I ncor porating I ncremental Validation and | mpact Analysisinto Spreadsheet
Maintenance: An Empirical Study

Vijay B. Krishna, Curtis R. Cook, Daniel Keller, Joshua Cantrell, Chris Wallace Margaret M. Burnett,
and Gregg Rothermel
Oregon State University, Corvallis, OR 97331
{krishnw, cook, keller, cantrjos, wallacdh, burnett, grother} @cs.orst.edu

Abstract

Speadsheds are among the most comnon form of
software in use today. Unlike more traditiond forms of
software howeve, spreadsheds are aeated and
maintained by end users with little or no programming
experience As a result, a high percentage of these
“programs’ contain errors. Unfortunately, software
engineeing research has for the most part ignared this
problem. We have devdoped a methoddogy that is
designed to ad end uwsers in devdoping, testing, and
maintaining Spreadsheds. The methoddogy
comnunicates testing information andinformation abou
the impact of cdl changes to users in a manrer that does
not require an undrstandng d formal testing theory or
the behind the scenes mechansms. This paper presents the
results of an empirical study that shows that, during
maintenance, end wsers using ou methoddogy were more
accurate in making changes and dd a significantly better
job o validating their spreadshedsthanend wsers withou
the methoddogy.

Keywords: spreadsheds, maintenance, testing, impact
andysis, empirical study, visual programrming

1. Introduction

Spreadshed languages are anong the most common
forms of “programming languages in use today.
Commercial spreadshed systems, one of the most widely
used PC business applicaions, are a subclass of
spreadshed languages. The relative simplicity of the
spreadshed paradigm lets end wsers with little or no
formal programming badkground quckly automate awide
variety of computational tasks. The spreadsheds these
users credae play an influential role in dedsions abou

budgets, investments, student grades, taxes, and many
other important isaues.

Spreadsheds are not just mechanisms for organizing
and dsplaying data: rather, they are programs that use
formulas to transform inpus into ouputs. Moreover, like
programs in imperative languages, sprealsheds often
contain errors. A survey of the literature [15] provides
severa examples. in four field audits of operational
spreadsheds, errors were foundin an average of 20.6% of
the spreadsheds audited; in eleven experiments in which
participants creaed sprealsheds, errors were foundin an
average of 60.8% of those sprealsheds, in four
experiments in which the participants inspeded
spreadsheds for errors, the participants missed an average
of 558% of those erors. Two large audting firms
reported finding errorsin 90% of the spreadshed financial
models they reviewed [15]. Such errors can have serious
consequences; for example, a Dallas oil and gas company
lost milli ons of ddllars in an aaquisition ded because of
spreadshed errors[14].

Compoundng these problems, spreadshed
programmers exhibit unwarranted confidence in the
corredness of their spreadsheds and their modifications
[2, 16, 26]. For instance, Brown and Gould [2] studied
nine experienced spreadshed users with an average of 2.7
yeas and eight hous per week of experience Although
these subjeds were quite mnfident that their spreadsheds
were acarate, 44% of the spreadsheds they creaed
contained errors and every subjed made & least one eror.

Spreadshed errors can often be traced to problems in
spreadshed development; however, it is widely
adknowledged that spreadshed users aso report
difficulties with maintenance tasks sich as understanding,
debuggng, modifying, and enhancing spreadsheds [5, 16,
17]. Given the ubiquity of spreadsheds and the
importance of the tasks they perform, we would like to
help spreadshee users avoid such dfficulties. One natural
place to see&k such help is the software engineeing

community. Most previous reseach in software
engineging, however, has addreseed problems faced by
professonal software enginegs using imperative
languages; comparatively little reseach has addressed
problems invaving the "engineaing' of spreadsheds.
Moreover, in ou seach o the literature, with the
exception o a few papers addresing poblems in
spreadsheda debuggng and auditing [5, 19], we find no
reseach dredly addresing poblems related to
spreadshed maintenance ad evolution. This is
particularly distresing kecause, like succesful imperative
programs, succesful spreadsheds undergo evolution,
adaptation, perfedion, and corredion, often in the hands
of users other than their initial developers.

Therefore, we have been investigating the posshility of
bringing some of the benefits of formal software
engineging techniques to the aeaors and maintainers of
spreadsheds. Our initial focus has been onthe testing and
debuggng d spreadsheds, and ore outcome of this work
has been ou "What You See Is What You Test"
(WYSIWYT) spreadshed testing methoddogy [21, 22].
The WYSIWYT methoddogy provides feadbadk abou
the "testedness' of a spreadshed so that its creaors will be
motivated to test their spreadsheets more thorougHy. The
methoddogy hes been designed, however, to function
incrementally, as formulas and dita ae alded to, deleted
from, and modified in a spreadshed, usingimpad analysis
to determine where revalidation is needed. Thus, the
methoddogy is expeded to suppat not just the initia
development of spreadsheds, but also their evolution and
maintenance

To date, our studies of the WYSIWYT methoddogy
[20, 21] have focused on its applicdion to complete
spreadsheds. These studies have shown that the
methoddogy can help spreadsheda users test their
spreadsheds more dfedively and more dficiently. Thus
far, however, we have not empiricdly investigated the
methoddogy in the mntext of spreadshed maintenance
Furthermore, our studies have focused on computer
science students, who represent only a spedalized subset
of spreadshed users. To more generaly assss the
potential of the WYSIWYT methoddogy, we require
studies of end wsers engaged in maintenancetasks.

We have therefore ondwted an experiment,
investigating the use of our methoddogy in the mntext of
a spreadshed modification task, and focusing onend users
who are not computer science students. Our results
indicate that end wsersusing oo WY SIWY T methoddogy
during spreadshed maintenance ae more acarate in
making changes and do a significantly better job o
validating their spreadshees than doend users employing

Ad Hoc gpproacdhes. Furthermore, the end wsers using the
WYSIWYT methoddogy are less overconfident than
those using the Ad Hoc gproach that their spreadsheds
do nd contain errors. Below we review the relevant
literature, describe the WYSIWYT methoddogy, and
present our experimental design, anaysis, and
conclusions.

2. Background
2.1 Spreadsheet L anguages and Forms/3

Spreadshed languages, aso known as form-based
languages in some of the reseach literature, provide a
dedarative gproach to programming charaderized by a
dependence-driven, dired-manipulation working model
[1]. Users of spreadsheé languages creae cdls and define
formulas for those céls. These formulas reference values
in other cdls and wse them in cdculations. When a cédl's
formula is defined, the underlying evaluation engine
cdculates the cél's value and the values of other affeded
cdlsand dsplays the resullts.

We have prototyped our WYSIWYT methoddogy in
the reseach language Formsg/3 [3], one of many
spreadshed language research systems (e.g. [3, 4, 11, 13,
23, 24)). This choice is motivated partly by the fad that
we have accss to the implementation o Forms/3, and
thus, we can implement and experiment with various
testing techndogies within that environment. More
important, however, is that by working with Forms/3, we
can investigate language feaures common to commercial
spreadshed langueges as well as advanced languege
feauresfoundin research spreadshee languages.

Figure 1 shows an example of a Forms/3 sprealshed.
The figure depicts a financial spreadshee that represents
the cashflow projedion model for a "Pizza Parlor"
consisting d information abou sales, expenses and final
cashflow for three months. Forms/3 spreadsheds are not
restricted to fixed grid of cdls and we can gve the cdls
meaningful names. For example, the cdl representing the
cost of ingredients for January is cdled
cost_ingredients jan. The cdlsin the spreadshed can be
caegorized as inpu cdls or output cdls, depending on
whether they take inpus, or cdculate values based on
other cdl values. In the figure, Pizza_jan is an inpu cdl
(thin bader) and cost_ingredients jan is an output cdl
(thick border). Cell formulas may be hidden or displayed.
In this figure, the formula for cdl cost_ingredients feb is

displayed.

T2% Tested

I% 20,000 24,000 28,000
Pizza_jan @ Pizza_feh IE Pizza_mar @
12,400 EI 14,880 Ll 17,360 EI
cost_ingredients_jan [3] cost_ingredients_feb [x] Lrreau| 3]
[i6z + 100y * Pizza fel
8,000 &, 000 a,000
salaries_jan @ salaries_feb salanes_rmar EI
20,400 1 22,880 25,360 !7|
totalexp_jan @ totalexp_feb @ totalexp_mar @
-400 !I"?'I 1,1z0 I7I Z,640 =
pretac_jan @ pretax_feb @ pretax_mar @
0 !F?'I Z&E0 |7| 660 [
tax_jan =] tax_feh @ tax_mar IEI
—ann !I'?'I @an |7| 1,980 o |
aftertax_jan =] aftertax_feb] aftertax_mar (=]
= [»]

22TheWYSIWYT Methodology

Our WY SIWY T methoddogy reli es, behind the scenes,
on code-based test adequacy criteria. Code-based test
adequacy criteria provide help in seleding test data and in
dedding whether a program has been tested "enough' by
relating testing effort to coverage of code cmporents.
Such criteria have been well reseached for imperative
languages (e.g. [8, 12, 18]), and several empiricd studies
(e.g.[7,9, 25]) have demonstrated their usefulness

Our methoddogy incorporates a test adequacy criterion
adapted from the output-influencing-all-du-pairs dataflow
adequagy criterion defined originally for imperative
programs [6]. This criterion, which we cdl du-adequacy
for brevity, focuses on the definition-use aciations (du-
asciations) in a spreadshed, where a du-association
links an expresson (in a cdl formula) that defines a cdl's
value with expressons in aher cdl formulas that
reference (use) the defined cdl. The aiterion requires that
eah exeautable du-association in the spreadsheda be

Figure 1: Pizza sales spreadsheet

exercised bytest datain such away that the du-asociation
contributes (diredly or indiredly) to the display of avalue
that is subsequently pronourced corred (validated) by the
programmer.’

The gpropriateness of the du-adequacy criterion for
spreadsheds gems from the fad that by relating test
coverage to interadions between definitions and uses of
cdls, the aiterion requires these interadions to be
exercised. Since such interadions are aprimary source of
errors in sprealsheds, this is valuable. Moreover, by
linking test coverage to cdl validation, the aiterion avoids
problemsin which duasociations influencing orly values
that are hidden o off-screen are @nsidered exercised

"1t is not aways possble to exercise dl du-association;
those that cannat be exercised are cdled nonexecutable.
Determining whether a du-assciation is exeautable is
provably impossblein general and frequently infeasible in
pradice [9, 25]; thus, data flow test adequacy criteria
typicdly require that test data exercise (cover) only
exeautable du-associations. Our criterion daes the same.

simply by applying test inpus; instead, the du-assciation
must participate in produwing a visible result judged
corred by the spreadshed programmer. The aiterion also
fadlitates the incremental validation d sprealsheds,
allowing a test to involve entry of values into a small
subset of the potentialy large set of inpu cdls in a
spreadshed, followed by \aidations of multiple cdls.
Finaly, the aiterion fadlitates impad analysis: when a
spreadshea programmer changes a formula, the
information wsed to suppat the aiterion can be used to
cdculate the du-associations added or potentialy affeded
by this modification. The system can then require their
(re-) validation.

Key to the usefulness of the WY SIWYT methoddogy
are devices for communicaing testing and impad
information to the spreadshed user in a manner that does
not require understanding o formal testing theory. To
show how our methoddogy povides this we offer the
following example.

Suppose a programmer has creaed the financia
spreadshea of Figure 1. During this process the
underlying evaluation engine has nat only been dsplaying
cdl values, but has aso been cdculating the du
asciations that come into existence & new formulas are
creded, and tracking the du-asoociations that influence
cdculations. Using this information, visual devices kegp
the programmer continually informed of testedness $atus,
draw attention to urtested sedions of the evolving
spreadshed, and suggest where testing adivity will
provide new progress (acwmrding to ou adequacy
criterion).

For example, suppcse the spreadshed programmer now
deddes that cdl totalexp_feb's displayed value is corred,
given the value of the cdlsit depends on, and clicks onthe
chedkbox in the upper right corner of that cdl to validate
it. The system responds with immediate visual feedbad as
to the new testedness of ead visible cdl and arrow, as
well as for the whale spreadshed, as siown in Figure 1.
The underlying validation algorithm is given in [21]; the
overal nation is that it reaurses badk through the du-
asciations that affed, diredly or indiredly, the airrently
computed value of totalexp_feb, and marks them tested.
The system depicts a fully tested cdl with bue borders
(black in this paper), an urntested cdl with red baders
(light gray), and a partialy tested cdl with baders in
various dades of purple (darker gray). The programmer
can choose to dsplay arrows dhowing interadions
between some of the cdls. The arows follow the same
color scheme & the cdl borders. We provide alditional
testing information throughthe marks in or nea the cdl's
chedkbox an exclamation pant means that validating that
cdl's value will increase the spreadshed's testedness a
guestion mark indicaes that some previous value for this

cdl was validated, a blank indicates that ho ognion hes
been recorded abou this cdl's value, and a dhedk mark
indicates that the user's validation was recorded. Finally,
additional testedness information is provided by the
"percent tested" indicator at the top d the window which
shows the percent of du-associations that have been tested.

Suppcse the programmer has vaidated a large
percentage of the du-asociations in the spreadshed,
turning most borders and arrows blue, and suppcse that
the programmer deddes to alter a formula - either to
corred an error or to enhance the spreadshed. When the
programmer completes the dteration, the underlying
evauation engine uses gatic information abou du
aswciations to wak forward through cedls that use,
diredly or indiredly, the modified cdl, and mark those
du-asoociations "not validated". Having completed this
impad analysis task, the engine updates the border and
arrow colors and dher indicaors to reflea the new
testedness gatus of the spreadshed. This ad draws the
programmer's attention to the neeal to revalidate
interadions newly creaed, or potentially impaded, by the
modification.

3. Experiment Design

The objedives of our study were to investigate the
following research questions:

RQ1: Are end wserswho wse the WY SIWY T methoddogy
more acarate in performing spreadshee modificaions
than end wsers who wse an ad-hoc goproach?

RQ2: Are end wserswho wse the WY SIWY T methoddogy
more dfedive in testing modified spreadsheds than end
userswho wse an ad-hoc gpproach?

RQ3: Are end wserswho wse the WY SIWY T methoddogy
lessoverconfident abou the acaracy of their spreadsheds
than end wsers who wse an ad-hoc goproach?

RQ4: Are end wserswho wse the WY SIWY T methoddogy
less overconfident abou the quality of their testing o
modified spreadsheds than end wsers who wse an ad-hoc
approach?

These questions were trandated dredly into hypdheses.
We dso took care that the design d our experiment would
provide insight into the following question:

Istraining in the underlying test adequacy criterion and its
relationship to the visual devices needed in order for the
spreadshed maintainer to perform more dfedively when
using ou methoddogy?

Group Number Average Subjectswith Subjectswith Subjectswith

of subjects GPA programming spreadsheet exposureto

experience experience experimental

environment
Ad Hoc 17 3.09 8 17 0
WYSIWYT 19 3.35 10 19 1

Table 1: Subject group demographics associations
3.1 Procedure seleded 36 students who were ather currently enrolled in

To investigate our reseach questions, we mndicted a
controlled laboratory experiment. In the experiment, the
subjeds modified and tested a spreadshed. Almost half of
the subeds ("WYSIWYT" subjeds) did so using the
spreadsheda environment that included the WYSIWYT
methoddogy, and the rest ("Ad Hoc" subjeds) used the
same environment minus the WY SIWY T methoddogy.

The experiment was condcted in a small lab with six
workstations running Windows NT with the subjeds
seded ore per workstation. The experiment began with a
25-minute tutoriadl on Forms/3 in which ead subjed
adively participated by working with several example
spreadsheds ontheir individual workstations. (The tutorial
is described further in Sedion 33.) All subjeds were
given additional unstructured time to pradice their
Formg/3 skills and to pradice making changes in the
tutorial example problems. To control for amourt of
expasure to the environment, both groups of subjeds were
given identicd amourts of training time.

Subjed data was colleded during the experiment from
pre- and pat-problem questionraires and from eledronic
transcripts that recorded al online modificaion and
testing adivities. The pre-problem questionnaires
measured the subjeds understanding o the Forms/3
problem and the post-problem questionreires measured
the subjeds perceptions of how well they had performed
the modification and testing tasks. The paost-problem
guestions for the WYSIWYT subjeds also included
guestions abou their understanding and we of the
feedbadk devices provided by the WYSWYT
methoddogy.

3.2 Subjects

Since we were investigating whether typicd
spreadshed end uwsers could effedively use the
WYSIWYT methoddogy, we dedded to draw subjeds
from a pod of business ghod students, becaise we
believed they would be representative of spreadshed end
users and have the businessdomain knowledge required to
understand many typicd sprealshed applicaions. We

or had recently taken a sophamore business course in
which they worked with sprealshed financial models.
The subjeds were amix of sophanore and junior business
magjors with varying levels of spreadshee and
programming experience We randamly partitioned these
students into two groups: a ontrol ("Ad Hoc") group d
17 students that did na have accssto our WYSIWYT
methoddogy, and atreament ("WY SIWYT") group d 19
students that did have accssto the methoddogy. (The
difference in the group size was due to a few subjeds
failingto arrive for their appantment.)

To ascertain whether the subjeds had reasonably
similar badkgrounds, we administered a questionreire that
asked abou their academic badkground and experience
with spreadsheds and programming. A summary of the
analysis of the resporses is given in Table 1. A subjed
was credited programming experience if he or she had a
high schod or college dassor professona experiencein
programming. A subjed was credited with spreadshee
experience if he or she had creaed a spreadshed for a
high schod or college dass or for professona or
personal use. As Table 1 shows, there is littl e differencein
the mlledive badkgrounds of the two groups. Only one
subjed reported experience using Forms/3. Our statistica
analysis owed hanogeneity between the two groups.

3.3 TheTutorial

During the 25-minute tutorial on Forms/3, eat subjed
worked with example spreadshees on their machine
following instructions given by the ledurer. The tutorial
introduced basic language fedures (e.g. basic syntax of
formulas) and environmental feaures (e.g. how to crede,
delete, and edit cdls) that would eventually be used in the
spreadshed modification task. Throughou the tutoria the
subjeds had accessto a hardcopy quck reference guide to
the feaures they were being taught. They could make
notes on the handous, which remained avail able to them
throughou the experiment. An assstant was available to
answer questions.

In the tutorial, testing was described as a process of
trying dfferent inpu values and recording dedsions abou

Group Tax Rate Spaghetti Worker Total Maodification
(3 points) (12 points) (3 points)
Ad Hoc (n=17) 2.71(.69 9.94(2.1) 2.94(.29 156 (2.1)
WYSIWYT (n=19) 2.79(.63) 10.74(1.6) 2.63(.83) 16.2 (2.7)

Table 2: Average modification scores for each subtask and the total modification task.

the mrreanessof valuesin ouput cdls. All subjeds were
asked to record dedsions by clicking ona chedkbox ory
for those output cdls whase value seemed corred to them.
The tutoria for the WYSIWYT subjeds also included
basic instructions on the use of cdl border colors, arrows,
percent-tested indicator, and chedkboxes. Because one of
the goals of the WYSIWYT methoddogy is that the user
need na aoquire an uncerstanding o forma testing
theory, we explained orly that red means "not tested",
blue means "fully tested", and puple means "partialy
tested". Inside chedkboxes, the blanks were described as
meaning "atesting dedsion haes nat been recorded”, chedk
marks as "you have made adedsion for this cdl's value
for the aurrent set of input values', the question mark as
meaning "you have made adedsion for this cdl's value
for some previous inpu values', and the exclamation
point as meaning "by cheding this cdl's chedkbox you
will i ncrease the testedness of the spreadshed”. We did
not mention the underlying concepts of du-associations or
impad analysis, nor did we describe non-exeautable du-
asciations. Following these explanations, the subjeds
were given urstructured time to pradice their Forms/3
skill s.

Regardless of which group a subjed was in, the total
training time was identicd; subjeds not receving
explanations of the methoddogy's feedbadk were given
more unstructured time to pradice using Formsg/3. It was
important to equali ze the total time, becaise the alditional
instructions that the WYSIWYT subjeds receved
provided them with additional pradice in Formg/3, and
this additional pradice time could have confounded the
results. Since the subjeds had little or no pevious
expaosure to the Forms/3 environment, at the conclusion d
the tutorial the subjeds could be mnsidered equal in their
knowledge of Forms/3.

3.4 Tasksand Materials

The subjeds were given the experimental task once the
tutorial was completed. The eperimental task involved
making changes to a spreadshee (Figure 1) containing a
cash flow projedion model for a pizza restaurant. The
model included the pizza saes for eat of three months
(January, February, and March) and the expenses (cost of

pizzaingredients, worker's slaries). The pretax cash flow
was the difference between sales and expenses. Taxes
were deducted from the pretax cash flow to yield an after
tax cash flow. The model was smilar to a spreadshed
model the subjeds had encourtered in a sophamnore level
businessclass A complete description o the problem and
materialsisincluded in [10].

We ingtructed the subjeds to read the description d the
spreadshed they were éou to work with. The description
included detail s on the cah flow projedions for the pizza
restaurant. We then administered a five question
comprehension quiz, so that we muld asessthe subjeds
basic understanding o the problem and whether they
could relate parts of the description d the model to the
cdls in the Forms/3 spreadshed. (Over threefourths of
the subjeds answered all five questions corredly.)

Following this quiz, we gave the subjeds their
experimental task, which involved making changes to the
pizzarestaurant model. In brief, the subjeds were aked to
(1) modfy the tax rate for eath o the three months
covered by the model, (2) add spaghetti (sales and cost of
ingredients) to the restaurant's menu for the last two of the
threemonths, and (3) add an additional worker for the last
two months. To encourage the students to test the
modified model the task description indicaed that the
initial unmodified spreadshee¢ model was corred and that
it was important that the modified spreadshed not contain
errors. The subjeds were given 15 minutes to make the
modificaions and to verify that the spreadshed was
working corredly. The subjeds completed the post-
problem questionreire dter the modificaion task. The
results and analysis of the questionraires and transcripts
are presented in the next sedion.

4. Resultsand Analysis
4.1 Accuracy

Our first reseach question considers whether using ou
methoddogy helped the subjeds make the modificaions
more acarately. The modificaion was sored onan 18
point basis acmrding to the following:

Tax rate change (1 pant per month for a total of three

points);

Adding spaghetti to the menu (4 pdntsmonth for a

total of 12 pants);

Adding additional worker (1 pant per month for atotal

of 3 pants).

Note that since the spaghetti and additional worker
changes were for February and March ony, leasing
January unchanged was worth 4 pants for the spaghetti
change and 1 pont for the worker change.

The average modification scores for the Ad Hoc and
WYSIWYT subjeds for ead modificaion subtask are
givenin Table 2. The arerage total modification score was
higher for the WYSIWYT subjeds but not significantly
higher (Mann-Whitney, p = 0.1681). On further
examination d the data, however, we discovered that one
WYSIWYT subjed had scored oy 7 ou of 18 over 3
standard deviations below the mean and considerably
below any other WYSIWYT subjed. With this outlier
removed, the WYSIWYT subjeds tota modificaion
scores were nealy significantly higher than the Ad Hoc
subjeds modificaion scores (MannWhitney, p =
0.0861).

4.2 Testing

A seoond reseach question considers whether the
subjeds with the WYSIWYT methoddogy were more
effedive in their testing. To encourage dl subjeds to test
their spreadsheds after making changes, the modification
task description for both groups indicated that the original
spreadshed had been thorougHy tested and that the
modified spreadshed neeled to be wrred.

Eac click in a chedkbox to record a dedsion abou a
cdl's value by the subjed was considered to be atest.
Table 3 shows that our methoddogy provides grong
encouragement to test the modified spreadsheds:
significantly more WYSIWYT subjeds than Ad Hoc
subjeds exeauted at least one test (Fisher's Exad Test,
df=1, p=0.0004. Also, the five Ad Hoc subjeds who
exeauted at least one test exeauted an average of 8.4 tests
while the 17 WYSIWYT subjeds who exeauted at least
one test exeauted an average of 317 tests. Because the
testing dff erence between the two groups of subjeds was
so dramatic, we wondered whether some of the Ad Hoc
subjeds might have "tested" by visualy inspeding cdl
formulas for different inpu values, rather than by clicking
chedboxes. Our inspedion o the transcripts, however,
reveded that this had na occurred: after completing the
modificaions, only ore of the 12 Ad Hoc subjeds who

did na exeaute atest made a diange to the inpu cdls;
further, only 5 o these 12 subjeds displayed a cdl
formula dter completing their modifications. During their
testing after completing the modificaions, three of the
WYSIWYT subjeds found and correded errors, no Ad
Hoc subjed who exeauted tests found an error after
completing the modifications. Hence our WYSIWYT
methoddogy seans to provide strong visual suggestions
to test and helps find errors during maintenance

4.3 Overconfidence

In spite of the high percentage of spreadsheds
containing errors, studies [2, 16, 26] have reported that
end wsers are very confident that their spreadsheds do nd
contain errors. Experience does not sean to matter as
these studies have shown that both novices and experts are
overconfident about the crreaness of their spreadsheds.
One goal of our reseach is to reduce overconfidence by
providing feedbad abou testednessand abou the impad
of changes. Recdl that participants using ou methoddogy
recaved feedbadk via changes in cdl border and arrow
colors, in the "percent tested" indicaor, and in
chedkboxes, after eat change to a cdl or after ead test
was exeauted. To determine the impad of this feadbad on
overconfidence, after completing the experimental task,
we asked the participants to answer questions abou the
corredness of their modificaion and hov well they
thougtt they had tested the spreadshed.

The modificaion self-rating asked them to rate on a1
("not confident") to 5 ("very confident") scde how
confident they were that ead of the modification subtasks
(tax rate, adding spaghetti, new worker) had been
completed corredly. Since few subjeds made erorsin the
tax rate and rew worker subtasks, we cmpared orly the
spaghetti subtask ratings with their spaghetti modification
scores. Although Table 4 shows that the regresson
coefficients (self-rating) for the Ad Hoc and WY SIWYT
groups were nat significantly different from O, it does
indicate that the self-rating is a modest predictor for the
WYSIWYT group bu has no predictive value for the Ad
Hoc group.

The post sesson guestionnaires also asked subjeds to
rate "on a familiar A-F scde" how well they tested their
spreadshed. In spite of the fad that 12 o the 17 Ad Hoc
subjeds did na exeaute asingle test and that 17 o the 19
WY SIWYT subjeds exeauted at least one test case, the Ad
Hoc subjeds average testing self-rating (Table 5) was
considerably higher than the WY SIWY T subjeds average

Group No tests At least onetest
Ad Hoc (n=17) 5
WYSIWYT (n=19) 17

Table 3: Number of subjects executing no test cases and executing at least one test.

Group Regression Standard Error t-value Significance
Coefficient
IAd Hoc (n=17) -0.167 0.536 -0.311 0.7602
WYSIWYT (n=19) 0.282 0.363 0.776 0.4482

Table 4: Regression analysis for spaghetti modification subtask.

Group Tested Self-Rating
Ad Hoc 3.353(.93))
WYSIWYT 3.000(.667)
Table 5: Average testing self-rating (A=4, B=3,
C=2, D=1, F=0)
self-rating.
5. Discussion

The strong results from the experiment showed that the
subjeds recaving the visual testednessand change impad
feedbadk provided by the WY SIWYT methoddogy were
gredly aided and encouraged by it, espedaly in their
testing. One question for which we only have a partial
answer is. which pations of the visua feedback were
most helpful? To help us begin to answer this question, the
WYSIWYT group wrsion o the post-problem
guestionreire asked the subjeds to rank the hel pfulness of
eadt o the feedbadk devices as very helpful, quite helpful,
helpful, somewhat helpful or not helpful. The results,
summarized in Table 6, indicae that the subjeds found
the cdl border colors, arrows and percent tested indicator
most helpful, chedkmarks, exclamation pant, and Hanks
lesshelpful, and question marks, least helpful.

Two-thirds of our subjeds spreadsheds contained
errors after the modificaion was completed (71% for Ad
Hoc, 63% for WYSIWYT). This error rate seemed high
for a simple task and made us wonder how it compared
with error rates in other experiments. Panko's [15] survey
of studies on spreadshed errors included 12 experiments
in which the subjeds developed spreadsheds. The eror
ratesin those experiments ranged from 35%-84%. Further,
subjeds in most of those experiments were business
students and they were given hous and in some instances

days to complete the development task. Hence, the aror
rate for our subjeds fell into this range even thoughwe
gave them only 15 minutes to complete the task.

Based onthe scores for the three modification subtasks
(change tax rate, adding spaghetti for February and March,
and adding an additional worker for February and March),
the spaghetti modification was the most difficult (Table 2).
A plausible reason for thisis that the spaghetti changes are
"global" (dependent on aher cdls) while the other two tax
modificaions are "locd" (independent of other cdls). The
rate change involved changing the rate in the cél formula
from 25% to 28% for ead month and the adtion o a
worker change involved adding $1000to the salaries
formulas for February and March. In bah cases, the
changes did na depend on @ use information from
ancther cdl. However, for the spaghetti modification
subtask, changes to the revenue, expenses, and pretax cdl
formulas depended on other cdls. By far the most
common mistake in this modification was not corredly
computing the pretax totals for February and March.
Pretax errors acourted for more than half of the erors
made by the Ad Hoc subjeds and ower 40% of the erors
made by the WYSIWYT subjeds. It would seem that the
dependency of the pretax for February and March onthe
corredness of both the new total revenue and rew total
expenses might acaurt for such ahigh error rate.

6. Threatsto Validity

In this experiment, we addressed the threds to internal
validity by balancing the two groups of subjeds based on
their yea in schod and their GPASs, by equalizing their
training time, and by seleding an experimental problem
from a domain which the subjeds were familiar with.
However, threds to external validity are more difficult to

How helpful were: Helpful - Very Helpful Somewhat Helpful or Not Helpful
colored cdl border 90% 10%
Arrows 90% 10%
"Tested" indicator 84% 16%
Chedmarks 78% 2%
exclamation 78% 22%
blanks 77% 23%
question marks 2% 28%

Table 6: WYSIWYT subjects' helpfulness rating

address, given the need to control all other factors. For
example, business students represent only a fraction of the
spreadsheet programmer population. Similarly, the
spreadsheet used in the experiment may not be
representative of the population of spreadsheets. Since the
main focus of the study was a modification task and
testing, the original spreadsheet did not contain any errors.
This may be unrealistic as the spreadsheets encountered in
a rea life situation may contain some errors. However,
including errors in the spreadsheet would have
confounded the data about modification and testing
effectiveness, as the subjects would not be focused on the
actual experimental task of modifying and testing the
spreadsheet. Moreover, there was an opportunity for the
subjects to introduce errors into the spreadsheet by
themselves during their modification task. We wanted to
see if the subjects could catch such errors with the help of
our WY SIWY T methodology.

For scoring purposes, the modification task was broken
into abstract subtasks, such as the new total expenses
includes the cost of spaghetti ingredients and an additional
worker, without specifying exactly how these should be
done. Modification accuracy was measured by scores for
each of the abstract subtasks. Testing effectiveness was
measured by whether or not tests were executed. An
alternative measure of testing effectiveness could be du-
adequacy. However, du-adequacy was not used because
the subjects did the modification task in different ways,
with some subjects creating more new cells or changing
more cells than other subjects. Hence the resulting student
spreadsheets contained different numbers of du-
associations.

7. Conclusions

In this paper we reported empirical results about a
methodology aimed at improving the maintainability of
spreadsheets. The major results were:

1. Subjects using the WYSIWYT methodology were
more accurate in a modification task.

2. Subjects using the WYSIWYT methodology were
significantly more effective in testing. The methodology
encouraged subjects to test their spreadsheets after
making changes. Most of the subjects without the
methodology did no testing.

3. Subjects using the WYSIWYT methodology were
better able to predict the accuracy of their modification
and were less overconfident about how well they had
tested their spreadsheets.

Further, it was possible for the subjects using the
WY SIWYT methodology to achieve these benefits even
without training in the theory of the underlying test

adequacy criterion and its relationship to the visual
devices. This is encouraging because it suggests that it is
possible for end users with little or no programming
experience to achieve some of the benefits of the formal
theory without training in the testing principles behind our
methodology.

This is the first empirica study of spreadsheet
maintenance. Although no accurate figures are available,
given the extensive use of commercia spreadsheets by the
business and other communities, it is safe to say that
spreadsheet maintenance is a common and important task.
Therefore it is surprising that software engineering
research has to alarge extent ignored this area. That many
of the spreadsheets are developed by end users who have
little or no programming experience and who cannot be
expected to become fluent in software engineering
methodology makes this an especially challenging area of
research. The tools and techniques for spreadsheet end
users must be accessible to someone without a software
engineering background. Our study has demonstrated one
promising approach that could serve as a stepping stone
for future research.

8. Acknowledgments

We thank the members of the Visua Programming
Research Group for their help with experiment
implementation and feedback on the testing methodology.
This work was supported in part by NSF under CCR-
9806821 and I TR-0082265.

9. References

[1] A. Ambler, M. Burnett, and B. Zimmerman, "Operationa
versus definitional: A perspective on programming
paradigms’, Computer, 25(9):28-43, Sept. 1992.

[2] P. Brown and J. Gould, "Experimenta study of people
creating spreadsheets’, ACM Trans. Office Info. Sys,,
5(3):258-272, July 1987.

[3] M. Burnett and H. Gottfried, "Graphica definitions:
Expanding spreadsheet languages through direct
manipulation and gestures’, ACM Trans. Computer
Human Interaction, pages 1-33, Mar. 1998.

[4 E. H. Chi, P. Bary, J. Riedl, and J. Konstan, "A
spreadsheet approach to information visualization", In
IEEE Symp. Info. Visualization, Oct. 1997.

[5] J. S. Davis, "Tools for spreadsheet auditing”, Intl. J. of
Human-Computer Studies, 45:429-442, 1996.

[6] E. Duesterwald, R. Gupta, and M. L. Soffa, "Rigorous
data flow testing through output influences', In Proc.
2nd Irvine Softw. Symp., Mar. 1992.

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

P. Frankl and S. Weiss, "An experimental comparison of
the effectiveness of branch testing and data flow testing”,
IEEETrans. Sdtw. Eng., 19(8):774-787, Aug. 1993.

P. Frankl and E. Weyuker, "An applicable family of data
flow criterid', IEEE Trans. Sdtw. Eng., 14(10):1483-
1498, Oct. 1988.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,
"Experiments on the effectiveness of dataflow and
control flow-based test adequacy criteria’, In 16th Intl.
Conf. Sdtw. Eng., pages 191-200, May 1994.

V. Krishna, C. Cook, D. Keller, J. Cantrell, C. Wallace,
M. Burnett, G. Rothermel, "Empirical Study of a
Spreadsheet Maintenance Task", Oregon State
University, TR 01-60-06, Mar. 2001.

J. Leopold and A. Ambler, "Keyboardless visual
programming using voice, handwriting, and gesture’,
IEEE Symp.On Visua Languag., pages 28-35, Sept.
1997.

M. Marreand A. Bertolino, "Reducing and estimating the
cost of test coverage criteria’, In 1996 IEEE 18th Intl.
Conf. Sdtw. Eng., pages 486-494, Mar. 1996.

B. Myers, "Graphical techniques in a spreadsheet for
specifying user interfaces’, In ACM CHI '91, pages 243-
249, Apr. 1991.

R. Panko, "Finding spreadsheet errors. Most spreadsheet
models have design flaws that may lead to long-term
miscalculations', Information Week pg. 100, May 29,
1995.

R. Panko, "What we know about spreadsheet errors’, J.
End User Comp., pages 15-21, Spring 1998.

R. Panko and R. Halverson Jr., "Spreadsheets on trial: A
framework for research on spreadsheet risks", 29" Hawaii
Intl. Conf . on S§ystem Sciences, Vol. 11, pages 326-335,
Jan. 1996.

K. Rgaingham, D. Chadwick, B. Knight and D.
Edwards, "An integrated spreadsheet engineering

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

methodology”, IFIP TC11 WG11.5 Third Working Conf.
on Integrity and Internal Control in Info. Systems, pages
41-58, Nov. 1999.

S. Rapps and E. J. Weyuker, "Selecting software test data
using data flow information”, |EEE Trans. Sdtw. Eng,
11(4):367-375, Apr. 1985.

J, Reichwein, G. Rothermel, and M. Burnett, "Slicing
spreadsheets: An integrated methodology for spreadsheet
testing and debugging”, 2 Conf. on Domain Spedfic
Languagps, pages 25-38, Oct. 1999

K. Rothermel , C. Cook, M. Burnett, J. Schonfeld, T.R.G.
Green, and G. Rothermel. "WYSIWYT testing in the
spreadsheet paradigm: An empirical evaluation”, 22" Intl.
Conf. on Sdtw. Eng., Limerick, pp. 230-239, June 2000.
G. Rothermel, M. Burnett, L. Li, C. DuPuis, A. Sheretov,
" A methodology for testing spreadsheets’, ACM Trans.
on Sdtw. Eng. and Methoddogy, pages 110-147, Jan.
2001.

G. Rothermel, L. Li, C. DuPuis, and M. Burnett, "What
you see is what you test: A methodology for testing
form-based visua programs', In The 20th Intl. Conf.
Sdtw. Eng., pages 198-207, Apr. 1998.

T. Smedley, P. Cox, and S. Byrne, "Expanding the utility
of spreadsheets through the integration of visua
programming and user interface objects’, In Adv. Vis. Int.
'96, May 1996.

G. Viehstaedt and A. Ambler, "Visual representation and
manipulation of matrices’, Journa Vis. Lang and
Comp., 3(3):273298 Sept. 1992.

E. J. Weyuker, "More experience with dataflow testing”,
IEEETrans. Sdtw. Eng., 19(9): 912919, Sept. 1993.

E. Wilcox, J. Atwood, M. Burnett, J. Cadiz, and C. Cook,
"Does continuous visua feedback aid debugging in
direct-manipulation programming systems"', In ACM
CHI'97, pages 258-265, Mar. 1997.

