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Abstract
We present a user study to investigate the impact of
explanations on non-experts’ understanding of re-
inforcement learning (RL) agents. We investigate
both a common RL visualization, saliency maps
(the focus of attention), and a more recent explana-
tion type, reward-decomposition bars (predictions
of future types of rewards). We designed a 124 par-
ticipant, four-treatment experiment to compare par-
ticipants’ mental models of an RL agent in a simple
Real-Time Strategy (RTS) game. Our results show
that the combination of both saliency and reward
bars were needed to achieve a statistically signifi-
cant improvement in mental model score over the
control. In addition, our qualitative analysis of the
data reveals a number of effects for further study.

1 Introduction
Although eXplainable Artificial Intelligence (XAI) has seen
increasing interest as AI becomes more pervasive in society,
much of XAI work does not attend to the people who con-
sume explanations. In this paper, we draw upon a work that
does, which introduced 4 principles for explaining AI systems
to people who are not AI experts [Kulesza et al., 2015]. These
principles were: be iterative, be sound, be complete, and do
not overwhelm the user, where here the notions of soundness
and completeness are analogous to “the whole truth (com-
pleteness) and nothing but the truth (soundness).” We en-
sured that our explanations were “sound”; we didn’t approxi-
mate/simplify them. They were also “complete,”: every agent
input & output was represented in the UI.

Empirical results showed that explanations adhering to
these principles enabled non-AI experts to build higher-
fidelity mental models of the agent than non-AI experts who
received less sound/complete explanations [Kulesza et al.,
2015]. People’s mental models, in the context of XAI, are
basically their understanding of the way the agent works.
More formally, mental models are, “internal representations
that people build based on their experiences in the real
world.” [Norman and Gentner, 1983]. People’s mental mod-
els vary in complexity and accuracy, but a good mental model
will enable a person to understand system behavior, and a
very good one will enable them to predict future behaviors.

In this paper, we investigate how people’s mental models of
a reinforcement-learning agent vary in response to different
visual explanation styles–saliency maps showing where the
agent is “looking,” and reward decomposition bars showing
the agent’s current prediction of its future score. To do so, we
conducted a controlled lab study with 124 participants across
four treatments (saliency, rewards, both, neither), and mea-
sured both their understanding of the agent and their ability
to predict its decisions. Our investigation was in the context
of Real-Time Strategy (RTS) games.

However, publicly available RTS games have stringent
time constraints, complex concepts, and myriad decisions,
which would have introduced too many confounding vari-
ables for a controlled study. For example, we needed each
participant to consider the same set of decisions. Thus, we
built our own game, inspired by RTS, which we describe later.

In this context, we structured our investigation around the
following research questions:
• RQ-Describe - Which treatment is better (and how) at

enabling people to describe how the system works?
• RQ-Predict - Which treatment is better (and how) at en-

abling people to predict what the system will do?

2 Background & Related Work
We focus on model-free RL agents that learn a Q-function
Q(s, a) to estimate the expected future cumulative reward
of taking action a in state s. After learning, the agent
greedily selects actions according to Q, i.e. selecting action
argmaxaQ(s, a) in s. RL agents are typically trained with
scalar rewards, leading to scalar Q-values. While a human
can compare the scalars to see how much the agent prefers
one action over another, the scalars give no insight into the
cost/benefit factors contributing to action preferences.

Reward Decomposition. We draw on work by [Erwig et
al., 2018] that exploited the fact that rewards can typically be
grouped into semantically meaningful types. For example, in
RTS games, reward types might be “enemy damage” (positive
reward) or “ally damage” (negative reward). Reward decom-
position exposes reward types to an RL agent by specifying
a set of types C and letting the agent observe, at each step,
a |C|-dimensional decomposed reward vector ~R(s, a), which
gives the reward for each type. The total scalar reward is the
sum across types, i.e. R(s, a) =

∑
c∈C

~Rc(s, a). The learn-



ing objective is still to maximize the long-term scalar reward.
By leveraging the extra type information in ~R(s, a), the

RL agent can learn a decomposed Q-function ~Q(s, a), where
each component ~Qc(s, a) is a Q-value that only accounts for
rewards of type c. Using the definition of R(s, a), the overall
scalar Q-function can be shown to be the sum of the compo-
nent Q-functions, i.e. Q(s, a) =

∑
c
~Qc(s, a). Prior work

has shown how to learn ~Q(s, a) via a decomposed SARSA
algorithm [Russell and Zimdars, 2003; Erwig et al., 2018].

Before Erwig et al. (2018), others considered using reward
decomposition [Van Seijen et al., 2017; Russell and Zimdars,
2003]—but for speeding up learning. Our focus here is on
their visual explanation value. For a state s of interest, the
decomposed Q-function ~Q(s, a) can be visualized for each
action as a set of “reward bars”, one bar for each component.
By comparing the bars of two actions, a human can gain in-
sight into the trade-offs responsible for the agent’s preference.

Saliency Visualization. To gain more insight into the
agent’s action choices, a human may want to know which
parts of the agent’s input were most important to the value
computed for a reward bar (i.e. a particular ~Qc(s, a)). Such
information is often visualized via saliency maps over the
input. Our agent uses neural networks to represent the
component Q-functions, letting us draw on the many neu-
ral network saliency techniques (e.g. [Simonyan et al.,
2013; Zeiler and Fergus, 2014; Springenberg et al., 2014;
Zhang et al., 2018]). While there have been a number
of comparison and utility studies (e.g. [Riche et al., 2013;
Ancona et al., 2017; Kim et al., 2018; Adebayo et al., 2018;
Greydanus et al., 2017]), there is no consensus on a best way.

After exploring various techniques, we modified Fong and
Vedaldi (2017)’s work on image classification, using a pertur-
bation method that focused on attributes (blocks of pixels),
rather than individual pixels, as used in computer vision, to
aide human interpretation. Since the network may “focus” on
different parts of the input for each reward bar, we compute
saliency maps for each one, which the UI could visualize.

3 Methodology
We performed an in-lab study using a between-subjects de-
sign with explanation style (Control, Saliency, Rewards, Ev-
erything) as the independent variable. Our dependent vari-
able was the quality of participants’ mental models–measured
by analysis of two main data sources: 1) answer to a post-
task question. 2) accuracy of participants’ prediction for the
agent’s selected action at each decision point (DP).

We ran an ablation study, where we measured the impact
of each explanation by adding or removing them, as shown in
Figure 1. Thus, Everything - Rewards - Saliency = Control, as
follows: 1. Control participants saw only the agent’s actions,
its consequences on the game state, the score, and question
area (Regions 1 & 4). 2. Saliency participants saw Regions 1
& 4 plus the saliency maps (Region 2), allowing them to infer
intention from gaze [Newn et al., 2016]. 3. Rewards partici-
pants saw Region 1 & 4 plus reward decomposition bars (Re-
gion 3), allowing them to see the agent’s cost/benefit analysis.
4. Everything participants saw all regions.

Figure 1: The regions of the interface the Everything participants
saw. Region 1: game map, which we expand on in Figure 3. Region
2: saliency maps. Region 3: reward decomposition bars for each
action. Region 4: participant question/response area.

Academic Discipline Participants Gamers
Agricultural Sciences: 4 unique majors 8 2
Business: 3 unique majors 5 4
Engineering: 11 unique majors 63 56
Forestry: 3 unique majors 4 4
Science: 10 unique majors 25 20
Liberal Arts: 8 unique majors 9 6
Public Health & Human Sciences: 2 majors 5 1
Undisclosed 5 4
Totals 124 97

Table 1: Participant demographics, per academic discipline.

3.1 Participants and Procedures
With 2 ethics committees’ approval, we ran 124 participants
from 208 online survey respondents at Oregon State Univer-
sity. Since we were interested in AI non-experts, our selection
criteria excluded Computer Science majors and anyone who
had taken an AI course. We assigned the participants to a two-
hour in-lab session based on their availability and randomly
assigned a treatment to each session.

We collected the following demographics: major and ex-
perience with RTS games (Table 1). 78% of our participants,
were “Gamers,” defined as those with 10+ hours RTS expe-
rience, consistent with prior research [Penney et al., 2018].
Because gamers were spread evenly across treatments, it was
unnecessary to control for this statistically (Figure 2).

We began sessions with a 20-minute, hands-on tutorial to
the interface/domain, with 3 practice DPs. Since participants
were AI non-experts, we described saliency maps as, “...like
where the eyeballs of the AI fall” and reward bars as, “...the
AI’s prediction for the score it will receive in the future.” Par-
ticipants had 12 minutes to complete DP1 and 8 minutes per

Figure 2: Distribution of RTS “gamers” in our study. “Gamers” are
shown in grey, others in white.



Figure 3: A sequence of the first three DPs of the game. For each DP (circled in red) participants saw the game map and the score (boxed in
red). Next, they made a prediction of which object the AI would choose to attack. Last, they would receive an explanation and have the ability
to “play” the DP. At DP1, the agent chose to attack Q2, causing a score change of 121 (+21 pts for damaging and +100 from destroying it). 
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 Figure 4: The objects appearing in our game states. Enemy objects
were black, and allied objects were white.

DP for the remaining 13.
The agent died 4 times; each time was a task boundary.

Each task had 3-4 DPs, chosen for a mixture of diversity
(e.g., all objects shown at least once), and similarity (e.g.,
some maps had the same object types but different health).
At each DP, participants: (1) saw the game state with noth-
ing else visible yet; (2) clicked on the object they thought the
agent would attack & tell us why; (3) upon submitting their
answer, they saw what the agent did and the explanation for
their treatment (reward bars, saliency maps, both, or neither).
After all 14 DPs, they described the agent’s decision making
process, filled out a questionnaire, & received $20 after.

3.2 System Overview
Popularly available RTS games have an enormous action
space – Vinyals et al. (2019) estimates ≈ 1026 for Star-
Craft II. With so many possibilities, it is not surprising
that researchers have reported large differences in individ-
ual participants’ focus, leading them to notice different de-
cisions [Dodge et al., 2018; Penney et al., 2018]. To avoid
this, we built a game with a tightly controlled action space
to control the entire software stack (UI, agent API, etc). The
game and study materials/code are here1

In our game, the agent’s goal was to maximize its score
over each task (Figure 3), subject to the following rules:
• Only Forts/Tanks could attack objects (Figure 4).
• At each DP, the agent had to attack one of the quadrants.
• If agent/friendlies were damaged/destroyed, it lost points.
• If enemies were damaged/destroyed, it gained points.
• Once the agent killed something, it “respawned” on a new

map, carrying over its health.

The Reward Decomposition Implementation
The agent used six reward types to learn its ~Q(s, a):
{Enemy Fort Damaged, Enemy Fort Destroyed, Friendly Fort

1https://ir.library.oregonstate.edu/collections/qj72pd941

Damaged, Friendly Fort Destroyed, Town/City Damaged,
Town/City Destroyed}. The RL agent used a neural network
representation of ~Q(s, a). For each reward type c, there was a
separate network forQc(s, a) which took the state description
as input–7, 40x40 greyscale image layers, each representing
information about the state: {Health Points (HP), enemy tank,
small forts, big forts, towns, cities, and friend/enemy}. The
overall scalar Q-valuesQ(s, a) used for action selection were
the sum of eachQc(s, a). The agent trained using the decom-
posed SARSA learning algorithm using a discount factor of
0.9, a learning rate of 0.1, with ε-greedy exploration (ε de-
cayed from 0.9 to 0.1). It trained for 30,000 games, at which
point it demonstrated high-quality actions.

The Saliency Map Implementation
Given a state s, our perturbation-based approach produced a
saliency map for each bar Qc(s, a) by giving data represent-
ing the true state s and a perturbed state s′ (close to s), then
subtracting the outputs for both states. Large output differ-
ence meant the system was more sensitive to the perturbed
part of the state–indicating importance, which we showed
with a brighter color. We chose to use a heated object scale,
since Newn et al. (2017) found it to be the most understand-
able for their participants. Our perturbations modify proper-
ties of objects in the game state and thus modify groups of
pixels, not individual pixels.

Each of the perturbations represented a semantically mean-
ingful operation: 1. Tank Perturbation. If a tank was present,
we removed it by zeroing out its pixels in the tank layer. 2.
Friend/Enemy Perturbation. Transform an object from friend
to enemy by moving the friend layer pixels to the enemy layer
(and vice versa). 3. Size Perturbation. Transform an object
from big to small (or vice versa) by moving the pixels from
one size layer to the other. 4. City/Fort perturbations. Sim-
ilarly transform whether an object is a City or Fort. 5. HP
Perturbation. Since HP is real-valued it is treated differently.
We perturbed the object HP values by a small value, 30%.
These operations were represented in five saliency maps: HP,
Tank, Size, City/Fort, & Friend/Enemy

To make the saliency maps comparable across types, we
found the maximum saliency value in each map for each re-
ward type & class from 16,855 episodes. Normalizing each
map by this value placed the pixel value ∈ [0, 1].

https://ir.library.oregonstate.edu/collections/qj72pd941?locale=en


The agent began worried about damaging its allies. . . focused little
on its own health and made decisions with respect to its allies. . .

By DP3 it actually assigned a positive point value to destroying
itself in the long term because it so heavily weighted potential
damage to allies . This is because as its health dropped, it would
only be able to attack allies in order to stay alive which would
cause a massive penalty.

Therefore, the agent decided to always attack the largest base
with the most health so that it would take the most damage which
would benefit allies in the long run. (E23)

Figure 5: Top scoring mental model question response. The high-
lighted portions illustrate both “basic” and “extra credit” concepts,
some of which are described in Table 2.

Code Count Definition
Maximize
Score

46 The agent’s overall objective is to maximize its
long term score.

Forward
Looking

13 The AI looks towards future instances when ac-
counting for the action that it takes now.

Paranoia 8 The AI is paranoid about extending its life too
much, expecting penalties when it should not.

Episode
Over

15 When the AI is nearing death, it behaves differ-
ently than it has in previous decision points.

Table 2: The four mental model codes revealing particularly inter-
esting differences in nuances of participants’ mental models.

4 Results: People Describing the AI
To elicit participants’ understanding of the agent’s deci-
sion making (RQ-Describe), we used Hsieh and Shannon
(2005)’s summative content analysis on participants’ answers
to the end-of-session question: “Please describe the steps
in the agent’s approach or method...” [Lippa et al., 2008;
Hoffman et al., 2018]. Figure 5 shows an example. First,
2 researchers independently coded 20% of the data with 18
codes and reached > 80% agreement on them (Jaccard in-
dex) [Jaccard, 1908]. Given this reliability, one researcher
coded the rest.

In parallel with this process, we generated a rubric of
scores to associate with each code. The codes representing
the agent’s four basic concepts were each worth 25% (e.g., its
score maximization objective). Extra nuances in participants’
descriptions earned small additions of “extra credit” (e.g.,
saying the agent maximized its future score), and extra errors
earned small deductions (e.g., saying it tried to preserve its
HP). Experimenting with different values for the small extras
and errors had little effect on comparisons of score distribu-
tions among treatments. Figure 6 has the score distribution.

4.1 The More, the Better?
As Figure 6 shows, Everything participants had signifi-
cantly better mental model scores than Control participants
(ANOVA, F = 8.369, df = (1,59), p = .0052). One possible in-
terpretation is that the Everything participants’ performance
was due to receiving the most sound and complete explana-
tion, consistent with Kulesza et al. (2015)’s results.

However, another possibility is that the participants in the
Everything treatment were benefiting from only one of the

2We consider p < .05 as significant, and .05 ≤ p < .1 as
marginally significant, by convention [Cramer and Howitt, 2004];
Note: all our ANOVAs are pairwise, dfbetween = 1
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Figure 6: The participants’ final mental model scores. Box colors
from top to bottom: Everything , Rewards , Saliency , and Control .

Figure 7: Same data as Figure 6. Left: Mental model scores for
those who saw rewards (top) and those who did not. Right: Same
data, but those who saw saliency (top) and those who did not.

explanation types, and that the other type was making little
difference. Thus, we isolated each explanation type.

To isolate the effect of the reward bars, we compared all
participants who saw the decomposed reward bars (the Re-
wards and Everything treatments) with those who did not.
As the left side of Figure 7 illustrates, participants who
saw reward bars had significantly better mental model scores
than those who did not (ANOVA, F = 6.454, df = (1,122),
p = .0123). Interestingly, isolating the effect of saliency
produced a similar impact. As the right side of Figure 7
illustrates, those who saw saliency maps (the Everything
+ Saliency treatments) had somewhat better mental model
scores (ANOVA, F = 3.001, df = (1,122), p = .0858). This
suggests that each component brought its own strengths.

4.2 Different Explanations, Different Strengths
Four of the 18 codes in our mental model codeset revealed
nuanced differences among treatments in the participants’ un-
derstanding of the agent. Table 2 lists these four codes.

Participants who saw rewards (Rewards and Everything)
often mentioned that the agent was driven by its objective to
maximize its score (Table 2’s Maximize Score). Over 3/4 (36
out of 46) of the people who mentioned this were in treat-
ments that saw rewards. For example: “The agent always
tried to get as high a possible total sum of all rewards as
possible. It valued allies getting damaged in the future as a
rather large negative value, and dealing damage and killing
enemy forts as rather high positive values.” (R81)3 and:
“These costs and rewards are then summed up into an overall
cost/reward value, and this value is then used to dictate the
agent’s action; whichever overall value is greater will be the
action that the agent takes.” (E14)

Some participants who saw rewards also mentioned the nu-
ance that the agent’s interest was in its future score (Table 2’s
Forward Looking), not the present one: “The AI simply takes
in mind the unknown of the future rounds and keeps itself in
range to be destroyed ‘quickly’ if a future city is under at-
tack...” (E83). Over 2/3 of the participants (9 out of 13) who
pointed out this nuance saw decomposed reward bars.

3 First letter of participant ID is treatment (Control, Saliency,
Rewards, Everything)
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Figure 8: Percentage of participants who successfully predicted the AI’s next move at each decision point (DP). Bar colors denote treatment
(from left to right): Control , Saliency , Rewards , and Everything . Participants’ results varied markedly for the different situations these DPs
captured, and there is no evidence that any of the treatments got better over time. All error bars ( SE = σ/

√
n) are under 10%.

Even more subtle was the agent’s paranoia (Table 2’s Para-
noia). It had learned Q-value components that reflected a
paranoia about receiving negative rewards for attacking its
own friendly units. Specifically, even though the learned
greedy policy appeared to never attack a friendly unit, un-
less there was no other option, the Q-components for friendly
damage were highly negative even for actions that attacked
enemies in many cases. After investigating, we determined
that this was a result of learning via the on-policy SARSA
algorithm4, which learns while it explores.

This paranoia can be a type of “bug” in the agents value
estimates. The only 8 participants in the entire study who
pointed out this bug were participants who saw rewards. For
example: “The AI appears to be afraid of what might hap-
pen if a map is generated containing four [friendly] forts or
something, in which it can do a lot of damage to itself.” (R73).

On the other hand, participants who saw saliency maps
(Saliency + Everything) had a different advantage over the
others–noticing how the agent changed behavior when it
thought it was going to die (Episode Over). For example,
it tended to embark on “suicide” missions at the end of a task
when its health was low. About 2/3 (10 out of 15) of the
participants who talked about such behaviors were those who
saw saliency maps. As one participant put it: “If it cannot
take down any structures, it will throw itself to wherever it
thinks it will deal the most damage.” (S74).

4.3 Discussion: Which explanation?

On the surface, Section 4.1 suggests that, in explainable sys-
tems, the more explanation we give people, the better. How-
ever, Section 4.2 suggests that the question of which explana-
tion or combination of explanations is better is more complex
– each type has different strengths, which may matter differ-
ently in different situations. To investigate how situational an
explanation type’s strength is, we turn next to a qualitative
view of how participants fared in individual situations, which
we captured with their predictions at each DP.

4SARSA learns the value of the ε-greedy exploration policy,
which can randomly attack friendly units. Thus, the learned Q-
values reflect those random future negative rewards. However, after
learning, exploration stops and friendlies are not randomly attacked.
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DP9 DP10 DP11
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DP12 DP13 DP14

Table 3: The tasks and their DPs. We have highlighted in green the
action the AI chose.

5 Results: People Predicting the AI
Participants’ action predictions provided us in situ data [Mu-
ramatsu and Pratt, 2001; Hoffman et al., 2018]. Table 3 shows
each DP’s state. Recall that at each DP, participants do not see
the explanation until they predict the agent’s actions. Figure 8
shows varied accuracy and no evident learning effect. Quali-
tative analysis revealed several phenomena to explain why.

5.1 Help! The choice is counter-intuitive
Situations where the agent went against participants’ intu-
itions proved confusing. These cases all had low accuracy,
with all treatments’ below random guessing (≤ 25%).

One of these situations was the agent choosing neither the
strongest nor weakest of similar enemies (DPs 10,12). When
the Everything participants got it right, their comments sug-
gest they combined both saliency and rewards into their rea-
soning; e.g., (E71) for DP10: “As it will look at the HP of
the tank more it will not attack Q4 instead it will go for Q1
which will give it enough benefit but also maintain its HP.”

However, all of the participants in the Rewards treatment
got DP10 wrong, suggesting that they needed the saliency
maps to factor in how much the AI focuses on its own HP,
which was key in this situation. For example: “Lowest HP
out of the 3 big fort.” (R94).
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A second situation that was counter-intuitive to participants
was the agent choosing to attack an enemy elsewhere over
saving a friend. The worst accuracy for this type was at DP4:
77% of the participants got it wrong. They incorrectly pre-
dicted it would attack the enemy tank, citing its health: “This
is the enemy object with the lowest value for HP.” (S18) or
its threat to a friend “The enemy tank poses the greatest threat
[to] allies...” (S25). Of the few participants (19 total) who
predicted correctly, most (68%) were in treatments that saw
reward bars, e.g.: “... destroying enemy [fort] will give you
more point than destroying a tank.” (R94).

5.2 Overwhelmed!
In DPs 6, 9, & 11, the Everything participants’ had the low-
est predictive accuracy, while Control had the highest. This
seems tied to Everything participants coping with too much
information, showing the importance of balancing complete-
ness without overwhelming users [Kulesza et al., 2015].

Some Everything participants tried to account for all the
information they had seen. For example, at DP6: “I think it
considers own HP first then Friend/Enemy status, so going
by that it will attack Q4. Also, ...it attacks enemies with more
HP.” (E38). Some bemoaned the complexity of the informa-
tion: “It was confusing all around to figure out the main factor
for movement using the maps and bars...” (E39). In contrast,
participants in the Control were able to apply simpler reason-
ing for the correct Q2 prediction at DP6: “because it is the
lowest health of all of the enemy objects.” (C69).

Participants’ timing data also attest to Everything partici-
pants’ burden of processing all the information (Figure 9). In
the figure, “×” depicts how much time an Everything partici-
pant would spend if they spent as long as Control, plus the
average time Saliency participants incurred above Control,
plus the average time Rewards participants incurred. As the
figure shows, Everything participants’ time to act upon their
explanations exceeded the sum of acting upon the component
parts, at every DP. Further, since participants had time limits
for each DP, some “timed out”–and Everything accounted for
17 timeouts, while all others had 10 in total.

5.3 No help needed... yet
For some DPs (2, 3, 5, 13), explanations seemed unnecessary,
as the Control proved “good enough” (at least 75% of partici-
pants predicted correctly). At “Easy” situations, explanations
may simply interfere. However, it may not be easy for every-
one. On-demand explanations can provide more information

to those who need it, without overwhelming those that do not.

5.4 Discussion: It all depends...
Participants’ explanation needs depended on the situation;
hence the variability illustrated in Figure 3. Statistically,
treating these situations together simply “cancels out” effects.
This wide variation should be expected, given the variability
in state/action pairs, combined with the noisiness of human
data. The mix of quantitative with qualitative methods for
RQ-Predict served us well, and we recommend it to other
XAI researchers facing similarly situation-dependent data.

6 Threats to Validity
Any empirical study has threats to validity, which might skew
the results towards certain conclusions [Wohlin et al., 2000].

Participants’ proficiency in RTS games might have assisted
in understanding the agent’s tactics. To control for this, the
RTS “gamers” were fairly evenly distributed across our treat-
ments (Figure 2). However, we did not collect many demo-
graphics, preventing us from considering other factors that
may impact people’s mental models of games, such as age.
Our study design emphasized isolation of variables over ex-
ternal validity. For example, to reduce confounding factors,
we simplified our game, but this means that our results might
not hold for complex RTS games. We controlled the time all
participants spent on each DP, but this may have impacted
their mental models in two ways: limited time to examine
DPs (8 minutes) and number of data points (14).

These threats can only be addressed with additional studies
over many empirical methods to help generalize the findings.

7 Concluding Remarks
In this paper, we report on a mixed methods study with
124 participants with no AI background. We investigated
which of four visual explanation possibilities–saliency, re-
wards, both, or neither–enabled participants to build the most
accurate mental models, and in what circumstances. Among
the surprising results were:
• Everything participants had significantly better mental

model description over the Control participants (Section 4).
• Rewards participants had the most insight into nuanced

concepts such as agent paranoia (Section 4.2).
• Revealed that participants needed entirely different types

of explanations for different situations (Section 5).
• Corroborated Kulesza et al. (2015)’s results in a new do-

main about not overwhelming users (Section 5.2).
Our analyses suggest several one-size-does-not-fit-all take-

away messages. First, one type of explanation does not fit all
situations, as Section 5 shows. Second, one type of explana-
tion does not fit all people, as the distribution ranges in Fig-
ure 6 show. And perhaps most critical, one type of empirical
analysis (strictly quantitative or strictly qualitative) was not
enough; only by combining these techniques were we able to
make sense of the wide differences among individual partici-
pants at individual DPs. We believe that, only by our commu-
nity applying an arsenal of empirical techniques, can we gain
the rich insights needed to learn how to explain AI effectively
to mere mortals.
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