
Incorporating Incremental Validation and Impact Analysis into Spreadsheet
Maintenance: An Empirical Study

Vijay B. Krishna, Curtis R. Cook, Daniel Keller, Joshua Cantrell , Chris Wallace, Margaret M. Burnett,
and Gregg Rothermel

Oregon State University, Corvalli s, OR 97331
{ krishnvi, cook, keller, cantrjos, wallacch, burnett, grother} @cs.orst.edu

Abstract

Spreadsheets are among the most common form of
software in use today. Unlike more traditional forms of
software however, spreadsheets are created and
maintained by end users with littl e or no programming
experience. As a result, a high percentage of these
“ programs” contain errors. Unfortunately, software
engineering research has for the most part ignored this
problem. We have developed a methodology that is
designed to aid end users in developing, testing, and
maintaining spreadsheets. The methodology
communicates testing information and information about
the impact of cell changes to users in a manner that does
not require an understanding of formal testing theory or
the behind the scenes mechanisms. This paper presents the
results of an empirical study that shows that, during
maintenance, end users using our methodology were more
accurate in making changes and did a significantly better
job of validating their spreadsheets than end users without
the methodology.

Keywords: spreadsheets, maintenance, testing, impact
analysis, empirical study, visual programming

1.  Introduction

Spreadsheet languages are among the most common
forms of “programming languages in use today.
Commercial spreadsheet systems, one of the most widely
used PC business applications, are a subclass of
spreadsheet languages. The relative simplicity of the
spreadsheet paradigm lets end users with littl e or no
formal programming background quickly automate a wide
variety of computational tasks. The spreadsheets these
users create play an influential role in decisions about

budgets, investments, student grades, taxes, and many
other important issues.

Spreadsheets are not just mechanisms for organizing
and displaying data: rather, they are programs that use
formulas to transform inputs into outputs. Moreover, like
programs in imperative languages, spreadsheets often
contain errors. A survey of the literature [15] provides
several examples: in four field audits of operational
spreadsheets, errors were found in an average of 20.6% of
the spreadsheets audited; in eleven experiments in which
participants created spreadsheets, errors were found in an
average of 60.8% of those spreadsheets; in four
experiments in which the participants inspected
spreadsheets for errors, the participants missed an average
of 55.8% of those errors. Two large auditing firms
reported finding errors in 90% of the spreadsheet financial
models they reviewed [15]. Such errors can have serious
consequences; for example, a Dallas oil and gas company
lost milli ons of dollars in an acquisition deal because of
spreadsheet errors [14].

Compounding these problems, spreadsheet
programmers exhibit unwarranted confidence in the
correctness of their spreadsheets and their modifications
[2, 16, 26]. For instance, Brown and Gould [2] studied
nine experienced spreadsheet users with an average of 2.7
years and eight hours per week of experience. Although
these subjects were quite confident that their spreadsheets
were accurate, 44% of the spreadsheets they created
contained errors and every subject made at least one error.

Spreadsheet errors can often be traced to problems in
spreadsheet development; however, it is widely
acknowledged that spreadsheet users also report
diff iculties with maintenance tasks such as understanding,
debugging, modifying, and enhancing spreadsheets [5, 16,
17]. Given the ubiquity of spreadsheets and the
importance of the tasks they perform, we would like to
help spreadsheet users avoid such diff iculties. One natural
place to seek such help is the software engineering



community. Most previous research in software
engineering, however, has addressed problems faced by
professional software engineers using imperative
languages; comparatively littl e research has addressed
problems involving the "engineering" of spreadsheets.
Moreover, in our search of the literature, with the
exception of a few papers addressing problems in
spreadsheet debugging and auditing [5, 19], we find no
research directly addressing problems related to
spreadsheet maintenance and evolution. This is
particularly distressing because, like successful imperative
programs, successful spreadsheets undergo evolution,
adaptation, perfection, and correction, often in the hands
of users other than their initial developers.

Therefore, we have been investigating the possibilit y of
bringing some of the benefits of formal software
engineering techniques to the creators and maintainers of
spreadsheets.  Our initial focus has been on the testing and
debugging of spreadsheets, and one outcome of this work
has been our "What You See Is What You Test"
(WYSIWYT) spreadsheet testing methodology [21, 22].
The WYSIWYT methodology provides feedback about
the "testedness" of a spreadsheet so that its creators will be
motivated to test their spreadsheets more thoroughly. The
methodology has been designed, however, to function
incrementally, as formulas and data are added to, deleted
from, and modified in a spreadsheet, using impact analysis
to determine where revalidation is needed.  Thus, the
methodology is expected to support not just the initial
development of spreadsheets, but also their evolution and
maintenance.

To date, our studies of the WYSIWYT methodology
[20, 21] have focused on its application to complete
spreadsheets. These studies have shown that the
methodology can help spreadsheet users test their
spreadsheets more effectively and more eff iciently. Thus
far, however, we have not empirically investigated the
methodology in the context of spreadsheet maintenance.
Furthermore, our studies have focused on computer
science students, who represent only a specialized subset
of spreadsheet users. To more generally assess the
potential of the WYSIWYT methodology, we require
studies of end users engaged in maintenance tasks.

We have therefore conducted an experiment,
investigating the use of our methodology in the context of
a spreadsheet modification task, and focusing on end users
who are not computer science students. Our results
indicate that end users using our WYSIWYT methodology
during spreadsheet maintenance are more accurate in
making changes and do a significantly better job of
validating their spreadsheets than do end users employing

Ad Hoc approaches. Furthermore, the end users using the
WYSIWYT methodology are less overconfident than
those using the Ad Hoc approach that their spreadsheets
do not contain errors.  Below we review the relevant
literature, describe the WYSIWYT methodology, and
present our experimental design, analysis, and
conclusions.

2. Background

2.1 Spreadsheet Languages and Forms/3

Spreadsheet languages, also known as form-based
languages in some of the research literature, provide a
declarative approach to programming characterized by a
dependence-driven, direct-manipulation working model
[1]. Users of spreadsheet languages create cells and define
formulas for those cells. These formulas reference values
in other cells and use them in calculations. When a cell 's
formula is defined, the underlying evaluation engine
calculates the cell 's value and the values of other affected
cells and displays the results.

We have prototyped our WYSIWYT methodology in
the research language Forms/3 [3], one of many
spreadsheet language research systems (e.g. [3, 4, 11, 13,
23, 24]). This choice is motivated partly by the fact that
we have access to the implementation of Forms/3, and
thus, we can implement and experiment with various
testing technologies within that environment. More
important, however, is that by working with Forms/3, we
can investigate language features common to commercial
spreadsheet languages as well as advanced language
features found in research spreadsheet languages.

Figure 1 shows an example of a Forms/3 spreadsheet.
The figure depicts a financial spreadsheet that represents
the cashflow projection model for a "Pizza Parlor"
consisting of information about sales, expenses and final
cashflow for three months. Forms/3 spreadsheets are not
restricted to fixed grid of cells and we can give the cells
meaningful names.  For example, the cell representing the
cost of ingredients for January is called
cost_ingredients_jan. The cells in the spreadsheet can be
categorized as input cells or output cells, depending on
whether they take inputs, or calculate values based on
other cell values. In the figure, Pizza_jan is an input cell
(thin border) and cost_ingredients_jan is an output cell
(thick border). Cell formulas may be hidden or displayed.
In this figure, the formula for cell cost_ingredients_feb is
displayed.



2.2 The WYSIWYT Methodology

Our WYSIWYT methodology relies, behind the scenes,
on code-based test adequacy criteria. Code-based test
adequacy criteria provide help in selecting test data and in
deciding whether a program has been tested "enough'' by
relating testing effort to coverage of code components.
Such criteria have been well researched for imperative
languages (e.g. [8, 12, 18]), and several empirical studies
(e.g. [7, 9, 25]) have demonstrated their usefulness.

Our methodology incorporates a test adequacy criterion
adapted from the output-influencing-all-du-pairs dataflow
adequacy criterion defined originally for imperative
programs [6]. This criterion, which we call du-adequacy
for brevity, focuses on the definition-use associations (du-
associations) in a spreadsheet, where a du-association
links an expression (in a cell formula) that defines a cell 's
value with expressions in other cell formulas that
reference (use) the defined cell . The criterion requires that
each executable du-association in the spreadsheet be

exercised by test data in such a way that the du-association
contributes (directly or indirectly) to the display of a value
that is subsequently pronounced correct (validated) by the
programmer.1

The appropriateness of the du-adequacy criterion for
spreadsheets stems from the fact that by relating test
coverage to interactions between definitions and uses of
cells, the criterion requires these interactions to be
exercised. Since such interactions are a primary source of
errors in spreadsheets, this is valuable.  Moreover, by
linking test coverage to cell validation, the criterion avoids
problems in which du-associations influencing only values
that are hidden or off-screen are considered exercised

                                                
1 

It is not always possible to exercise all du-association;
those that cannot be exercised are called nonexecutable.
Determining whether a du-association is executable is
provably impossible in general and frequently infeasible in
practice [9, 25]; thus, data flow test adequacy criteria
typically require that test data exercise (cover) only
executable du-associations. Our criterion does the same.

Figure 1: Pizza sales spreadsheet



simply by applying test inputs; instead, the du-association
must participate in producing a visible result judged
correct by the spreadsheet programmer.  The criterion also
facilit ates the incremental validation of spreadsheets,
allowing a test to involve entry of values into a small
subset of the potentially large set of input cells in a
spreadsheet, followed by validations of multiple cells.
Finally, the criterion facilit ates impact analysis: when a
spreadsheet programmer changes a formula, the
information used to support the criterion can be used to
calculate the du-associations added or potentially affected
by this modification. The system can then require their
(re-) validation.

Key to the usefulness of the WYSIWYT methodology
are devices for communicating testing and impact
information to the spreadsheet user in a manner that does
not require understanding of formal testing theory. To
show how our methodology provides this we offer the
following example.

Suppose a programmer has created the financial
spreadsheet of Figure 1. During this process, the
underlying evaluation engine has not only been displaying
cell values, but has also been calculating the du-
associations that come into existence as new formulas are
created, and tracking the du-associations that influence
calculations. Using this information, visual devices keep
the programmer continually informed of testedness status,
draw attention to untested sections of the evolving
spreadsheet, and suggest where testing activity will
provide new progress (according to our adequacy
criterion).

For example, suppose the spreadsheet programmer now
decides that cell totalexp_feb's displayed value is correct,
given the value of the cells it depends on, and clicks on the
checkbox in the upper right corner of that cell to validate
it. The system responds with immediate visual feedback as
to the new testedness of each visible cell and arrow, as
well as for the whole spreadsheet, as shown in Figure 1.
The underlying validation algorithm is given in [21]; the
overall notion is that it recurses back through the du-
associations that affect, directly or indirectly, the currently
computed value of totalexp_feb, and marks them tested.
The system depicts a fully tested cell with blue borders
(black in this paper), an untested cell with red borders
(light gray), and a partially tested cell with borders in
various shades of purple (darker gray). The programmer
can choose to display arrows showing interactions
between some of the cells. The arrows follow the same
color scheme as the cell borders. We provide additional
testing information through the marks in or near the cell 's
checkbox: an exclamation point means that validating that
cell 's value will i ncrease the spreadsheet's testedness, a
question mark indicates that some previous value for this

cell was validated, a blank indicates that no opinion has
been recorded about this cell 's value, and a check mark
indicates that the user's validation was recorded. Finally,
additional testedness information is provided by the
"percent tested" indicator at the top of the window which
shows the percent of du-associations that have been tested.

Suppose the programmer has validated a large
percentage of the du-associations in the spreadsheet,
turning most borders and arrows blue, and suppose that
the programmer decides to alter a formula - either to
correct an error or to enhance the spreadsheet. When the
programmer completes the alteration, the underlying
evaluation engine uses static information about du-
associations to walk forward through cells that use,
directly or indirectly, the modified cell , and mark those
du-associations "not validated".   Having completed this
impact analysis task, the engine updates the border and
arrow colors and other indicators to reflect the new
testedness status of the spreadsheet. This act draws the
programmer's attention to the need to re-validate
interactions newly created, or potentially impacted, by the
modification.

3. Experiment Design

The objectives of our study were to investigate the
following research questions:

RQ1: Are end users who use the WYSIWYT methodology
more accurate in performing spreadsheet modifications
than end users who use an ad-hoc approach?

RQ2: Are end users who use the WYSIWYT methodology
more effective in testing modified spreadsheets than end
users who use an ad-hoc approach?

RQ3: Are end users who use the WYSIWYT methodology
less overconfident about the accuracy of their spreadsheets
than end users who use an ad-hoc approach?

RQ4: Are end users who use the WYSIWYT methodology
less overconfident about the quality of their testing of
modified spreadsheets than end users who use an ad-hoc
approach?

These questions were translated directly into hypotheses.
We also took care that the design of our experiment would
provide insight into the following question:
Is training in the underlying test adequacy criterion and its
relationship to the visual devices needed in order for the
spreadsheet maintainer to perform more effectively when
using our methodology?



3.1 Procedure

To investigate our research questions, we conducted a
controlled laboratory experiment. In the experiment, the
subjects modified and tested a spreadsheet. Almost half of
the subjects ("WYSIWYT" subjects) did so using the
spreadsheet environment that included the WYSIWYT
methodology, and the rest ("Ad Hoc" subjects) used the
same environment minus the WYSIWYT methodology.

The experiment was conducted in a small l ab with six
workstations running Windows NT with the subjects
seated one per workstation. The experiment began with a
25-minute tutorial on Forms/3 in which each subject
actively participated by working with several example
spreadsheets on their individual workstations. (The tutorial
is described further in Section 3.3.) All subjects were
given additional unstructured time to practice their
Forms/3 skill s and to practice making changes in the
tutorial example problems. To control for amount of
exposure to the environment, both groups of subjects were
given identical amounts of training time.

Subject data was collected during the experiment from
pre- and post-problem questionnaires and from electronic
transcripts that recorded all on-line modification and
testing activities. The pre-problem questionnaires
measured the subjects' understanding of the Forms/3
problem and the post-problem questionnaires measured
the subjects' perceptions of how well they had performed
the modification and testing tasks. The post-problem
questions for the WYSIWYT subjects also included
questions about their understanding and use of the
feedback devices provided by the WYSIWYT
methodology.

3.2  Subjects

Since we were investigating whether typical
spreadsheet end users could effectively use the
WYSIWYT methodology, we decided to draw subjects
from a pool of business school students, because we
believed they would be representative of spreadsheet end
users and have the business domain knowledge required to
understand many typical spreadsheet applications. We

selected 36 students who were either currently enrolled in
or had recently taken a sophomore business course in
which they worked with spreadsheet financial models.
The subjects were a mix of sophomore and junior business
majors with varying levels of spreadsheet and
programming experience. We randomly partitioned these
students into two groups: a control ("Ad Hoc") group of
17 students that did not have access to our WYSIWYT
methodology, and a treatment ("WYSIWYT") group of 19
students that did have access to the methodology.  (The
difference in the group size was due to a few subjects
faili ng to arrive for their appointment.)

To ascertain whether the subjects had reasonably
similar backgrounds, we administered a questionnaire that
asked about their academic background and experience
with spreadsheets and programming. A summary of the
analysis of the responses is given in Table 1. A subject
was credited programming experience if he or she had a
high school or college class or professional experience in
programming. A subject was credited with spreadsheet
experience if he or she had created a spreadsheet for a
high school or college class, or for professional or
personal use. As Table 1 shows, there is littl e difference in
the collective backgrounds of the two groups. Only one
subject reported experience using Forms/3. Our statistical
analysis showed homogeneity between the two groups.

3.3 The Tutorial

During the 25-minute tutorial on Forms/3, each subject
worked with example spreadsheets on their machine
following instructions given by the lecturer. The tutorial
introduced basic language features (e.g. basic syntax of
formulas) and environmental features (e.g. how to create,
delete, and edit cells) that would eventually be used in the
spreadsheet modification task. Throughout the tutorial the
subjects had access to a hardcopy quick reference guide to
the features they were being taught. They could make
notes on the handouts, which remained available to them
throughout the experiment. An assistant was available to
answer questions.

In the tutorial, testing was described as a process of
trying different input values and recording decisions about

Group Number
of subjects

Average
GPA

Subjects with
programming

experience

Subjects with
spreadsheet
experience

Subjects with
exposure to

experimental
environment

Ad Hoc 17 3.09 8 17 0
WYSIWYT 19 3.35 10 19 1

Table 1: Subject group demographics associations



the correctness of values in output cells.  All subjects were
asked to record decisions by clicking on a checkbox only
for those output cells whose value seemed correct to them.
The tutorial for the WYSIWYT subjects also included
basic instructions on the use of cell border colors, arrows,
percent-tested indicator, and checkboxes.  Because one of
the goals of the WYSIWYT methodology is that the user
need not acquire an understanding of formal testing
theory, we explained only that red means "not tested",
blue means "fully tested", and purple means "partially
tested".  Inside checkboxes, the blanks were described as
meaning "a testing decision has not been recorded", check
marks as "you have made a decision for this cell 's value
for the current set of input values", the question mark as
meaning "you have made a decision for this cell 's value
for some previous input values", and the exclamation
point as meaning "by checking this cell 's checkbox you
will i ncrease the testedness of the spreadsheet".  We did
not mention the underlying concepts of du-associations or
impact analysis, nor did we describe non-executable du-
associations. Following these explanations, the subjects
were given unstructured time to practice their Forms/3
skill s.

Regardless of which group a subject was in, the total
training time was identical; subjects not receiving
explanations of the methodology's feedback were given
more unstructured time to practice using Forms/3.  It was
important to equalize the total time, because the additional
instructions that the WYSIWYT subjects received
provided them with additional practice in Forms/3, and
this additional practice time could have confounded the
results. Since the subjects had littl e or no previous
exposure to the Forms/3 environment, at the conclusion of
the tutorial the subjects could be considered equal in their
knowledge of Forms/3.

3.4 Tasks and Materials

The subjects were given the experimental task once the
tutorial was completed. The experimental task involved
making changes to a spreadsheet (Figure 1) containing a
cash flow projection model for a pizza restaurant. The
model included the pizza sales for each of three months
(January, February, and March) and the expenses (cost of

pizza ingredients, worker's salaries). The pretax cash flow
was the difference between sales and expenses. Taxes
were deducted from the pretax cash flow to yield an after
tax cash flow. The model was similar to a spreadsheet
model the subjects had encountered in a sophomore level
business class.  A complete description of the problem and
materials is included in [10].

We instructed the subjects to read the description of the
spreadsheet they were about to work with. The description
included details on the cash flow projections for the pizza
restaurant. We then administered a five question
comprehension quiz, so that we could assess the subjects'
basic understanding of the problem and whether they
could relate parts of the description of the model to the
cells in the Forms/3 spreadsheet.  (Over three-fourths of
the subjects answered all five questions correctly.)

Following this quiz, we gave the subjects their
experimental task, which involved making changes to the
pizza restaurant model. In brief, the subjects were asked to
(1) modify the tax rate for each of the three months
covered by the model, (2) add spaghetti (sales and cost of
ingredients) to the restaurant's menu for the last two of the
three months, and (3) add an additional worker for the last
two months. To encourage the students to test the
modified model the task description indicated that the
initial unmodified spreadsheet model was correct and that
it was important that the modified spreadsheet not contain
errors. The subjects were given 15 minutes to make the
modifications and to verify that the spreadsheet was
working correctly. The subjects completed the post-
problem questionnaire after the modification task. The
results and analysis of the questionnaires and transcripts
are presented in the next section.

4. Results and Analysis

4.1 Accuracy

Our first research question considers whether using our
methodology helped the subjects make the modifications
more accurately. The modification was scored on an 18-
point basis according to the following:

Tax rate change (1 point per month for a total of three
points);

Group Tax Rate
(3 points)

Spaghetti
(12 points)

Worker
(3 points)

Total Modification

Ad Hoc (n=17) 2.71 (.69) 9.94 (2.1) 2.94 (.24) 15.6 (2.1)
WYSIWYT (n=19) 2.79 (.63) 10.74 (1.6) 2.63(.83) 16.2 (2.7)

Table 2: Average modification scores for each subtask and the total modification task.



Adding spaghetti to the menu (4 points/month for a
total of 12 points);
Adding additional worker (1 point per month for a total
of 3 points).

Note that since the spaghetti and additional worker
changes were for February and March only, leaving
January unchanged was worth 4 points for the spaghetti
change and 1 point for the worker change.

The average modification scores for the Ad Hoc and
WYSIWYT subjects for each modification subtask are
given in Table 2. The average total modification score was
higher for the WYSIWYT subjects but not significantly
higher (Mann-Whitney, p = 0.1681). On further
examination of the data, however, we discovered that one
WYSIWYT subject had scored only 7 out of 18: over 3
standard deviations below the mean and considerably
below any other WYSIWYT subject. With this outlier
removed, the WYSIWYT subjects' total modification
scores were nearly significantly higher than the Ad Hoc
subjects' modification scores (Mann-Whitney, p =
0.0861).

4.2 Testing

A second research question considers whether the
subjects with the WYSIWYT methodology were more
effective in their testing. To encourage all subjects to test
their spreadsheets after making changes, the modification
task description for both groups indicated that the original
spreadsheet had been thoroughly tested and that the
modified spreadsheet needed to be correct.

Each click in a checkbox to record a decision about a
cell 's value by the subject was considered to be a test.
Table 3 shows that our methodology provides strong
encouragement to test the modified spreadsheets:
significantly more WYSIWYT subjects than Ad Hoc
subjects executed at least one test (Fisher's Exact Test,
df=1, p=0.0004).  Also, the five Ad Hoc subjects who
executed at least one test executed an average of 8.4 tests
while the 17 WYSIWYT subjects who executed at least
one test executed an average of 31.7 tests. Because the
testing difference between the two groups of subjects was
so dramatic, we wondered whether some of the Ad Hoc
subjects might have "tested" by visually inspecting cell
formulas for different input values, rather than by clicking
checkboxes. Our inspection of the transcripts, however,
revealed that this had not occurred: after completing the
modifications, only one of the 12 Ad Hoc subjects who

did not execute a test made a change to the input cells;
further, only 5 of these 12 subjects displayed a cell
formula after completing their modifications. During their
testing after completing the modifications, three of the
WYSIWYT subjects found and corrected errors; no Ad
Hoc subject who executed tests found an error after
completing the modifications.  Hence our WYSIWYT
methodology seems to provide strong visual suggestions
to test and helps find errors during maintenance.

4.3 Overconfidence
In spite of the high percentage of spreadsheets

containing errors, studies [2, 16, 26] have reported that
end users are very confident that their spreadsheets do not
contain errors. Experience does not seem to matter as
these studies have shown that both novices and experts are
overconfident about the correctness of their spreadsheets.
One goal of our research is to reduce overconfidence by
providing feedback about testedness and about the impact
of changes. Recall that participants using our methodology
received feedback via changes in cell border and arrow
colors, in the "percent tested" indicator, and in
checkboxes, after each change to a cell or after each test
was executed. To determine the impact of this feedback on
overconfidence, after completing the experimental task,
we asked the participants to answer questions about the
correctness of their modification and how well they
thought they had tested the spreadsheet.

The modification self-rating asked them to rate on a 1
("not confident") to 5 ("very confident") scale how
confident they were that each of the modification subtasks
(tax rate, adding spaghetti, new worker) had been
completed correctly. Since few subjects made errors in the
tax rate and new worker subtasks, we compared only the
spaghetti subtask ratings with their spaghetti modification
scores. Although Table 4 shows that the regression
coeff icients (self-rating) for the Ad Hoc and WYSIWYT
groups were not significantly different from 0, it does
indicate that the self-rating is a modest predictor for the
WYSIWYT group but has no predictive value for the Ad
Hoc group.

The post session questionnaires also asked subjects to
rate "on a famili ar A-F scale" how well they tested their
spreadsheet. In spite of the fact that 12 of the 17 Ad Hoc
subjects did not execute a single test and that 17 of the 19
WYSIWYT subjects executed at least one test case, the Ad
Hoc subjects' average testing self-rating (Table 5) was
considerably higher than the WYSIWYT subjects' average

Group No tests At least one test
Ad Hoc (n=17) 12 5

WYSIWYT (n=19) 2 17

Table 3: Number of subjects executing no test cases and executing at least one test.



self-rating.

5. Discussion

The strong results from the experiment showed that the
subjects receiving the visual testedness and change impact
feedback provided by the WYSIWYT methodology were
greatly aided and encouraged by it, especially in their
testing. One question for which we only have a partial
answer is: which portions of the visual feedback were
most helpful? To help us begin to answer this question, the
WYSIWYT group version of the post-problem
questionnaire asked the subjects to rank the helpfulness of
each of the feedback devices as very helpful, quite helpful,
helpful, somewhat helpful or not helpful. The results,
summarized in Table 6, indicate that the subjects found
the cell border colors, arrows and percent tested indicator
most helpful, checkmarks, exclamation point, and blanks
less helpful, and question marks, least helpful.

 Two-thirds of our subjects' spreadsheets contained
errors after the modification was completed (71% for Ad
Hoc, 63% for WYSIWYT). This error rate seemed high
for a simple task and made us wonder how it compared
with error rates in other experiments. Panko's [15] survey
of studies on spreadsheet errors included 12 experiments
in which the subjects developed spreadsheets. The error
rates in those experiments ranged from 35%-84%. Further,
subjects in most of those experiments were business
students and they were given hours and in some instances

days to complete the development task. Hence, the error
rate for our subjects fell i nto this range even though we
gave them only 15 minutes to complete the task.

Based on the scores for the three modification subtasks
(change tax rate, adding spaghetti for February and March,
and adding an additional worker for February and March),
the spaghetti modification was the most diff icult (Table 2).
A plausible reason for this is that the spaghetti changes are
"global" (dependent on other cells) while the other two tax
modifications are "local" (independent of other cells). The
rate change involved changing the rate in the cell formula
from 25% to 28% for each month and the addition of a
worker change involved adding $1000 to the salaries
formulas for February and March. In both cases, the
changes did not depend on or use information from
another cell . However, for the spaghetti modification
subtask, changes to the revenue, expenses, and pretax cell
formulas depended on other cells. By far the most
common mistake in this modification was not correctly
computing the pretax totals for February and March.
Pretax errors accounted for more than half of the errors
made by the Ad Hoc subjects and over 40% of the errors
made by the WYSIWYT subjects. It would seem that the
dependency of the pretax for February and March on the
correctness of both the new total revenue and new total
expenses might account for such a high error rate.

6. Threats to Validity

In this experiment, we addressed the threats to internal
validity by balancing the two groups of subjects based on
their year in school and their GPAs, by equalizing their
training time, and by selecting an experimental problem
from a domain which the subjects were famili ar with.
However, threats to external validity are more diff icult to

Group Regression
Coefficient

Standard Error t-value Significance

Ad Hoc (n=17) -0.167 0.536 -0.311 0.7602
WYSIWYT (n=19) 0.282 0.363 0.776 0.4482

Table 4: Regression analysis for spaghetti modification subtask.

Group Tested Self-Rating
Ad Hoc 3.353 (.931)

WYSIWYT 3.000 (.667)
  Table 5: Average testing self-rating (A=4, B=3,

C=2, D=1, F=0)

How helpful were: Helpful - Very Helpful Somewhat Helpful or Not Helpful
colored cell border 90% 10%

Arrows 90% 10%
"Tested" indicator 84% 16%

Checkmarks 78% 22%
exclamation 78% 22%

blanks 77% 23%
question marks 72% 28%

Table 6: WYSIWYT subjects' helpfulness rating



address, given the need to control all other factors. For
example, business students represent only a fraction of the
spreadsheet programmer population. Similarly, the
spreadsheet used in the experiment may not be
representative of the population of spreadsheets. Since the
main focus of the study was a modification task and
testing, the original spreadsheet did not contain any errors.
This may be unrealistic as the spreadsheets encountered in
a real life situation may contain some errors. However,
including errors in the spreadsheet would have
confounded the data about modification and testing
effectiveness, as the subjects would not be focused on the
actual experimental task of modifying and testing the
spreadsheet. Moreover, there was an opportunity for the
subjects to introduce errors into the spreadsheet by
themselves during their modification task. We wanted to
see if the subjects could catch such errors with the help of
our WYSIWYT methodology.

For scoring purposes, the modification task was broken
into abstract subtasks, such as the new total expenses
includes the cost of spaghetti ingredients and an additional
worker, without specifying exactly how these should be
done. Modification accuracy was measured by scores for
each of the abstract subtasks. Testing effectiveness was
measured by whether or not tests were executed. An
alternative measure of testing effectiveness could be du-
adequacy.  However, du-adequacy was not used because
the subjects did the modification task in different ways,
with some subjects creating more new cells or changing
more cells than other subjects. Hence the resulting student
spreadsheets contained different numbers of du-
associations.

7. Conclusions

In this paper we reported empirical results about a
methodology aimed at improving the maintainability of
spreadsheets. The major results were:

1. Subjects using the WYSIWYT methodology were
more accurate in a modification task.
2. Subjects using the WYSIWYT methodology were
significantly more effective in testing. The methodology
encouraged subjects to test their spreadsheets after
making changes. Most of the subjects without the
methodology did no testing.
3. Subjects using the WYSIWYT methodology were
better able to predict the accuracy of their modification
and were less overconfident about how well they had
tested their spreadsheets.
Further, it was possible for the subjects using the

WYSIWYT methodology to achieve these benefits even
without training in the theory of the underlying test

adequacy criterion and its relationship to the visual
devices. This is encouraging because it suggests that it is
possible for end users with little or no programming
experience to achieve some of the benefits of the formal
theory without training in the testing principles behind our
methodology.

This is the first empirical study of spreadsheet
maintenance. Although no accurate figures are available,
given the extensive use of commercial spreadsheets by the
business and other communities, it is safe to say that
spreadsheet maintenance is a common and important task.
Therefore it is surprising that software engineering
research has to a large extent ignored this area. That many
of the spreadsheets are developed by end users who have
little or no programming experience and who cannot be
expected to become fluent in software engineering
methodology makes this an especially challenging area of
research. The tools and techniques for spreadsheet end
users must be accessible to someone without a software
engineering background.  Our study has demonstrated one
promising approach that could serve as a stepping stone
for future research.

8. Acknowledgments

We thank the members of the Visual Programming
Research Group for their help with experiment
implementation and feedback on the testing methodology.
This work was supported in part by NSF under CCR-
9806821 and ITR-0082265.

9. References

[1]  A. Ambler, M. Burnett, and B. Zimmerman, "Operational
versus definitional: A perspective on programming
paradigms", Computer,  25(9):28-43, Sept. 1992.

[2] P. Brown and J. Gould, "Experimental study of people
creating spreadsheets", ACM Trans. Office Info. Sys.,
5(3):258-272, July 1987.

[3] M. Burnett and H. Gottfried, "Graphical definitions:
Expanding spreadsheet languages through direct
manipulation and gestures", ACM Trans. Computer
Human Interaction, pages 1-33, Mar. 1998.

[4]   E. H. Chi, P. Barry, J. Riedl, and J. Konstan, "A
spreadsheet approach to information visualization", In
IEEE Symp. Info. Visualization, Oct. 1997.

[5] J. S. Davis, "Tools for spreadsheet auditing", Intl. J.  of
Human-Computer Studies, 45:429-442, 1996.

[6] E. Duesterwald, R. Gupta, and M. L. Soffa, "Rigorous
data flow testing through output influences", In Proc.
2nd Irvine Softw. Symp., Mar. 1992.



[7] P. Frankl and S. Weiss, "An experimental comparison of
the effectiveness of branch testing and data flow testing",
IEEE Trans. Softw. Eng., 19(8):774-787, Aug. 1993.

[8] P. Frankl and E. Weyuker, "An applicable family of data
flow criteria", IEEE Trans. Softw. Eng., 14(10):1483-
1498, Oct. 1988.

[9] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,
"Experiments on the effectiveness of dataflow and
control flow-based test adequacy criteria", In 16th Intl.
Conf. Softw. Eng., pages 191-200, May 1994.

[10] V. Krishna, C. Cook, D. Keller, J. Cantrell, C. Wallace,
M. Burnett, G. Rothermel, "Empirical Study of a
Spreadsheet Maintenance Task", Oregon State
University, TR 01-60-06, Mar. 2001.

[11] J. Leopold and A. Ambler, "Keyboardless visual
programming using voice, handwriting, and gesture",
IEEE Symp.On Visual Language., pages 28-35, Sept.
1997.

[12] M. Marre and A. Bertolino, "Reducing and estimating the
cost of test coverage criteria", In 1996 IEEE 18th Intl.
Conf. Softw. Eng., pages 486-494, Mar. 1996.

[13] B. Myers, "Graphical techniques in a spreadsheet for
specifying user interfaces", In ACM CHI '91, pages 243-
249, Apr. 1991.

[14] R. Panko, "Finding spreadsheet errors: Most spreadsheet
models have design flaws that may lead to long-term
miscalculations", Information Week, pg. 100, May 29,
1995.

[15] R. Panko, "What we know about spreadsheet errors", J.
End User Comp., pages 15-21, Spring 1998.

[16] R. Panko and R. Halverson Jr., "Spreadsheets on trial: A
framework for research on spreadsheet risks", 29th Hawaii
Intl. Conf . on System Sciences, Vol. II, pages 326-335,
Jan. 1996.

[17] K. Rajalingham, D. Chadwick, B. Knight and D.
Edwards, "An integrated spreadsheet engineering

methodology", IFIP TC11 WG11.5 Third Working Conf.
on Integrity and Internal Control in Info. Systems, pages
41-58, Nov. 1999.

[18] S. Rapps and E. J. Weyuker, "Selecting software test data
using data flow information",  IEEE Trans. Softw. Eng.,
11(4):367-375, Apr. 1985.

[19] J, Reichwein, G. Rothermel, and M. Burnett, "Slicing
spreadsheets: An integrated methodology for spreadsheet
testing and debugging", 2nd Conf. on Domain Specific
Languages, pages 25-38, Oct. 1999

[20] K. Rothermel , C. Cook, M. Burnett, J. Schonfeld, T.R.G.
Green, and G. Rothermel.  "WYSIWYT testing in the
spreadsheet paradigm: An empirical evaluation", 22nd Intl.
Conf. on Softw. Eng., Limerick, pp. 230-239, June 2000.

[21] G. Rothermel, M. Burnett, L. Li, C. DuPuis, A. Sheretov,
" A methodology for testing spreadsheets", ACM Trans.
on Softw. Eng. and Methodology, pages 110-147, Jan.
2001.

[22] G. Rothermel, L. Li, C. DuPuis, and M. Burnett, "What
you see is what you test: A methodology for testing
form-based visual programs", In The 20th Intl. Conf.
Softw. Eng., pages 198-207, Apr. 1998.

[23] T. Smedley, P. Cox, and S. Byrne, "Expanding the utility
of spreadsheets through the integration of visual
programming and user interface objects", In Adv. Vis. Int.
'96, May 1996.

[24] G. Viehstaedt and A. Ambler, "Visual representation and
manipulation of matrices", Journal Vis. Lang. and
Comp., 3(3):273-298, Sept. 1992.

[25] E. J. Weyuker, "More experience with dataflow testing",
IEEE Trans. Softw. Eng., 19(9): 912-919, Sept. 1993.

[26] E. Wilcox, J. Atwood, M. Burnett, J. Cadiz, and C. Cook,
"Does continuous visual feedback aid debugging in
direct-manipulation programming systems", In ACM
CHI'97, pages 258-265, Mar. 1997.


