype 
to automate usability testing for handheld devices [64]. It 
measures software usability by recording user actions and 
compares the user’s actions to those expected by the developer. 
The WebTANGO prototype [65] predicts user’s information 
seeking behaviour and webpage navigations, calculating fac
tors like the time for a user to scan a page, based on its 
complexity. Dingli et al. proposed a framework and tool that 
evaluates websites by considering usability guidelines [66]. 
However, tools like these do not evaluate inclusivity.

Various tools exist to help with accessible design. WAVE 
[67] is a tool for evaluating accessibility principles. It indicates 
if  information on a webpage is accessible by visually impaired 
people by checking for alternative text, structural markup, and 
reading order. Additionally, it flags audio content for the deaf 
population. Vischeck [68] is a tool for low-vision simulation, 
which uses image processing techniques to create views for 
low-vision users. AATT [69] provides an accessibility API to 
test web applications for conformance to the Web Content 
Accessibility Guidelines (WCAG). Even though these tools 
assist in the implementation for more inclusive products, they 
do not consider cognitive diversity.

Closest to our work is the AutoCWW [70], a tool that au
tomates the CW to identify website navigation problems [71]. 
It takes a goal from the user along with a list of webpages the 
user is supposed to navigate. It then computes the similarity 
of the goal text with the headings and link labels of the input 
pages, to see i f  a user who wanted to find the right link could 
navigate to the correct webpage. AutoCWW only evaluates 
webpages with respect to the overall use-case while AID has a 
more fine-grained task oriented approach. AutoCWW assumes 
a "generic” user and not inclusivity of diverse users. For 
example, it does not take into account different styles of pro
cessing information such as Abi’s comprehensive information 
processing style. GitHub OSS’ers with this style are unlikely 
to just click on potentially suitable links until after gathering 
enough information to understand what is available and how 
they might like to proceed through it. In contrast, AID checks 
if  a user like Abi (and, in future versions, like Tim or like Pat) 
would gather the "right amount” of information to navigate in 
the needed direction for their current actions.

V III. Co n c l u d i n g  Re m a r k s

The effectiveness that AID showed at automatically detect
ing these 20 OSS project sites’ inclusivity bugs is promising. 
As we have pointed out, the five rules at the core of our 
model used static, text-processing techniques. Despite this fact, 
even under the conservative assumption that humans were 
the "gold standard” , AID achieved a precision rate of 0.69. 
Further, closer scrutiny revealed that more than half of its 
false positives under this assumption were not actually false 
positives (Table VI). Further, its recall rate of 0.92 is better 
than most recall rates by human users of the CW family [25].

How could the tool have done so well? Researchers have 
reported the heavy workloads some humans experience using 
GenderMag [72]. Part of their workload is trying to "become”

someone else (here, one of the GenderMag personas), which 
some humans have difficulty doing (e.g., [35]). Yet, the tool 
did remarkably well with static text analysis, without even 
attempting to model the persona.

We hypothesize that the reason for A ID ’s success lies in the 
concrete, pattern-based approach we used to develop the rules. 
When humans use GenderMag, they work from the root of 
inclusivity bugs—problem-solving style diversity. In contrast, 
in developing the rules, we worked from patterns of symptoms 
of the problems the human teams found, and encoding them 
in rules. Our results suggest that the concrete, pattern-based 
approach we used is promising.

A goal of this work was to find out whether it was possible 
for a software tool to automatically detect inclusivity bugs. As 
our results with AID show, such a tool is both possible and 
feasible to implement.

Despite its concrete rules, AID is rooted in theory, inherited 
from the foundations of GenderMag. As Shaw and others have 
argued, scientific theory lets technological development pass 
limits previously imposed by relying on intuition and experi
ence [73]. For example, Shaw points out, for centuries, many 
architectural structures (buildings, bridges, tunnels, canals) 
could be built only by master craftsmen. Not until scientists 
developed theories of statics and strength of materials, were 
today’s extraordinary engineering accomplishments possible, 
such as the Hong Kong-Zhuhai-Macau Bridge spanning 55 
miles of ocean, by "ordinary” engineers. In computer science 
we see the same phenomenon. For example, expert developers 
once built compilers using only hard-won intuitions gained 
from extensive experience, but formal language theory has 
brought tasks like parser and compiler writing to a level where 
undergraduate computer science students now routinely build 
them in their coursework [74]. AID follows this path through 
its theory foundations, as a step toward enabling "ordinary” 
developers to find inclusivity bugs without needing to become 
experts in GenderMag.

Our survey’s results suggest that tools like this are needed: 
92% of our respondents lacked any specific tools or ap
proaches they could use to check for inclusivity bugs.

P115: “I  wasn’t aware of methods, but I  try to get feedback
from and build fo r a diverse set of users.”
P156: “I  can make mistakes ...[but] I  strive to not do evil.”
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