What You See Is What You Test:
A Methodology for Testing Form-Based Visual Programs

Gregg Rothermel, Lixin Li, Christopher DuPuis, Margaret Burnett
Department of Computer Science
Oregon State University
Corvallis, OR 97331
{grother,lili,dupuis,burnett } @cs.orst.edu

ABSTRACT

Form-based visual programming languages, which in-
clude commercial spreadsheets and various research sys-
tems, have had a substantial impact on end-user com-
puting. Research shows, however, that form-based vi-
sual programs often contain faults. We would like to
provide at least some of the benefits of formal testing
methodologies to the creators of these programs. This
paper presents a testing methodology for form-based vi-
sual programs. To accommodate the evaluation model
used with these programs, and the interactive process by
which they are created, our methodology is validation-
driven and incremental. To accommodate the users of
these languages, we provide an interface to the method-
ology that does not require an understanding of testing
theory. We discuss our implementation of this method-
ology and empirical results achieved in its use.

KEYWORDS ‘
software testing, visual programming, spreadsheets

1 INTRODUCTION

Form-based visual programming languages provide a
declarative approach to programming, characterized
by a dependence-driven, direct-manipulation working
model [1]. Users of form-based languages create cells,
and define formulas for those cells. These formulas ref-
erence values contained in other cells and use them in
calculations. When a cell’s formula is defined, the un-
derlying evaluation engine calculates the cell’s value,
and those of other affected cells (at least those that are
visible to the user) and displays new results.

Form-based visual programming languages include, as
a subclass, commercial spreadsheet systems. These sys-
tems are widely used by end-users, for a variety of
computational tasks. The form-based visual language

0-8186-8368-6/98 $10.00 © 1998 IEEE

198

paradigm is also a subject of ongoing research. For
example, there is research into using form-based lan-
guages for matrix manipulation problems [25], for pro-
viding steerable simulation environments for scientists
(4], and for specifying full-featured GUIs [16].

Despite the end-user appeal of form-based languages
and the perceived simplicity of the paradigm, research
shows that form-based visual programs often contain
faults. For example, in one empirical study of expe-
rienced spreadsheet users [2], 44 percent of the spread-
sheets created by those users were found to contain user-
generated faults. Compounding this problem, creators
of spreadsheets express unwarranted confidence in the
reliability of their programs [28]. In spite of this evi-
dence, we find no discussion in the research literature of
techniques for testing form-based visual programs.

In previous work [23], we discussed strategies for test-
ing form-based visual programs. We showed that sig-
nificant differences exist between the form-based and
imperative programming paradigms, and that these dif-
ferences have ramifications for testing methodologies.
These differences can be divided into three classes.

The first class of differences pertains to evaluation mod-
els. Evaluation of form-based programs is driven by
data dependencies that exist between cells, and form-
based programs contain explicit control flow only within
cell formulas. Thus, form-based programs are more ap-
propriately tested using adequacy criteria that are data-
dependence-based than criteria that are strictly control-
flow-based. The dependence-driven evaluation model
also implies that evaluation engines have considerable
flexibility in the scheduling algorithms and optimiza-
tion devices they might employ to perform computa-
tions. A methodology for testing form-based programs
must be compatible with such mechanisms, and not rely
upon particular evaluation orders or prevent optimiza-
tions based on value caching,.

The second class of differences pertains to interactiv-
ity: form-based programming environments are char-
acterized by incremental visual feedback that is inter-
twined with the program construction process. The



most widely-seen example of this is the “automatic re-
calculation” feature of spreadsheets. This incremental
visual feedback invites the use of testing methodologies
that support an incremental input and validation pro-
cess. For example when a user changes a formula the

this affects the “testedness” of each visible portion of the

nroecram. This raises the igs1

piograill. 1435 1ai0ts VD 155Ul

programs while maintaining suitable response time.

ne nf dealine with evols 7 ngo
UCaully Wil CYULViig

The third class of differences pertains to the users of
form-based languages. Imperative languages are most
commonly used by professional programmers who are in
the business of producing software. These programmers

dnabie o

ad to brnauvr anrath ;__,, wd
LU RUUW SULLICULILILE aUULlI: LUDLILLE, ana

can oe expectea
to place a high priority on doing a reasonably good job
of testing. On the other hand, form-based programming

environments are used by a variety of users, many of
whom are not professional programmers and have no
interest in learning about formal testing methodologies.
Our goal is to provide at least some of the benefits of
formal testing methodologies to these users.

1A o e abnatagin A fa91
DpULLging On strat€gies discussed in 149],

PN -
111D
presents a testing methodology for form-based visual

nrograms Tn ar‘r-nmmnr]atn fhn nva]nnhnn mo rln] cnr]
programs. accomin 10N modaels

with these programs, and the interactive process by
which they are created, our methodology is validation-
driven and incremental. This is accomplished through
a test adequacy criterion that focuses on dependencies
that influence validated output cells, and by the use
of incremental program analysis. To accommodate the
user base of these languages, we provide an interface to
the methodology that does not require an understand-
ing of testing theory. This is accomplished through a
fine-grained integration with the form-based language
environment to provide testing information visuaily.

2 BACKGROUND

Form-based visual languages.

Users of form- bas d1 nguages set up forms and specify
their contents in order to program. The contents of a
form are a collection of cells; eac h Wl. s value is defined
by that cell’s formula, and as the user enters a
formula, it is evaluated and thﬁ result is displayed. The

best-known examples of form—based languages are com-
mercial spreadsheets, but there are also many research
systems (e.g. [3, 16, 24, 25]) based on this paradigm.

Too #L2o o nenna wre Tyregent roser £
In this paper, we present I

grams in the research language Forms/
1 uses a traditional spread_-- et style to 1
dent grades. Figure 2 shows how a user would construct
a graphical clock in Forms/3. View (a) shows each cell
with its formula. Clock consists of 13 cells, including
two input cells (upper left) that could eventually be re-

placed with references to the system clock, one output

—
(e}

C student Grades 1
RAE w L Hw2 13 MIDTERX FINAL
7 1 [abore. mike[1035  [es _ [es |63 ot Tes I

2 [rarmes, om[7649 sz [ss — Twm “Tsa oz W

3 [creen, ware {2314 78 183 ) |80 I [76

4 [snith, soort|2316  [m4 Ter Tes 0 Tes [s7 %

5 [Thowss, wus 19857 o1 T8z I o7 Too To7 jé
AVERAGE 4 - B6 — 83 — 88 —_ 28 — 86 —

5] E] E] 5] g g

Figure 1. Spreadsheet for calculating student grades.

cell (middle left), and several cells used in intermediate

{Wa 1100 +tho tarm smnat aall+ afnan
1ET

caloulatiang (richt) -
{ YV€ USE ule eI tnpur ¢ 10 1€

Laiiuiatiuns \Tigliv).

to cells whose formulas contain only constants.) After
the nrogramming is finished, the formula tabs, border

““"’ | atada o i =] e SN S RASRIIY VRswy s “v‘”’
and cells that calculate intermediate results can be hid-
den, and cells rearranged, to reach the user view shown

in (b).

In this paper, we consider a subset of Forms/3 that is
representative of “pure” form-based visual languages:

thace writh =
LIIUDT Wwilll llU 1HiAuiIvUd Ul Llll

recursion. The subset includes ordinary spreadsheet-like
formulas for mathematics and conditional operations,
and support for elementary graphics. The grammar for
the formulas in this subset is shown in Table 1. The
Figures were programmed using this subset. From this
grammar, it is clear that the only dependencies between
one cell and another are data dependencies. Because of
this fact, cells can be scheduled for evaluation in any

order that preserves these dependencies.

MAacros or imperative anhlanonacag and n
avive ouuxausuascn ailyu LlU

..— DT A lT‘Y{ g ;\p
CONSTANT | CELLREF | ERROR | infixExpr |
prefixExpr | ifExpr | composeExpr
infixExpr ::= subExpr infixOperator subExpr
preﬁxExpr ::= unaryPrefixOperator subExpr |

: binaryPrefixOperator subExpr subExpr
IF subExpr THEN subExpr ELSE subExpr |
IF subExpr THEN subExpr
composeExpr ::= COMPOSE subExpr withclause
subExpr ::= CONSTANT | CELLREF | (expr)
infixOperator ::= +|{— x|/ AND [OR | ={ ...
unaryPrefixOperator ::= NOT | ERROR? | CIRCLE | ...
binaryPrefixOperator ::= LINE | BOX |
withclause ::= WITH subExpr AT \auunxpf subExpr) |

WITH subExpr AT (subExpr subExpr) withclause

ifExpr =

Table 1. Grammar for formulas

An abstract model for form-based programs.

Test adequacy criteria provide help in selecting test data
and in deciding whpther a program has been tested
“enough.” Test adequacy criteria have been well re-

searched for imperative languages (e.g. [6, 9, 17, 19]),
where they are often defined on abstract models of pro-
grams rather than on code itself. In [23] we presented
such a model for form-based languages; we call our
model a cell relation graph (CRG). Figure 3 depicts a
partial CRG for Clock.



then (hour mod 12)
alse

thaClack faca at (-31 -31)

(if (hourvithFraction ¢= 9)
then (6 - hourWithFraction)
elss (hourWithFraction - 12}

; B =
hour %- wirnts ; tex 1€ (mirute <= 15) then miruts]| MMtsy |if (mimate <= 30)
slze (if (minuta <= 45) then (minuts - 15)
then (38 - minute) else (45 - minute)
else (minute - 60))
CLOCK DZTPUT HOUR HAND COMPUTATIONS ey
GRS
167/60 13250 CLOCK INPUT
houtx [if (hourWithPraction <« ) howy [ (hourwitifraction <= 6)

then (hour¥WithFraction - 3)
else (9 - hour}

hour 5]
mirute (]

a vith minuteltand at (15 15)
with hourHend at (15 15)
vith pivot at (12 12)

193/60

CLOCK OUTPUT

(b)

13/60

traction [(ningte mod 60} / 60

hour¥ithFraction

if ((hour > 0) and (hour < 13))
then (Chour mod 12) + fraction )
plse srror

CLOCK COMPONENTS

hourBand  [1ine (round (8 * hourx))
(round (8 * houry))
—

i

d [line (3 * mi
I 23 * minutey) l face F:ixcla ﬂ
°

Figure 2. Programmang a clock in Forms/3.

: - : 16: if (minute <= 30) :
: V : : T F :

m 18: 45 - minute

- ——

AR LI EELTIL 7.,.1
...................................... minutey

24 if ((error? minuteHand) or
(error ? hourHand) or
(error? face) or (error? pivot) )

L Xx

26: composeface at (-31 -31
with minuteHand at (15 15)
with hourHand at (15 15)

with pivot at (12 12)

theClock
Figure 3. Partial cell relation graph for Clock.

A CRG uses two sets of components to model two as-
pects of form-based programs. The first set of compo-
nents, formula graphs, model flow of control within cell
formulas, and are comparable to the control flow graphs
used to represent procedures in imperative programs.
Figure 3 shows the formula graphs for four cells, delim-
ited by dotted rectangles. In the figure, nodes labeled
“E” and “X” are entry and exit nodes, respectively, and
represent initiation and termination of the evaluation
of formulas. Nodes with multiple out-edges (represented
as rectangles) are predicate nodes. Other nodes are com-

200

putation nodes. Edges represent flow of control between
expressions; edge labels indicate the value to which con-
ditional expressions must evaluate for that control path
to be taken.

The second set of components in the CRG, cell depen-
dence edges, model dependencies between cells. Figure 3
depicts these edges by dashed lines. Each edge encodes
the fact that the destination cell refers to the source
cell in its formula; thus, the arrows show direction of
dataflow. For readability, the figure depicts these edges
as beginning and terminating at the rectangles that de-
limit formula graphs; in fact these edges begin and ter-
minate at the entry and exit nodes of those graphs.

Let F be a formula with formula graph F', and let F, and
F, be the entry and exit nodes, respectively, of . An
evaluation of F traverses a path through F, beginning
at F, and ending at F,. We call this path the ezecution
trace for that evaluation.

We used this abstract model to define several test ad-
equacy criteria for form-based programs. We showed
that a criterion based on the all-uses dataflow ade-
quacy criterion defined originally for imperative pro-
grams (e.g., (14, 17, 21]), which relates test adequacy
to interactions between occurrences of variables in the
source code, is particularly appropriate for form-based
programs because it exercises both interactions between
cells and expressions within cell formulas. In this paper,
we restrict our attention to this criterion.



DU-adequacy for form-based programs.

In form-based programs, cells serve as variables, and the
value for cell C can be defined only by expressions in
C’s formula. Let C be a cell in program P, with formula
F and formula graph F. Each computation node in £
that represents an expression referring to cell D is a ¢-
use {computation use) of D and a definition of C. Each
edge in F that has as its source a predicate node n such
that n represents a conditional expression referring to
another cell D is a p-use (predicate use) of D.

A definition-use association (du-association) links defi-
nitions of cells with uses that those definitions can reach.
Two types are of interest. A definition-c-use association
is a triple (ny,ny,C), where n, is a definition of cell C,
ny is a c-use of C, and there exists an assignment of
values to P’s input cells, in which n; reaches ny. A
definition-p-use association is a triple (ny,(n2,n3),C),
where n, is a definition of cell C, (n,n3) is a p-use of
C, and there exists an assignment of values to P’s input
cells, in which n; reaches ns, and causes the predicate
associated with ny to be evaluated such that ns is the
next node reached.

To preserve the applicability! of adequacy criteria based
on these definitions, the definitions specify only eze-
cutable du-associations: du-associations for which there
exists some input that causes the definition to reach the
use. Determining whether a du-association is executable
is, however, a difficult problem [9, 27]; thus, algorithms
for calculating the du-associations that exist in a pro-
gram typically conservatively approximate them, by col-
lecting the du-associations that appear (statically) to
exist in the code. We discuss this issue further in [23]
and Section 4.

Following the notion of an “output-influencing all-du-
pairs” criterion introduced by [7], we define a test ad-
equacy criterion in terms of du-associations that affect
cell outputs. A test suite T is du-adequate for program
P if and only if, for each du-association dua in P, there
exists at least one test t in T that exercises dua in such
a way that dua influences, directly or indirectly, a cell
output.

3 AMETHODOLOGY FOR TESTING FORM-
BASED VISUAL PROGRAMS

In Section 1, we described three classes of differences
between the form-based visual language paradigm and
traditional imperative paradigms. To accommodate
these differences, we have developed a testing method-
ology that is validation-driven and incremental, and in-
tegrated at a fine granularity into the programming en-
vironment, providing the following functionalities:

LA test adequacy criterion is applicable if, for every program
P, there exists a finite test set that is adequate according to that
criterion for P {26).

e The ability to incrementally determine the static
du-associations in an evolving program whenever a
new cell formula is entered.

e The ability to automatically track execution traces,

which provide the information necessary to deter-

mine the dynamic du-associations that currently in-
fluence calculations.

A user-accessible facility for pronouncing outputs

“validated” at any point during program develop-

ment, and the abilities both to determine the du-

associations that should be considered exercised as

a result of this validation and to immediately coimn-

municate to the user how well exercised the visible

section of the program is.

e The ability to determine the du-associations af-

fected by a program change, and immediately de-

pict their altered validation status in the visible
section of the program.

The ability to recalculate du-associations and vali-

dation information when an entire pre-existing pro-

gram is loaded, or when a large portion of a pro-
gram is modified by a single user action.

We next discuss in detail how our methodology pro-
vides these functionalities to form-based languages. We
present the material in the context and sequence of an
integrated program development and testing session.

Task 1: Collecting static du-associations.
Suppose that, starting with an empty form, the user
begins to build the Clock application discussed in Sec-
tion 2 by entering cells and formulas, reaching the state
shown in Figure 4. Assume for the moment that the user
does not change any formulas, but simply continues to
add new ones. (We remove this restriction later.)

if (minute < 0)
then erzor
else (if (mirute <= 15)
then minute
slae (if (minuta <= 45)
then (30 - minute)
else (if {minute <= 60)

if (minute <= 30)
then {minute - 15)
alse (45 - minuta)

then {minute - 60)
else exror)))

ninuteliand [Line ™G+ winutem) (5 winutey))

201

Figure 4. Clock at an early stage. Part of the program has
been entered.

Because it would be expensive to exhaustively com-
pute the du-associations for the entire program after
each new formula is added, we compute them incremen-



tally. Several algorithms for incremental computation of
data dependencies exist for imperative programs (e.g.,
[15, 20]), and we could adapt one of these algorithms to
our purpose. However, there are two attributes of form-
based programming environments that allow a more ef-
ficient approach.

First, in non-recursive form-based languages, the syn-
tax of cell formulas and the fact that C can only be
defined in its own formula ensure that every definition
of C reaches (statically) every use of C in the program.
Second, in form-based programming environments, the
evaluation engine must be called following each formula
edit to keep the display up-to-date, visiting at least all
cells that directly reference the new cell and all cells that
are directly referenced by the new cell.? At this time,
the engine can record local definition-use information
for the new cell, that is, the definitions and uses that
are explicit in the cell’s formula. Together, these facts
mean that we can incrementally collect du-associations
following the addition of a cell C' by associating all defi-
nitions in C with all uses of C in cells that reference C,
and associating all definitions in cells that C references
with all uses of those cells in C.3

Our prototype uses a hash table to efficiently store
the following data for each cell C: C.CellsThatRef,
the cells that reference C; C.CellsRefedBy, the cells
that C references; C.LocalDefs, the local definitions in
C’s formula; C.LocalUses, the local uses in C’s for-
mula; C. ValidatedID and C.Un ValidatedID integer flags
whose use is described later; C.DUA, a set of pairs
(du-association, exercised) for each static du-association
(d,u) such that u is in C.LocalUses, and ezercised is
a boolean that indicates whether that association has
been exercised; C.T'race, which records dynamic trace
information for C; and C. ValTab, which records valida-
tion status.. It is reasonable for the evaluation engine
to provide the first four of these items, because they
are already needed to efficiently update the display and
cached value statuses after each program edit. The re-
maining items are calculated by the testing subsystem.

Algorithm CollectAssoc of Figure 5 is triggered when
a new formula is added, to collect new du-associations.
Lines 2 — 5 collect du-associations involving uses in C.
Lines 6 — 9 collect du-associations involving referring
cells’ uses of C.

For example, referring back to Figure 4, suppose that
the most recent formula entered is that for cell minutey.

2This is true for both eager and lazy form-based languages,
because even if a cell’s recalculation can be deferred, it could
have a cached value that must be marked “dirty” to indicate that
it is now invalid. Value caching is necessary for efficient display
maintenance; most form-based languages use it to some extent.

3See [15] for a different view of incremental computation of du-
associations as applied within the imperative language paradigm.

202

algorithm CollectAssoc(C)
for each cell D € C.CellsRefed By do
for each definition d (of D) € D.LocalDefs do
for each use u of D € C.LocalUses do
C.DUA = C.DUA U {{(d,u),false)}
for each cell D € C.CellsThatRef do
for each use u of C € D.LocalUses do
for each def d (of C) € C.LocalDefs do
D.DUA = D.DUA U {((d,u),false)}

©®ND ;AW

Figure 5. Algorithm for collecting du-associations.

Note that its value is displayed, even though the pro-
gram has not been completely entered; when the eval-
uation engine was triggered to display this value, it
collected C. CellsThatRef, C.CellsRefedBy, C.LocalDefs,
and C.LocalUses for minuteY (as it had previously done
for the other cells on display when their formulas were
entered). Called with cell minuteY, CollectAssoc em-
ploys this information to collect six new du-associations,
described using the node numbers of Figure 3 as:
(2,(16,17),minute), (2,(16,18)minute), (2,17,minute),
(2,18,minute), (17,21,minutey), and (18,21 minutey).

CollectAssocruns in time O(udn), where n is the num-
ber of cells that directly reference or are referenced by
C, and u and d are the maximum number of uses and
definitions, respectively, in those cells. In practice, u
and d are typically small, bounded by the number of
references in a single formula — usually less than 10. In
this case the algorithm’s time complexity is of the same
order as the evaluation engine’s cell traversal needed to
maintain a correct display and process cached values
when a new formula is added - the event that triggers
CollectAssoc.

Task 2: Tracking execution traces.

To track execution traces, which enable the incremen-
tal computation of du-associations that have been exer-
cised, we have simply inserted a probe into the evalua-
tion engine. When cell C executes, this probe records
the execution trace on C’s formula graph, storing it in
C.Trace. For example, in the case of Clock, at the mo-
ment depicted in Figure 4, the execution trace stored for
cell minutey, described in terms of Figure 3’s node num-
bers, is (15,16,17,19). If the cell is subsequently reeval-
uated, the system replaces the old execution trace with
the new one. This approach functions for all varieties of
evaluation engines: whether the engine eagerly or lazily
evaluates cells, following any input and any dependence-
preserving evaluation sequence, all cells have associated
with them their most recent execution trace.

Storing only the most recent execution trace in C.trace
is sufficient because the cumulative coverage in C.DUA
is updated incrementally during validation, as described
in our discussion of Task 3.



]

if (minute < 0)

then error

else (if (minute <= 15)

then min
thsn min

else (if (minute <= 45)
then (30 - winute)
else (if (minute <= 60)

then (minute - €0)
else error)))

if {minute <= 30}
then (minute - 15)
else (45 - minute)

the mi

wiE M e

Task 3: Pronouncing outputs “validated”.

.......... Arxy A o l

N L
txuu, we show how we use the data coll

nd 2 to provide test adequacy information

wav that rnrunrne no nnderetandine of
way Lilat reqQuires no unalrsianding ot

. < See crred
this sec ecea
1 a

notions of testing, and uses visual devices to draw
a.t.t,ent.ion to untested sections of the evolving

Mt FEEENO T

nrogram.

oglhalll.

In the desktop clock programming scenario, suppose
that the user looks at the values displayed on the screen
and decides that the minuteHand cell contains the cor-
rect value. To document this fact, the user clicks on
the validation tab in the upper right corner of that
~rall Ticnira A immadiataley « hla

cel. As F igure o one imimeaiateny visible
sult of this action is the appearance of a checkmark
in the validation tab.
put in cell minute, minuteHand’s validation checkmark
changes to a question mark (not shown in the figure),
which means the current value has not been validated
but some previously-displayed value has. (The evalu-
ation engine makes this change while visiting cells af-
fected by the new input.) The third possible appear-
ance, a blank validation tab, means no validations have
been done since the last formula change to C or to a non-
input cell affecting C. Thus, the validation tab keeps
the user apprised of which cells have been explicitly val-
idated and which have not, given the current collection
of formulas.

ahawrg

Te-
auuvvo, 1<

If the user enters another in-

A finer-grained device for communicating testing sta-
tus involves test adequacy. Whenever a du-association
participates in the production of a validated value, we
set the ezercised flag for that du-association (the second
item of data kept for each du-association in the . DUA set
for the cell in whose formula the use occurs) to “true”.
We then calculate the percentage of the du-associations,
whose uses occur in the cell, that have been exercised.

armmiine ralle hardan

e Ante S AN
LU UuTLCLinie LllC Céi1'S OOTacr

(untested) to blue (100%

VVﬁ use Llub pb’lbt! 5
color on a continuum f

203

of the du-associations whose uses occur in the cell hav-
ing been exercised). (In this black-and-white paper, the
continuum is light gray to black.) With each validation
that exercises a previously unexercised du-association,
the border becomes less red (darker in these figures),

P S,

indicating a greater degree of “testedness” for that cell.
This visual feedback appears in all cells that contributed
to tho comnutation of the valin in tha wvalidatad eall
U VIIU VUL ULQUIVIL UL LWIT Valuv 111 LT auuaucu LCll.

In the example shown in Figure 6, the computation
of minuteHand’s value involves two of the four du-
associations that end in minutey, two of the seven du-
associations that end in minuteHand, and four of the
13 du-associations that end in minutex. Thus, after the

user V'd.ll(lal?eb mlnuteﬂana the cell DOI'CleI'S are aarxenea
using these fractions. Input cells (those with constant

When borders are entirely blue, the user can see that
each cell reference pattern (du-association) has been
tested (i.e., executed with validation) at least once. As
the figure shows, the user can also display arrows that
show all the cell reference patterns (du-associations) at
the granularity of cells; we are currentiy impiementing
these arrows at the subexpressmn level with the same

L s

Iy W

A oo dha Lo 1 PRy LIS M.

LUlU! bLllUlIl(‘: ad LIIU UUIUUID LU expuuuy lut: l/
cell reference patterns still need to be tested.

which

Figure 7 displays our algorithm Validate, which is
invoked when the user pronounces a displayed value
valid. The algorithm uses the static du-association in-
formation and execution traces, previously calculated
and stored as discussed in the descriptions of Tasks 1
and 2, to calculate the du-associations that participate
in the production of C’s current value, and to update
borders of participating cells.* As the algorithm pro-

it adds ta atarad DITA datn that indicates the
1V QGUUO LV DLULTU ./ U1 Uala vy liuaivaveo viico

validated thus far. This

ted and retained across

racda

ceedqs,
du-associations that have been
coverage information is accumulat

a succession of tests, even though cell execution traces
change as subsequent tests are applied.

In this algorithm, the use of ValidatedID ensures that

NI I PR PRI —

Ene dlgUrlCIl[Il Lﬂllﬂi aves lIl WUrbL case uime pl pOr-
tional to the number of du-associations validated, rather

Thig iqg +ha sama order

aizn af tha nraora
. 4 111D 10 VILIT DUy viuwvl

LT UL VIO lJlUél am-

of calculating the cell’s value, but the algo-
not triggered at that time, so, unlike the other
algorithms we have presented, its cost is not masked by
the cost of the evaluation process. ValidatedID is set to
0 when the programming environment is first activated.

4A generalization of this algorithm related to the approach
of [7] uses slicing to locate the expressions that contribute to
the computation of the validated output, and identifies the du-
associations involved in the computation from that slice. This
generalized approach works for programs with recursion, iteration,
and redefinitions of variables. For most form-based languages,
however, the more efficient Validate approach suffices.



1. algorithm Validate(C)

2. ValidatedID = ValidatedID +1

3. C.ValTab = “checkmark”

4. ValidateCoverage(C)

5. procedure ValidateCoverage(C)

6. C.ValidatedID = ValidatedID

7. for each use u € C.Trace do

8. D = the cell referenced in u

9. d = the current definition of D found in D.Trace
10. C.DUA = C.DUA U {((d,u),true)} - {((d,u),false)}
11. if D.ValidatedID < ValidatedID then

12. ValidateCoverage(D)

13. UpdateBorder(C)

Figure 7. Algorithim for updating test adequacy information
following a validation request.

When cells are created or added to the system, their

ValidatedID fields are initialized to 0. On each invoca-
tion of Validate, ValidatedID is incremented (line 1).
The . ValidatedID fields for all cells visited are assigned
this value of ValidatedID, which prevents duplicate vis-
its to the same cell.’

Task 4: Adjusting test adequacy information.
So far, we have focused on how the system handles cell
formulas as they are added to a program. We now con-
sider the other basic edits possible with form-based pro-
grams, namely, deleting a cell or changing a cell’s for-
mula. Changes to a constant-formula cell are equiva-
lent to the application of a new test input (that may
or may not be followed by validation requests), and re-
quire no action beyond that involved in recalculating
execution traces as discussed under Task 2. Deletion of
a cell is equivalent to modifying that cell’s formula to
BLANK. Thus, we need only consider modifications to
non-constant formulas.

Suppose that the user has done quite a bit of testing,
and has discovered a fault that requires a formula mod-
ification with far-reaching consequences. The user may
believe that the program is still fairly well tested, and
not realize the extent to which the modification invali-
dates previous testing.

To address this lack of awareness, the system must
immediately reflect the new test adequacy status of
the program whenever a cell is modified.® To accom-

5By using an integer rather than a boolean, and incrementing it
on each invocation of the algorithm, we avoid the need to initialize
the flag for all cells in the program on each invocation. We assume
that ValidatedID will not overflow, to simplify the presentation.

61n this context, the problem of interactive, incremental testing
of form-based programs resembles the problem of regression test-
ing imperative programs, and we could adapt techniques for incre-
mental dataflow analysis (e.g., {15, 20]) and incremental dataflow
testing (e.g. {11, 12, 22]) of imperative programs to generalize
this approach. This generalized approach applies to programs in
which cell references are recursive or in which formulas contain
iteration. For most form-based languages, however, the simpler
approach that we present here suffices.

204

algorithm UnValidate(C)

AffCells = {}

UnValidatedID = UnValidatedID +1

UnValidateCell(C)

for each cell D € AffCells do
UpdateBorder(D)
UpdateValTab(D)

8. procedure UnValidateCell(C)
9. C.UnValidatedID = UnValidatedID

10.  AffCells = AffCells U C
11. for each cell D € C.CellsThatRef do

12. for each definition d (of C) in C do

13. for each ((d,u),true) € D.DUA do

14. D.DUA = D.DUA U{({d, u),false)}—{((d, u),true)}
15. if D.UnValidatedID < UnValidatedID then

16. UnValidateCell(D)

Figure 8. Algorithm for updating test adequacy information
following a modification.

plish this, the system must (1) update C’s static du-
association and dynamic execution trace information,
and (2) update the ezercised flags on all du-associations
that may be affected by the modification, allowing cal-
culation and display of new border colors to reflect the
new “testedness” of affected cells. We must also ad-
just validation tab statuses on visited cells, changing
all checkmarks and questionmarks to questionmarks if
the cell retains any exercised du-associations after af-
fected associations have been reset, or to blank if all
the cell’s exercised flags are now unset. For example,
in the completed Clock program, if the user changes
cell minutex’s formula, then the du-associations involv-
ing minutex, and the validation statuses for minutex,
minuteHand, and theClock must all be reinitialized.

Our subsystem handles item (2) first, removing the old
information before adding the new. Let C be the mod-
ified cell. We use a conservative approach that recur-
sively visits affected cells. The algorithm, UnValidate,
given in Figure 8, is similar to Validate, but instead of
using dynamic information to walk backward through
the program, it uses static information to walk forward.
As the algorithm walks forward, it changes the erer-
cised flag on each previously exercised du-association it
encounters to “false”, and keeps track of each cell vis-
ited in AffCells. On finishing the work for all the cells,
the algorithm updates the border color and validation
tab for each cell in AffCell.

At this point, the static du-association and dynamic
trace information stored with C can be updated. First,
all stored static du-associations involving C are deleted,;
the environment can find these easily in the informa-
tion stored for C and for cells in C.CellsThatRef and
just delete them; this removal also guarantees that
du-associations that end in C are no longer marked
“exercised.” Having removed the old du-associations,
we need only re-invoke CollectAssoc as described in



Section 3 to add new associations. Finally, stored exe-
cution traces are automatically updated via the evalua-
tion engine as described earlier.

As was the case with Tasks 1 and 2, the cell visits re-
quired by UnValidate are already required for display
and value cache maintenance; therefore the time cost
of the algorithm increases only by a constant factor the
cost of other work being performed by the environment
when a formula is edited.

Task 5: Batch computation of information.
There are some circumstances in which it may be nec-
essary to calculate static definition-use information for
a whole program or section of a program - for example,
if the user does a block copy/paste of cells, or imports
a program from another environment that does not ac-
cumulate necessary data. One possible response to such
an action is to iteratively call the algorithms presented
so far — which are written for single cell changes — for
each new, modified or deleted cell in the new program
section. Although we do not present it here due to space
limitations, we use a more efficient algorithm that takes
an entire set of cells as input, and makes passes over
this set to update information on du-associations and
validation status.

4 EMPIRICAL RESULTS

Our visual feedback is designed to help users achieve
du-adequate testing, which is what is needed for bor-
ders to turn blue. However, we have not yet presented
evidence that du-adequate testing will reveal a reason-
able percentage of faults in form-based programs. To
empirically address this issue, we have implemented a
prototype within the Forms/3 programming environ-
ment. Our prototype incorporates all of the algorithms
described in this paper except for that of Figure 8, which
is partially complete. The screen shots used in this pa-
per are from this prototype. We have used our proto-
type to perform an empirical study of the effectiveness
of du-adequate test suites at detecting faults.

Methodology.

For our study, we obtained eight Forms/3 programs (see
Table 2) from experienced Forms/3 users. Three of
the programs (TimeCard, Grades, and Sales) are typi-
cal of spreadsheet programs, and the others are typical
of form-based programs written in research languages:
two are simple simulations (FitMachine and MicroGen),
one a graphical desktop clock (Clock), one a number-to-
digits splitter (Digits), and the last a quadratic equation
solver (Solution).

We asked seven users experienced with Forms/3 and
commercial spreadsheets to insert faults into our subject
programs which, in their experience, are representative
of faults found in Forms/3 programs or in spreadsheets.

205

Pool | Suite
Program Ezpr | DUA | Ver | Size | Size
Clock 33 64 7 250 11.3
Digits 35 89 10 230 22.7
FitMachine 33 121 11 367 30.2
Grades 61 55 10 80 9.8
MicroGen 16 31 10 170 104
Sales 30 28 9 176 10.4
Solution 20 32 11 99 12.0
TimeCard 33 92 8 240 16.7
average 33 64 10 202 15.4

Table 2. Data about ezperimental subjects, including (from
left to right) program name, number of ezpressions in the
program, number of du-associations in the program, number
of faulty versions, size of test pool, and average size of du-
adequate test suites for the program.

We then asked a Forms/3 user who had no knowledge
of these specific faults to generate a pool of tests for
each of the base versions of the subject programs. For
each base program, this user first created tests of pro-
gram functionality. He then executed these tests on the
base program to determine whether together they ex-
ercised all executable du-associations in the program,
and generated additional tests to ensure that each exe-
cutable du-association in the program was exercised by
at least 5 tests in the test pool. He also verified that
for all tests, validated cells in the base version produced
correct values.”

We used these test pools to create du-adequate test
suites for our programs. To do this, we first determined,
for each test t in the test pool, the du-associations ex-
ercised by t. We then created test suites by randomly
selecting a test, adding it to the test suite only if it
added to the cumulative coverage achieved by tests in
that suite thus far, and repeating this step until cover-
age was du-adequate. We generated between 10 and 15
du-adequate test suites for each of our subject programs;
Table 2 lists the average sizes of these test suites.

Because the base version was known to produce correct
output, and because only a single fault was inserted
in each faulty version, we could determine whether a
fault had been revealed in a modified version P’ by a
test suite 7" simply by comparing the validated output
of P' (the output which, for that test, was confirmed
by the tester to be correct) for each test t in T with
the validated output of P on t. Thus, to obtain fault
detection results, for each base version P, with its faulty
versions P; ... P, and universe U of test suites, for each
test suite T in U, we:

1. ran all tests in T on P, saving outputs,
2. for each modified version P; of P:

7This procedure was modeled after a recent study of imperative
program testing [13].



(a) ran all tests in T on P;, saving outputs,

(b) recorded T as fault-revealing for P; if and only
if the output of the validated cell for some test
t in T executed on P; differed from the output
of that cell when ¢t was executed on P.

Data and analysis.

Figure 9 displays fault detection data, using box plots
to show, for each program, the percentage of faults de-
tected by the du-adequate test suites. Dashed crossbars
represent median percentages of faults detected over the
set of test suites for the program. The boxes show the
ranges of percentages in which half of the fault detec-
tion results occurred. The whiskers that extend below
and above boxes indicate ranges over which the lower
25% and upper 25% of the data, respectively, occurred.

1004
90-

At E%
"

60
504
404
304
204

o]

percentage of faults revealed

] T T T T L ¥ T
Clock Digits FitMachine Grades MicroGen Sales Solution TimeCard
Figure 9. Faults detected by the du-adequate test suites.

The overall average (mean) percentage of faults detected
for all programs, faulty versions, and test suites in our
study was 81%. Fault detection varied across programs,
but in all but one case (on two versions of TimeCard)
exceeded 50%. Although differences in experimental
instrumentation make comparisons difficult, this fault-
detection effectiveness is comparable to or better than
the effectiveness demonstrated by the all-uses criterion
in studies of imperative programs [8, 13, 18, 27, 29].

These results are encouraging, but a few caveats are in
order. Our subject programs are not large, and we have
no data to show that they are representative of a larger
class of form-based visual programs. Also, although our
faulty versions involve manually-seeded faults created
by experienced users, we cannot substantiate that these
faults represent faults that occur in practice. Finally,
we do not claim that our test suites are representative
of those that would be constructed by typical users of
form-based languages.

One cost factor associated with dataflow testing involves
nonexecutable du-associations, which no inputs can ex-

206

ercise, but which are recognized by the testing sys-
tem’s static analysis. We discovered that on average,
11.65% of the du-associations calculated by our algo-
rithms for our programs were nonexecutable. This rate
is lower than the average rates of 26% and 27% ob-
served in two studies of imperative programs reported
in [27]. Nevertheless, the presence of these associations
could be difficult to explain to users. Future work will
consider whether techniques for determining (approx-
imately) path feasibility (e.g. [5]) can operate cost-
effectively behind the scenes to address this problem.

5 CONCLUSION

Due to the popularity of commercial spreadsheets, form-
based visual languages are being used to produce soft-
ware that influences important decisions. Furthermore,
the use of this paradigm is likely to continue to grow,
due to recent advances from the research community
that expand its capabilities. We believe that the fact
that such a widely-used and growing class of software
often has faults should not be taken lightly.

To address this issue, we have developed a methodol-
ogy that brings some of the benefits of formal testing
to this class of software. Key to its appropriateness
for the form-based paradigm are four features. First,
our methodology accommodates the dependence-driven
evaluation model, and is compatible with evaluation en-
gine optimizations, such as varying evaluation orders
and value caching schemes. Second, our collection of al-
gorithms is logically structured such that their work can
be performed incrementally, and hence can be tightly in-
tegrated with the highly interactive environments that
characterize form-based visual programming. Third,
our algorithms are reasonably efficient given their con-
text, because the triggers that require immediate re-
sponse from most of the algorithms also require im-
mediate response to handle display and/or value cache
maintenance, and the same data structures must be tra-
versed in both cases. The only algorithm that adds
more than a constant factor is Validate, whose cost
is the same order as the cost of recalculating the cell
being validated. Finally, our methodology is appropri-
ate for use by a wide range of programmers, including
the many end users who use spreadsheets, because it
requires no knowledge of testing theory. Instead, the
algorithms track the “testedness” of the program in-
crementally, and use visual devices to call attention to
insufficiently tested interactions.

Our empirical results suggest that in practice, our
methodology can achieve fault detection results com-
parable to those achieved by analogous techniques for
testing imperative programs. These results are impor-
tant, because they imply that the potential benefit of
this approach to form-based users may be substantial.



ACKNOWLEDGEMENTS

We thank the Visual Programining Research Group for
their work on the Forms/3 implementation and for their
feedback on the testing methodology. Thanks especially
to Anurag Agrawal, Joseph Davis, Rebecca Walpole
Djang, David Haney, and Virginia Perkins for their con-
tribution of faulty programs. This work has been sup-
ported by the National Science Foundation under ASC
93-08649, by an NSF Young Investigator Award, and by
Barler Daovlsr (TAD Asirard YD OPAINQ £~ MNon

ra\,uu,)' ]_1611)' \/"SILEIJI\_ Awalu UL n-J/iuoiud Lo Ure-
gon State University.

REFERENCES

[11 A. Ambler, M. Burnett, and B. Zimmerman. Oper-
ational versus definitional: a perspective on program-
ming paradigms. Computer, 25(9):28-43, Sept. 1992.

(2] P. Brown and J. Gould. Experimental study of people
creating spreadsheets. ACM Trans. Office Info. Sys.,
5(3):258-272, July 1987.

[3] M. Burnett and A. Ambler. Interactive visual data ab-
straction in a declarative visual programming language.
J. Vis. Lang. and Comp., 5(1), Mar. 1994.

[4] M. Burnett, R. Hossli, T. Pulliam, B. VanVoorst, and
X. Yanrr Toward visual programming languages for

atnnr i Al " oo
DDCCIIIAS I scienvind uaunuaauuu a LAAUILULLLY . L4adddd

Comp. Science and Eng., 1(4), 1994.

1 L. Clarke. A system to generate ¢
] L. Liarge. n sysiem to t

gen ava

cally execute programs. /[EEE Tran. Softw Eng 2(3),

Sept. 1976.

[6] L. Clarke, A. Podgurski, D. Richardson, and S. Zeil. A
formal evaluation of data flow path selection criteria.
IEEE Trans. Softw. Eng., SE-15(11):1318-1332, Nov.
1989.

[7] E. Duesterwald, R. Gupta, and M. L. Soffa. Rigorous
data flow testing through output influences. In Proc.
Znd Irvine Softw. Symp., Mar. 1992.

(8] P. Frankl and S. Weiss. An experimental comparison of

the effectiveness of branch testing and data flow testing.

IEEE Trans. Softw. Eng., 19(8):774-787, Aug. 1993.

[9] P. Frankl and E. Weyuker. An applicable family of data
flow criteria. [EEE Trans. Softw. Eng., 14(10):1483-
1 Oct. 1988.

498,
[10] H. Gottfried and M. Burnett. Graphical definitions:

Making spreadsheets visual through direct manipula-

tion and gestures. In /EEE Symp Vis. Lang., Sept.
1997.

[11] R. Gupta. M. J. Harrold, and M. L. Soffa. Program
slicing-based regression testing techniques. J. Softw.
Testing, Verif., and Rel., 6(2):83-112, June 1996.

[12] M. J. Harrold and M. L. Soffa. An incremental ap-
proach to unit testing during maintenance. In Proc.
Conf. Softw. Maint., pages 362-367, Oct. 1988.

[13] M. Hutchins, H. Foster, T. Goradia, and T. Os-
trand. Experiments on the effectiveness of dataflow-

d controlfow-based test adeguacy criteria. In 16th
ana controifiow-based test adequacy 1itenta. In 16in

Intl. Conf. Softw. Eng., pages 191-200, May 1994.

[\
-3

[14)

[15]

[16]

[17]

(18]

(23]

[24]

[27]

(28]

[29]

J. Laski and B. Korel. A data flow oriented program
testing strategy. IEEE Trans. Softw. Eng., 9(3):347-
354, May 1993.

T. Marlowe and B. Ryder. An efficient hybrid algorithm
for incremental data flow analysis. In ACM POPL,
pages 184-196, Jan. 1990.

B. Myers. Graphical techniques in a spreadsheet for
specifying user interfaces. In ACM CHI ’91, pages 243—
249, Apr. 1991.

S. C. Ntafos. On required element testing. /EEE Trans.
Softw. Eng., 10(6), Nov. 1984.

J. Offutt, J. Pan, K. Tewary, and T. Zhang. An ex-
perimental evaluation of data flow and mutation test-
ing. Softw. Practice and Eiperience, 26(2):165-176,
Feb. 1996.

D. rerry dn(] U r\aiser nuequdw Eebcmg d.l'l(l ODJeCE-
oriented programming. J. Object-Oriented Prog., 2,
Jan. 90.

L. Pollock and M. L. Soffa. An incremental version of
iterative data flow analysis. TEEFE Trans. Softw. Eng.,

15(12):1537-1549, Dec. 1989.

S. Rapps and E. J. Weyuker. Selecting software test

data using data flow information. IEEE Trans. Softw.
Eng., 11(4):367-375, Apr. 1985.

G. Rothermel and M. J. Harrold. Selecting tests and
identifying test coverage requirements for modified soft-
ware. In Proc. 1994 Intl. Symp. Softw. Testing and
Analysis, pages 169-184, Aug. 1994.

G. Rothermel, L. Li, and M. Burnett. Testing strategies
for form-based visual programs. In The Eighth Intl.
Symp. Softw. Rel. Eng., pages 96-107, Nov. 1997.

T. Smedley, P. Cox, and S. Byrne. Expanding the utility
of spreadsheets through the integration of visual pro-
gramming and user interface objects. In Adv. Vis. Int.
"96, May 1096

G. Viehstaedt and A. Ambler. Visual representation

and manipulation of matrices. J. Vis. Tn:nn and Comn
anipulation of matric ana Comp.,

3(3):273-298, Sept. 1992.

E. 1 Weavynlksar Aviomatizine softwa
ooJ. WEYUXKEr., AXIomatiZin g soitwar

ro tocg
equacy. [EEE Trans. Softw. Eng., 1 (12) 1
Dec. 1986.

E. J. Weyuker. More experience with dataflow testing.
IEEE Trans. Softw. Eng., 19(9), Sept. 1993.

E. Wilcox, J. Atwood, M. Burnett, J. Cadiz, and
C. Cook. Does continuous visual feedback aid debug-
ging in direct-manipulation programming systems? In
ACM CHI’97, pages 22-27, Mar. 1997.

W. Wong, R. Horgan, S. London, and A. Mathur. Effect
of test set minimization on fault detection effectiveness.
In 17th Inti. Conf. Softw. Eng., pages 41-50, Apr. 1995.



