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ABSTRACT 
Form-based visual programming languages, which in- 
clude commercial spreadsheets and various research sys- 
tems, have had a substantial impact on end-user com- 
puting. Research shows, however, that form-based vi- 
sual programs often contain faults. We would like to 
provide at least some of the benefits of formal testing 
methodologies to the creators of these programs. This 
paper presents a testing methodology for form-based vi- 
sual programs. To accommodate the evaluation model 
used with these programs? and the interactive process by 
which they are created; our methodology is validation- 
driven and incremental. To accommodate the users of 
these languages, we provide an interface to the method- 
ology that does not require an understanding of testing 
theory. We discuss our implementation of this method- 
ology and empirical results achieved in its use. 
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1 INTRODUCTION 

Form-based visual programming languages provide a 
declarative approach to programming, characterized 
by a dependence-driven, direct-manipulation working 
model [l]. Users of form-based languages create cells, 
and define formulas for those cells. These formulas ref- 
erence values contained in other cells and use them in 
calculations. When a cell’s formula is defined, the un- 
derlying evaluation engine calculates the cell’s value, 
and those of other affected cells (at least those that are 
visible to the user) and displays new results. 

Form-based visual programming languages include, as 
a subclass, commercial spreadsheet systems. These sys- 
tems are widely used by end-users, for a variety of 
computational tasks. The form-based visual language 

paradigm is also a subject of ongoing research. For 
example, there is research into using form-based lan- 
guages for matrix manipulation problems [25], for pro- 
viding steerable simulation environments for scientists 
[4], and for specifying full-featured GUIs [16]. 

Despite the end-user appeal of form-based languages 
and the perceived simplicity of the paradigm, research 
shows that form-based visual programs often contain 
faults. For example, in one empirical study of expe- 
rienced spreadsheet users [2], 44 percent of the spread- 
sheets created by those users were found to contain user- 
generated faults. Compounding this problem, creators 
of spreadsheets express unwarranted confidence in the 
reliability of their programs [28]. In spite of this evi- 
dence, we find no discussion in the research literature of 
techniques for testing form-based visual programs. 

In previous work 1231, we discussed strategies for test- 
ing form-based visual programs. We showed that sig- 
nificant differences exist between the form-based and 
imperative programming paradigms, and that these dif- 
ferences have ramifications for testing methodologies. 
These differences can be divided into three classes. 

The first class of differences pertains to evaluation mod- 
els. Evaluation of form-based programs is driven by 
data dependencies that exist between cells, and form- 
based programs contain explicit control flow only within 
cell formulas. Thus, form-based programs are more ap- 
propriately tested using adequacy criteria that are data- 
dependence-based than criteria that are strictly control- 
flow-based. The dependence-driven evaluation model 
also implies that evaluation engines have considerable 
flexibility in the scheduling algorithms and optimiza- 
tion devices they might employ to perform computa- 
tions. .4 methodology for testing form-based programs 
must be compatible with such mechanisms, and not rely 
upon particular evaluation orders or prevent optimiza- 
tions based on value caching. 

The second class of differences pertains to interactiv- 
ity: form-based programming environments are char- 
acterized by incremental visual feedback that is inter- 
twined with the program construction process. The 
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most widely-seen example of this is the ‘Lautomatic re- 
calculation” feature of spreadsheets. This incremental 
visual feedback invites the use of testing methodologies 
that support an incremental input and validation pro- 
cess. For example, when a user changes a formula, the 
testing subsystem should provide feedback about how 
this affects the ‘Yestedness” of each visible portion of the 
program. This raises the issue of dealing with evolving 
programs while maintaining suitable response time. 

The third class of differences pertains to the users of 
form-based languages. Imperative languages are most 
commonly used by professional programmers who are in 
the business of producing software. These programmers 
can be expected to know something about testing, and 
to place a high priority on doing a reasonably good job 
of testing. On the other hand, form-based programming 
environments are used by a variety of users, many of 
whom are not professional programmers and have no 
interest in learning about formal testing methodologies. 
Our goal is to provide at least some of the benefits of 
formal testing methodologies to these users. 

Building on strategies discussed in [23], this paper 
presents a testing methodology for form-based visual 
programs. To accommodate the evaluation models used 
with these programs, and the interactive process by 
which they are created, our methodology is validation- 
driven and incremental. This is accomplished through 
a test adequacy criterion that focuses on dependencies 
that influence validated output cells, and by the use 
of incremental program analysis. To accommodate the 
user base of these languages, we provide an interface to 
the methodology that does not require an understand- 
ing of testing theory. This is accomplished through a 
fine-grained integration with the form-based language 
environment to provide testing information visually. 

2 BACKGROUND 

Form-based visual languages. 
Users of form-based languages set up forms and specify 
their contents in order to program. The contents of a 
form are a collection of cells; each cell’s value is defined 
by that cell’s formula, and as soon as the user enters a 
formula, it is evaluated and the result is displayed. The 
best-known examples of form-based languages are com- 
mercial spreadsheets, but there are also many research 
systems (e.g. [3, 16, 24, 251) based on this paradigm. 

In this paper, we present examples of form-based pro- 
grams in the research language Forms/3 [3, lo]. Figure 
1 uses a traditional spreadsheet style to calculate stu- 
dent grades. Figure 2 shows how a user would construct 
a graphical clock in Forms/S. View (a) shows each cell 
with its formula. Clock consists of 13 cells, including 
two input cells (upper left) that could eventually be re- 
placed with references to the system clock, one output 

Figure 1. Spreadsheet for calculating student grades. 

cell (middle left), and several cells used in intermediate 
calculations (right). (We use the term input cell to refer 
to cells whose formulas contain only constants.) After 
the programming is finished, the formula tabs, borders, 
and cells that calculate intermediate results can be hid- 
den, and cells rearranged, to reach the user view shown 
in (b). 

In this paper, we consider a subset of Forms/3 that is 
representative of “pure” form-based visual languages: 
those with no macros or imperative sublanguages and no 
recursion. The subset includes ordinary spreadsheet-like 
formulas for mathematics and conditional operations, 
and support for elementary graphics. The grammar for 
the formulas in this subset is shown in Table 1. The 
Figures were programmed using this subset. From this 
grammar, it is clear that the only dependencies between 
one cell and another are data dependencies. Because of 
this fact, cells can be scheduled for evaluation in any 
order that preserves these dependencies. 

formula ::= BLANK / expr 
expr ::= CONSTANT 1 CELLREF 1 ERROR ) infixExpr 1 

pr&xExpr 1 ifExpr ) composeExpr 
infixExpr ::= subExpr infixOperator subExpr 
prefixExpr ::= unaryPr&xOperator .subExpr I 

binaryPr&xOperator subExpr subExpr 
ifExpr ::= IF subExpr THEN subExpr ELSE subExpr I 

IF subExpr THEN subExpr 
composeExpr ::= COMPOSE subExpr withclause 
subExpr ::= CONSTANT I CELLREF I (expr) 
infixoperator ::= +I - ( * l/l AND I OR I = 1 . . . 
unaryPr&xOperator ::= NOT I ERROR? I CIRCLE I 
binaryPr&xOperator ::= LINE I BOX I . . . 
withclause ::= WITH subErpr AT (subExpr subExpr) I 

WITH subExpr AT (subExpr subExpr) withclause 

Table 1. Grammar for fomulas 

An abstract model for form-based programs. 
Test adequacy criteria provide help in selecting test data 
and in deciding whether a program has been tested 
“enough.” Test adequacy criteria have been well re- 
searched for imperative languages (e.g. [6, 9, 17, 19]), 
where they are often defined on abstract models of pro- 
grams rather than on code itself. In [23] we presented 
such a model for form-based languages; we call our 
model a cell relation graph (CRG). Figure 3 depicts a 
partial CRG for Clock. 
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Figure 3. Partial cell relation graph for Clock. 

A CRG uses two sets of components to model two as- 
pects of form-based programs. The first set of compo- 
nents, formula graphs, model flow of control within cell 
formulas, and are comparable to the control flow graphs 
used to represent procedures in imperative programs. 
Figure 3 shows the formula graphs for four cells, delim- 
ited by dotted rectangles. In the figure, nodes labeled 
“E” and “X” are entry and exit nodes, respectively, and 
represent initiation and termination of the evaluation 
of formulas. Nodes with multiple out-edges (represented 
as rectangles) are predicate nodes. Other nodes are com- 

putation nodes. Edges represent flow of control between 
expressions; edge labels indicate the value to which con- 
ditional expressions must evaluate for that control path 
to be taken. 

The second set of components in the CRG, cell depen- 
dence edges, model dependencies between cells. Figure 3 
depicts these edges by dashed lines. Each edge encodes 
the fact that the destination cell refers to the source 
cell in its formula; thus, the arrows show direction of 
dataflow. For readability, the figure depicts these edges 
as beginning and terminating at the rectangles that de- 
limit formula graphs; in fact these edges begin and ter- 
minate at the entry and exit nodes of those graphs. 

Let F be a formula with formula graph E, and let F, and 
F, be the entry and exit nodes, respectively, of F. An 
evaluation of F traverses a path through F, beginning 
at F, and ending at F,. We call this path the execution 
trace for that evaluation. 

We used this abstract model to define several test ad- 
equacy criteria for form-based programs. We showed 
that a criterion based on the all-uses dataflow ade- 
quacy criterion defined originally for imperative pro- 
grams (e.g., [14, 17, Zl]), which relates test adequacy 
to interactions between occurrences of variables in the 
source code, is particularly appropriate for form-based 
programs because it exercises both interactions between 
cells and expressions within cell formulas. In this paper, 
we restrict our attention to this criterion. 
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DU-adequacy for form-based programs. 
In form-based programs, cells serve as variables, and the 
value for cell C can be defined only by expressions in 
C’s formula. Let C be a cell in program P, with formula 
F and formula graph p. Each computation node in F 
that represents an expression referring to cell D is a c- 
use (computation use) of D and a definition of C. Each 
edge in F that has as its source a predicate node n such 
that n represents a conditional expression referring to 
another cell D is a p-use (predicate use) of D. 

A definition-use association (du-association) links defi- 
nitions of cells with uses that those definitions can reach. 
TWO types are of interest. .4 definition-c-use association 
is a triple (ni , n2, C), where nl is a definition of cell C, 
n2 is a c-use of C, and there exists an assignment of 
values to P’s input cells, in which nl reaches n2. A 
definition-p-use association is a triple (nl ,(nz, ns),C), 
where ni is a definition of cell C, (n2, ns) is a p-use of 
C, and there exists an assignment of values to P’s input 
cells, in which nl reaches n2, and causes the predicate 
associated with n2 to be evaluated such that n3 is the 
next node reached. 

To preserve the applicability’ of adequacy criteria based 
on these definitions, the definitions specify only exe- 
cutable du-associations: du-associations for which there 
exists some input that causes the definition to reach the 
use. Determining whether a du-association is executable 
is, however, a difficult problem [9, 271; thus, algorithms 
for calculating the du-associations that exist in a pro- 
gram typically conservatively approximate them, by col- 
lecting the du-associations that appear (statically) to 
exist in the code. We discuss this issue further in [23] 
and Section 4. 

Following the notion of an “output-influencing all-du- 
pairs” criterion introduced by [7], we define a test ad- 
equacy criterion in terms of du-associations that affect 
cell outputs. A test suite T is du-adequate for program 
P if and only if, for each du-association &a in P, there 
exists at least one test t in T that exercises dua in such 
a way that dua influences, directly or indirectly, a cell 
output. 

3 A METHODOLOGY FOR TESTING FORM- 
BASED VISUAL PROGRAMS 

In Section 1, we described three classes of differences 
between the form-based visual language paradigm and 
traditional imperative paradigms. To accommodate 
these differences, we have developed a testing method- 
ology that is validation-driven and incremental, and in- 
tegrated at a fine granularity into the programming en- 
vironment, providing the following functionalities: 

‘A test adequacy criterion is applicable if, for every program 
P, there exists a finite test set that is adequate according to that 
criterion for P [26]. 

. The ability to incrementally determine the static 
du-associations in an evolving program whenever a 
new cell formula is entered. 

. The ability to automatically track execution traces, 
which provide the information necessary to deter- 
mine the dynamic du-associations that currently in- 
fluence calculations. 

. 

. 

. 

A user-accessible facility for pronouncing outputs 
“validated” at any point during program develop- 
ment, and the abilities both to determine the du- 
associations that should be considered exercised as 
a result of this validation and to immediately com- 
municate to the user how well exercised the visible 
section of the program is. 
The ability to determine the du-associations af- 
fected by a program change, and immediately de- 
pict their altered validation status in the visible 
section of the program. 
The ability to recalculate du-associations and vali- 
dation information when an entire pre-existing pro- 
gram is loaded, or when a large portion of a pro- 
gram is modified by a single user action. 

We next discuss in detail how our methodology pro- 
vides these functionalities to form-based languages. We 
present the material in the context and sequence of an 
integrated program development and testing session. 

Task 1: Collecting static du-associations. 
Suppose that, starting with an empty form, the user 
begins to build the Clock application discussed in Sec- 
tion 2 by entering cells and formulas, reaching the state 
shown in Figure 4. Assume for the moment that the user 
does not change any formulas, but simply continues to 
add new ones. (We remove this restriction later.) 

Figure 4. Clock at an early stage. Part of the program has 
been entered. 

Because it would be expensive to exhaustively com- 
pute the du-associations for the entire program after 
each new formula is added, we compute them incremen- 
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tally. Several algorithms for incremental computation of 
data dependencies exist for imperative programs (e.g., 
[15, 20]), and we could adapt one of these algorithms to 
our purpose. However, there are two attributes of form- 
based programming environments that allow a more ef- 
ficient approach. 

First, in non-recursive form-based languages, the syn- 
tax of cell formulas and the fact that C can only be 
defined in its own formula ensure that every definition 
of C reaches (statically) every use of C in the program. 
Second, in form-based programming environments, the 
evaluation engine must be called following each formula 
edit to keep the display up-to-date, visiting at least all 
cells that directly reference the new cell and all cells that 
are directly referenced by the new cell.” At this time, 
the engine can record local definition-use information 
for the new cell, that is, the definitions and uses that 
are explicit in the cell’s formula. Together, these facts 
mean that we can incrementally collect du-associations 
following the addition of a cell C by associating all defi- 
nitions in C with all uses of C in cells that reference C, 
and associating all definitions in cells that C references 
with all uses of those cells in C.3 

Our prototype uses a hash table to efficiently store 
the following data for each cell C: C.CellsThatRef, 
the cells that reference C; C.CellsRe.fedBy, the cells 
that C references; C.LocalDefs, the local definitions in 
C’s formula; C.LocalUses, the local uses in C’s for- 
mula; C. ValidatedID and C. Un ValidatedID integer flags 
whose use is described later; C.DUA, a set of pairs 
(du-association, exercised) for each static du-association 
(d, u) such that u is in C.LocallJses, and exercised is 
a boolean that indicates whether .that association has 
been exercised; C.Trace, which records dynamic trace 
information for C; and C. ValTab, which records valida- 
tion status. It is reasonable for the evaluation engine 
to provide the first four of these items, because they 
are already needed to efficiently update the display and 
cached value statuses after each program edit. The re- 
maining items are calculated by the testing subsystem. 

Algorithm CollectAssoc of Figure 5 is triggered when 
a new formula is added, to collect new du-associations. 
Lines 2 - 5 collect du-associations involving uses in C. 
Lines 6 - 9 collect du-associations involving referring 
cells’ uses of C. 

For example, referring back to Figure 4, suppose that 
the most recent formula entered is that for cell minuteY. 

‘This is true for both eager and lazy form-based languages, 
because even if a cell’s recalculation can be deferred, it could 
have a cached value that must be marked (‘dirty” to indicate that 
it is now invalid. Value caching is necessary for efficient display 
maintenance; most form-based languages use it to some extent. 

3See [15] for a different view of incremental computation of du- 
associations as applied within the imperative language paradigm. 

1. 
2. 
3. 
4. 
5. 
6. 

8. 
9. 

algorithm CollectAssoc(C) 
for each cell D E C. CellsRefedBy do 

for each definition d (of D) E D.LocalDefs do 
for each use u of D E C.LocalUses do 

C.DUA = C.DUA u {((d,u),false)} 
for each cell D E C.CellsThatRef do 

for each use u of C E D.LocalUses do 
for each def d (of C) E C.LocalDefs do 

D.DUA = D.DUA U {((d,u),false)} 

Figure 5. Algorithm for collecting du-associations. 

Note that its value is displayed, even though the pro- 
gram has not been completely entered; when the eval- 
uation engine was triggered to display this value, it 
collected C. Cells ThatRef, C. CellsRefedBy, C. LocalDefs, 
and C. LocalUses for minuteY (as it had previously done 
for the other cells on display when their formulas were 
entered). Called with cell minuteY, CollectAssoc em- 
ploys this information to collect six new du-associations, 
described using the node numbers of Figure 3 as: 
(2,(16,17),minute), (2,(16,18),minute), (2,17,minute), 
(2,18,minute), (17,2l,minutey), and (18,2l,minutey). 

CollectAssoc runs in time O(udn), where n is the num- 
ber of cells that directly reference or are referenced by 
C, and u and d are the maximum number of uses and 
definitions, respectively, in those cells. In practice, u 
and d are typically small, bounded by the number of 
references in a single formula - usually less than 10. In 
this case the algorithm’s time complexity is of the same 
order as the evaluation engine’s cell traversal needed to 
maintain a correct display and process cached values 
when a new formula is added - the event that triggers 
CollectAssoc. 

Task 2: Tracking execution traces. 
To track execution traces, which enable the incremen- 
tal computation of du-associations that have been exer- 
cised, we have simply inserted a probe into the evalua- 
tion engine. When cell C executes, this probe records 
the execution trace on C’s formula graph, storing it in 
C.Trace. For example, in the case of Clock, at the mo- 
ment depicted in Figure 4, the execution trace stored for 
cell minutey, described in terms of Figure 3’s node num- 
bers, is (15,16,17,19). If the cell is subsequently reeval- 
uated, the system replaces the old execution trace with 
the new one. This approach functions for all varieties of 
evaluation engines: whether the engine eagerly or lazily 
evaluates cells, following any input and any dependence- 
preserving evaluation sequence, all cells have associated 
with them their most recent execution trace. 

Storing only the most recent execution trace in C.trace 
is sufficient because the cumulative coverage in C. DUA 
is updated incrementally during validation, as described 
in our discussion of Task 3. 
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Figure 6. TILe evolving Clock program at an early stage, ufter 

the minuteHand cell has been validated. 

Task 3: Pronouncing outputs “validated”. 
In this section, we show how we use the data collected 
in Tasks 1 and 2 to provide test adequacy information 
to the user in a way that requires no understanding of 
formal notions of testing, and uses visual devices to draw 
attention to untested sections of the evolving program. 

In the desktop clock programming scenario, suppose 
that the user looks at the values displayed on the screen 
and decides that the minuteHand cell contains the cor- 
rect value. To document this fact, the user clicks on 
the validation tab in the upper right corner of that 
cell. As Figure 6 shows, one immediately visible re- 
sult of this action is the appearance of a checkmark 
in the validation tab. If the user enters another in- 
put in cell minute, minuteHand’s tilidation checkmark 
changes to a question mark (not shown in the figure), 
which means the current value has not been validated 
but some previously-displayed value has. (The evalu- 
ation engine makes this change while visiting cells af- 
fected by the new input.) The third possible appear- 
ance, a blank validation tab, means no validations have 
been done since the last formula change to C or to a non- 
input cell affecting C. Thus, the validation tab keeps 
the user apprised of which cells have been explicitly val- 
idated and which have not, given the current collection 
of formulas. 

A finer-grained device for communicating testing sta- 
tus involves test adequacy. Whenever a du-association 
participates in the production of a validated value, we 
set the exercised flag for that du-association (the second 
item of data kept for each du-association in the .DUA set 
for the cell in whose formula the use occurs) to “true”. 
We then calculate the percentage of the du-associations, 
whose uses occur in the cell, that have been exercised. 
We use this percentage to determine the cell’s border 
color on a continuum from red (untested) to blue (100% 

of the du-associations whose uses occur in the cell hav- 
ing been exercised). (In this black-and-white paper, the 
continuum is light gray to black.) With each validation 
that exercises a previously unexercised du-association, 
the border becomes less red (darker in these figures), 
indicating a greater degree of “testedness” for that cell. 
This visual feedback appears in all cells that contributed 
to the computation of the value in the validated cell. 

In the example shown in Figure 6, the computation 
of minutesand’s value involves two of the four du- 
associations that end in minutey, two of the seven du- 
associations that end in minuteHand, and four of the 
13 du-associations that end in minutex. Thus, after the 
user validates minuteHand, the cell borders are darkened 
using these fractions. Input cells (those with constant 
formulas) are, by definition, fully exercised. 

When borders are entirely blue, the user can see that 
each cell reference pattern (du-association) has been 
tested (i.e., executed with validation) at least once. As 
the figure shows, the user can also display arrows that 
show all the cell reference patterns (du-associations) at 
the granularity of cells; we are currently implementing 
these arrows at the subexpression level with the same 
color scheme as the borders, to explicitly identify which 
cell reference patterns still need to be tested. 

Figure 7 displays our algorithm Validate, which is 
invoked when the user pronounces a displayed value 
valid. The algorithm uses the static du-association in- 
formation and execution traces, previously calculated 
and stored as discussed in the descriptions of Tasks 1 
and 2, to calculate the du-associations that participate 
in the production of C’s current value, and to update 
borders of participating cells.* As the algorithm pro- 
ceeds, it adds to stored .DUA data that indicates the 
du-associations that have been validated thus far. This 
coverage information is accumulated and retained across 
a succession of tests, even though cell execution traces 
change as subsequent tests are applied. 

In this algorithm, the use of ValidatedID ensures that 
the algorithm terminates in worst-case time propor- 
tional to the number of du-associations validated, rather 
than to the size of the program. This is the same order 
as the cost of calculating the cell’s value, but the algo- 
rithm is not triggered at. that time, so, unlike the other 
algorithms we have presented, its cost is not masked by 
the cost of the evaluation process. ValidatedID is set to 
0 when the programming environment is first activated. 

4A generalization of this algorithm related to the approach 
of [7] uses slicing to locate the expressions that contribute to 
the computation of the validated output, and identifies the du- 
associations involved in the computation from that slice. This 
generalized approach works for programs with recursion, iteration, 
and redefinitions of variables. For most form-based languages, 
however, the more efficient Validate approach suffices. 
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1. algorithm Validate(C) 
2. ValidatedID = ValidatedID +I 
3. C. ValTab = “checkmark:’ 
4. ValidateCoverage 

5. procedure ValidateCoverage 
6. C. ValidatedID = ValidatedID 
7. for each use u E C.Tmce do 
8. D = the cell referenced in 1~ 
9. d = the current definition of D found in D.Rxe 

10. C.DlJA = C.DIJA u {((d:u),true)} - {((d,u),false)} 
11. if D. ValidatedID < ValidatedID then 
12. ValidateCoverage( D) 
13. lJpdateBorder(C) 

Figure 7. Algorithm for updating test adequacy information 
following a validation request. 

When cells are created or added to the system, their 
ValidatedID fields are initialized to 0. On each invoca- 

tion of Validate, ValidatedID is incremented (line 1). 
The . ValidatedID fields for all cells visited are assigned 
this value of ValidatedID, which prevents duplicate vis- 
its to the same ce1L5 

Task 4: Adjusting test adequacy information. 
So far, we have focused on how the system handles cell 
formulas as they are added to a program. We now con- 
sider the other basic edits possible with form-based pro- 
grams, namely, deleting a cell or changing a cell’s for- 
mula. Changes to a constant-formula cell are equiva- 
lent to the application of a new test input (that may 
or may not be followed by validation requests), and re- 
quire no action beyond that involved in recalculating 
execution traces as discussed under Task 2. Deletion of 
a cell is equivalent to modifying that cell’s formula to 
BLANK. Thus, we need only consider modifications to 
non-constant formulas. 

Suppose that the user has done quite a bit of testing, 
and has discovered a fault that requires a formula mod- 
ification with far-reaching consequences. The user may 
believe that the program is still fairly well tested, and 
not realize the extent to which the modification invali- 
dates previous testing. 

To address this lack of awareness, the system must 
immediately reflect the new test adequacy status of 
the program whenever a cell is modified.6 To accom- 

5By using an integer rather than a boolean, and incrementing it 
on each invocation of the algorithm, we avoid the need to initialize 
the flag for all cells in the program on each invocation. We assume 
that ValidatedID will not overflow, to simplify the presentation. 

61n this context, the problem of interactive, incremental testing 
of form-based programs resembles the problem of regression test- 
ing imperative programs, and we could adapt techniques for incre- 
mental dataflow analysis (e.g., [15, 201) and incremental dataflow 
testing (e.g. [ll, 12, 221) of imperative programs to generalize 
this approach. This generalized approach applies to programs in 
which cell references are recursive or in which formulas contain 
iteration. For most form-based languages, however, the simpler 
approach that we present here suffices. 

1. algorithm lJnValidate(C) 
2. AflCeZZs = {} 
3. Un ValidatedID = Un ValidatedID +l 
4. lJnValidateCsll(C) 
5. for each cell D E AfiCells do 
6. UpdatsBordsr( D) 
7. UpdateValTab( D) 

8. procedure UnValidateCell(C) 
9. C. Un ValidatedID = Vn ValidatedID 

10. AflCells = AffCells u C 
11. for each cell D E C.CellsThatRefdo 
12. for each definition d (of C) in C do 
13. for each ((d,zL),trua) E D.DUA do 
14. D.DUA = D.DUA U{((d,u),falss)}-{((d,u);true)} 
15. if D. CJn ValidatedID < (In ValidatedID then 
16. UnValidateCell( D) 

Figure 8. Algorithm for updating test adequacy information 
following a modification. 

plish this, the system must (1) update C’s static du- 
association and dynamic execution trace information, 
and (2) update the exercised flags on all du-associations 
that may be affected by the modification, allowing cal- 
culation and display of new border colors to reflect the 
new “testedness” of affected cells. We must also ad- 
just validation tab statuses on visited cells, changing 
all checkmarks and questionmarks to questionmarks if 
the cell retains any exercised du-associations after af- 
fected associations have been reset, or to blank if all 
the ceil’s exercised flags are now unset. For example, 
in the completed Clock program, if the user changes 
cell minutex’s formula, then the du-associations involv- 
ing minutex, and the validation statuses for minutex, 
minuteHand, and theclock must all be reinitialized. 

Our subsystem handles item (2) first, removing the old 
information before adding the new. Let C be the mod- 
ified cell. We use a conservative approach that recur- 
sively visits affected cells. The algorithm, UnValidate, 
given in Figure 8, is similar to Validate, but instead of 
using dynamic information to walk backward through 
the program, it uses static information to walk forward. 
As the algorithm walks forward, it changes the exer- 
cised flag on each previously exercised du-association it 
encounters to “false”, and keeps track of each cell vis- 
ited in AflCells. On finishing the work for all the cells, 
the algorithm updates the border color and validation 
tab for each cell in AffCell. 

At this point, the static du-association and dynamic 
trace information stored with C can be updated. First, 
all stored static du-associations involving C are deleted; 
the environment can find these easily in the informa- 
tion stored for C and for cells in C.CelbThatRef and 
just delete them; this removal also guarantees that 
du-associations that end in C are no longer marked 
“exercised.” Having removed the old du-associations, 
we need only re-invoke CollectAssoc as described in 
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Section 3 to add new associations. Finally, stored exe- 
cution traces are automatically updated via the evalua- 
tion engine as described earlier. 

As was the case with Tasks 1 and 2, the cell visits re- 
quired by UnValidate are already required for display 
and value cache maintenance: therefore the time cost 
of the algorithm increases only by a constant factor the 
cost of other work being performed by the environment 
when a formula is edited. 

Task 5: Batch computation of information. 
There are some circumstances in which it may be nec- 
essary to calculate static definition-use information for 
a whole program or section of a program - for example, 
if the user does a block copy/paste of cells, or imports 
a program from another environment that does not ac- 
cumulate necessary data. One possible response to such 
an action is to iteratively call the algorithms presented 
so far - which are written for single cell changes - for 
each new, modified or deleted cell in the new program 
section. Although we do not present it here due to space 
limitations, we use a more efficient algorithm that takes 
an entire set of cells as input, and makes passes over 
this set to update information on du-associations and 
validation status. 

4 EMPIRICAL RESULTS 

Our visual feedback is designed to help users achieve 
du-adequate testing, which is what is needed for bor- 
ders to turn blue. However, we have not yet presented 
evidence that du-adequate testing will reveal a reason- 
able percentage of faults in form-based programs. To 
empirically address this issue, we have implemented a 
prototype within the Forms/3 programming environ- 
ment. Our prototype incorporates all of the algorithms 
described in this paper except for that of Figure 8, which 
is partially complete. The screen shots used in this pa- 
per are from this prototype. We have used our proto- 
type to perform an empirical study of the effectiveness 
of du-adequate test suites at detecting faults. 

Methodology. 
For our study, we obtained eight Forms/3 programs (see 
Table 2) from experienced Forms/3 users. Three of 
the programs (Timecard, Grades, and Sales) are typi- 
cal of spreadsheet programs, and the others are typical 
of form-based programs written in research languages: 
two are simple simulations (FitMachine and MicroGen), 
one a graphical desktop clock (Clock), one a number-to- 
digits splitter (Digits), and the last a quadratic equation 
solver (Solution). 

We asked seven users experienced with Forms/3 and 
commercial spreadsheets to insert faults into our subject 
programs which, in their experience, are representative 
of faults found in Forms/3 programs or in spreadsheets. 

I I I I I Pool I suite I 
Program Ezpr DUA VW SiZfZ Site 
Clock 33 64 7 250 11.3 
Digits 35 89 10 230 22.7 
FitMachine 33 121 11 367 30.2 
Grades 61 55 10 80 9.8 

Table 2. Data about expen’mental subjects, including (from 
left to right) program name, number of expressions in the 
program, number of du-associations in the program, number 
of faulty versions, size of test pool, and average size of du- 
adequate test suites for the program. 

We then asked a Forms/3 user who had no knowledge 
of these specific faults to generate a pool of tests for 
each of the base versions of the subject programs. For 
each base program, this user first created tests of pro- 
gram functionality. He then executed these tests on the 
base program to determine whether together they ex- 
ercised all executable du-associations in the program, 
and generated additional tests to ensure that each exe- 
cutable du-association in the program was exercised by 
at least 5 tests in the test pool. He also verified that 
for all tests, validated cells in the base version produced 
correct values.7 

We used these test pools to create du-adequate test 
suites for our programs. To do this, we first, determined, 
for each test t in the test pool, the du-associations ex- 
ercised by t. We then created test suites by randomly 
selecting a test, adding it to the test suite only if it 
added to the cumulative coverage achieved by tests in 
that suite thus far, and repeating this step until cover- 
age was du-adequate. We generated between 10 and 15 
du-adequate test suites for each of our subject programs; 
Table 2 lists the average sizes of these test suites. 

Because the base version was known to produce correct 
output, and because only a single fault was inserted 
in each faulty version, we could determine whether a 
fault had been revealed in a modified version P’ by a 
test, suite T simply by comparing the validated output 
of P’ (the output which, for that test, was confirmed 
by the tester to be correct) for each test t in T with 
the validated output of P on t. Thus, to obtain fault 
detection results, for each base version P, with its faulty 
versions PI . . . Pk and universe u of test suites, for each 
test suite T in U, we: 

1. ran all tests in T on P, saving outputs, 
2. for each modified version Pi of P: 

7This procedure was modeled after a recent study of imperative 
program testing [13]. 



(a) ran all tests in T on Pi, saving outputs, 
(b) recorded T as fault-revealing for Pi if and only 

if the output of the validated cell for some test 
t in T executed on Pi differed from the output 
of that cell when t was executed on P. 

Data and analysis. 
Figure 9 displays fault detection data, using box plots 
to show, for each program: the percentage of faults de- 
tected by the du-adequate test suites. Dashed crossbars 
represent median percentages of faults detected over the 
set of test suites for the program. The boxes show the 
ranges of percentages in which half of the fault detec- 
tion results occurred. The whiskers that extend below 
and above boxes indicate ranges over which the lower 
25% and upper 25% of the data, respectively, occurred. 

I 

Figure 9. Faults detected by the du-adequate test suites. 

The overall average (mean) percentage of faults detected 
for all programs, faulty versions, and test suites in our 
study was 81%. Fault detection varied across programs, 
but in all but one case (on two versions of Timecard) 
exceeded 50%. Although differences in experimental 
instrumentation make comparisons difficult, this fault- 
detection effectiveness is comparable to or better than 
the effectiveness demonstrated by the all-uses criterion 
in studies of imperative programs [8, 13, 18, 27, 291. 

These results are encouraging, but a few caveats are in 
order. Our subject programs are not large, and we have 
no data to show that they are representative of a larger 
class of form-based visual programs. Also, although our 
faulty versions involve manually-seeded faults created 
by experienced users, we cannot substantiate that these 
faults represent faults that occur in practice. Finally, 
we do not claim that our test suites are representative 
of those that would be constructed by typical users of 
form-based languages. 

One cost factor associated with dataflow testing involves 
nonexecutable du-associations, which no inputs can ex- 

ercise, but which are recognized by the testing sys- 
tem’s static analysis. We discovered that on average, 
11.65% of the du-associations calculated by our algo- 
rithms for our programs were nonexecutable. This rate 
is lower than the average rates of 26% and 27% ob- 
served in two studies of imperative programs reported 
in [27]. Nevertheless, the presence of these associations 
could be difficult to explain to users. Future work will 
consider whether techniques for determining (approx- 
imately) path feasibility (e.g. [5]) can operate cost- 
effectively behind the scenes to address this problem. 

5 CONCLUSION 

Due to the popularity of commercial spreadsheets, form- 
based visual languages are being used to produce soft- 
ware that influences important decisions. Furthermore, 
the use of this paradigm is likely to continue to grow, 
due to recent advances from the research community 
that expand its capabilities. We believe that the fact 
that such a widely-used and growing class of software 
often has faults should not, be taken lightly. 

To address this issue, we have developed a methodol- 
ogy that brings some of the benefits of formal testing 
to this class of software. Key to its appropriateness 
for the form-based paradigm are four features. First, 
our methodology accommodates the dependence-driven 
evaluation model, and is compatible with evaluation en- 
gine optimizations, such as varying evaluation orders 
and value caching schemes. Second, our collection of al- 
gorithms is logically structured such that their work can 
be performed incrementally, and hence can be tightly in- 
tegrated with the highly interactive environments that 
characterize form-based visual programming. Third, 
our algorithms are reasonably efficient given their con- 
text, because the triggers that require immediate re- 
sponse from most of the algorithms also require im- 
mediate response to handle display and/or value cache 
maintenance, and the same data structures must be tra- 
versed in both cases. The only algorithm that adds 
more than a constant factor is Validate, whose cost 
is the same order as the cost of recalculating the cell 
being validated. Finally, our methodology is appropri- 
ate for use by a wide range of programmers, including 
the many end users who use spreadsheets, because it 
requires no knowledge of testing theory. Instead, the 
algorithms track the “testedness” of the program in- 
crementally, and use visual devices to call attention to 
insufficiently tested interactions. 

Our empirical results suggest that in practice, our 
methodology can achieve fault detection results com- 
parable to those achieved by analogous techniques for 
testing imperative programs. These results are impor- 
tant, because they imply that the potential benefit of 
this approach to form-based users may be substantial. 
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