Gender pluralism in problem-solving software

Margaret M. Burnetta,*, Laura Beckwitha,c, Susan Wiedenbeckb, Scott D. Fleminga, Jill Caoa, Thomas H. Parkb, Valentina Grigoreanua,d, Kyle Rectora,e

a Oregon State University, 1148 Kelley Engineering Center, Corvallis, OR 97331, USA
b Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
c HCI Researcher, Sønder Boulevard 63, 4.th, 1720 Copenhagen, Denmark
d Microsoft, One Microsoft Way, Redmond, WA 98052, USA
e University of Washington, AC101 Paul G. Allen Center, Box 352350, 185 Stevens Way, Seattle, WA 98195, USA

* Corresponding author.

E-mail addresses: burnett@eecs.oregonstate.edu (M.M. Burnett), beckwith@hciResearcher.com (L. Beckwith), sw53@drexel.edu (S. Wiedenbeck), sdl@eecs.oregonstate.edu (S.D. Fleming), caoch@eecs.oregonstate.edu (J. Cao), tp352@drexel.edu (T.H. Park), valeng@microsoft.com (V. Grigoreanu), rectorky@cs.washington.edu (K. Rector).

\textbf{A B S T R A C T}

Although there has been significant research into gender regarding educational and workplace practices, there has been little awareness of gender differences as they pertain to software tools, such as spreadsheet applications, that try to support end users in problem-solving tasks. Although such software tools are intended to be gender agnostic, we believe that closer examination of this premise is warranted. Therefore, in this paper, we report an end-to-end investigation into gender differences with spreadsheet software. Our results showed gender differences in feature usage, feature-related confidence, and tinkering (playful exploration) with features. Then, drawing implications from these results, we designed and implemented features for our spreadsheet prototype that took the gender differences into account. The results of an evaluation on this prototype showed improvements for both males and females, and also decreased gender differences in some outcome measures, such as confidence. These results are encouraging, but also open new questions for investigation. We also discuss how our results compare to generalization studies performed with a variety of other software platforms and populations.

\textcopyright 2011 British Informatics Society Limited. Published by Elsevier B.V. All rights reserved.

\section{1. Introduction}

An important cultural issue in the technological world is gender (Bardzell and Feminist, 2010; Margolis and Fisher, 2003; Zeldin and Pajares, 2000). From a feminist perspective, pluralism is the quality of designing artifacts that "resist any single, totalizing, or universal point of view" (Bardzell and Feminist, 2010). Pluralism implies that designers can produce more inclusive designs through sensitivity to marginal or marginalized users. To inform the design of gender-pluralist software, we are investigating gender differences in the ways males and females engage in problem solving and use problem-solving software.

Understanding gender differences in problem-solving software may provide important benefits to the users of such software. If males and females work differently with problem-solving features, then a software environment may be unintentionally biased to the needs of one gender while marginalizing the other. Understanding such differences would reveal ways to design environments that serve both genders more equally—ideally without disadvantaging either gender.

In this paper, we begin with a theory-based foundation (Section 2). Drawing from these theories, we then present investigations to understand whether and how gender differences manifest in the context of problem-solving software. Our core studies focus on spreadsheet testing and debugging because spreadsheets environments are ubiquitous and used by end users in tasks common for males and females in the workplace, such as accounting, budgeting, and calculating student grades. Moreover, researchers have observed high error rates in spreadsheets developed by end users (Panko and Aurigemma, 2010), which suggests that problem-solving in that software context is difficult for at least some users. We therefore investigate software-based problem-solving through three studies in the context of spreadsheet debugging (Sections 3 and 4) that together address the four research questions below. We then discuss several related studies (Section 5) that generalized the results from the first three research questions.

\textbf{RQ1}: Are there gender differences as to which features males and females use in problem-solving software?

\textbf{RQ2}: Are there gender differences as to males' and females' willingness to tinker and explore?
RQ3: Are any such differences related to males’ or females’ technical problem-solving confidence?

RQ4: If gender differences exist, is it possible to design problem-solving software that overcomes gender gaps without penalizing either gender?

The answers to RQ1–RQ3 may have considerable implications for software product design, which we consider in RQ4. For example, many software products are designed around the notions that software’s problem-solving features are gender neutral, and that when users notice new features relevant to their tasks, they will often have enough confidence and interest to tinker with the new features. If these assumptions are not true for both males and females, software product designers will want to consider changing their products. Making such changes is likely to help both genders: research has shown that studying the needs of one sub-population can provide benefits that extend beyond that sub-population (Ljungblad and Holmquist, 2007). For example, phenomena that affect large numbers of females are likely to affect some males as well.

As to how to follow up on implications of RQ1–RQ3, fortunately, theories offer not only explanations of why the differences we investigate here could occur, but also offer a useful framework for thinking about how to act upon the differences (RQ4). We therefore begin by considering these theoretical foundations.

2. Theoretical background

2.1. Self-efficacy theory

Self-efficacy, a type of confidence, is a person’s belief in his or her ability to perform a specific task (Bandura, 1986). According to self-efficacy theory, self-efficacy distinguishes how individuals will approach and perform a task. In particular, self-efficacy affects performance when a task becomes challenging (Bandura, 1986). People with high self-efficacy tend to put in more effort, persist in challenging tasks, and have more genuine interest in the task than people with low self-efficacy. Ultimately self-efficacy affects performance outcomes, influencing whether or not an individual succeeds at the task.

According to the theory, individuals with high self-efficacy on a task possess several characteristics that aid their success and that individuals with low self-efficacy lack (Bandura, 1986). One such characteristic is propensity for generating and trying alternative strategies when the current strategy is failing. Another characteristic is willingness to abandon faulty strategies (which generally implies determining an alternative strategy). In contrast, individuals with low self-efficacy are less likely to abandon faulty strategies, and less likely to try alternative strategies.

Computer self-efficacy refers to a person’s judgment of his or her capabilities to use computers in a variety of situations (Compeau and Higgins, 1995). Researchers have reported gender differences in computer self-efficacy across nationalities and across levels of computer expertise (e.g., Beyer et al., 2003; Busch, 1995; Colley and Comber, 2003; Durndell and Haag, 2002; Margolis and Fisher, 2003; Zeldin and Pajares, 2000).

Computer self-efficacy is particularly pertinent to software tool design because a user’s computer self-efficacy influences how he or she will respond to design strategies intended, for instance, to encourage the user to learn about new or unfamiliar software features. For example, Lowenstein’s information-gap perspective on curiosity states that users will become curious and investigate when appropriately surprised. Designers applying this perspective rely on users having a certain level of confidence for the surprise to generate curiosity and follow-up rather than anxiety and avoidance (Lowenstein, 1994). Thus, in the context of problem solving with software, low self-efficacy may interfere with the user’s willingness to explore and ultimately adopt unfamiliar features (RQ1, RQ2). This potential effect of low self-efficacy also raises the question of whether any gender differences in feature usage may be due solely to differences in computer self-efficacy (RQ3).

2.2. Selectivity hypothesis

The selectivity hypothesis synthesizes earlier theories of gender differences with respect to information processing (Meyers-Levy, 1989). According to the hypothesis, males tend to process information in a heuristic manner, paying particular attention to cues that are highly available and particularly salient in the focal context. In contrast, females process information in a comprehensive manner, attempting to assimilate all available cues. The hypothesis goes on to suggest that males may focus on themselves when processing information. This self-focus helps to streamline processing because memory processing of information pertaining to oneself has a particularly well-developed and elaborate network of associations. According to the hypothesis, females may take a different approach, processing equally information relevant both to others (external world) and themselves. Meyers-Levy and others have presented empirical evidence that supports the hypothesis (Meyers-Levy, 1989).

In the context of computer-based problem-solving environments, the selectivity hypothesis implies that males and females will respond differently to different cues and features in the environment, which should impact problem-solving decisions. Moreover, these differences imply that both what information the environment presents and how the environment presents information will impact the tool’s effectiveness differently for males versus females. With respect to our investigations, the theory not only predicts gender differences in feature usage (RQ1), but also suggests design remedies (RQ4) based on supporting both genders’ information processing styles.

2.3. Attention investment model

In contrast to the above theories, the attention investment model specifically attends to users’ decisions about technology usage. The model is an analytical model of problem-solving behavior that accounts for the perceived costs, benefits, and risks that a user considers in deciding how to complete a task in a software environment (Blackwell, 2002).

Gender enters into play because it potentially influences the perception of cost, benefit, and risk. For example, due to the self-efficacy differences discussed in Section 2.1, a female’s perception of the cost of learning a new feature may be higher than a male’s perceived cost to learn the same feature. Researchers have also pointed to differences in motivations to use technology (Brunner et al., 1998), which suggest gender differences in perceived benefits.

Regarding the risk factor, the model suggests that a user’s perception of risk may influence exploration of unfamiliar features while problem solving. For example, a user might notice an unfamiliar but potentially useful feature in the environment. However, the user may not try the feature if he or she perceives a substantial risk, such as the significant loss of time trying to learn the feature without ultimately succeeding.

Gender differences in perceived risk have a rich literature. Research on risk perception suggests that females perceive more risk from everyday life decisions and situations than do males (Barke et al., 1997; Blais and Weber, 2001; Byrnes et al., 1999; Finucane et al., 2000; Hudgens and Fatkin, 2001). Researchers have
also found that females are more risk averse than males in making financial decisions (Jiankoplos and Bernasek, 1998) and in making informed guesses when a wrong guess produces negative consequences (Byrnes et al., 1999).

These gender differences in perceptions of cost and risk suggest that females may be less likely to explore unfamiliar features than males (RQ2) and may therefore use different features than males (RQ1). The attention investment model also suggests a design remedy (RQ4) for users whose perceptions of costs or risks are inappropriately high: a software environment could help such users bring their perceptions of costs, benefits, and risks in line with reality, resulting in a better-informed decision as to whether to try an unfamiliar feature.

3. Studies #1 and #2

Based on our survey of the theoretical literature, we conducted two studies to understand how gender differences manifest in the context of testing and debugging spreadsheets.

3.1. Study #1: feature use and self-efficacy

Our first study investigated gender differences in feature use (RQ1) and the influence of confidence on those differences (RQ3). In particular, we checked for differences in males’ and females’ willingness to use familiar versus unfamiliar features for testing spreadsheets. We also looked at how the differences we found related to self-efficacy in finding and fixing spreadsheet errors.

3.1.1. Spreadsheet environment

We conducted the study in the context of the Forms/3 spreadsheet environment, which includes a number of features that have been previously shown to help users find and fix errors in spreadsheet formulas (Burnett et al., 2004).

In Forms/3 (Fig. 1), users can “check off” cells whose computed values they decide are correct (e.g., Exam_Avg). These decisions constitute “tests”. As the user checks off values as correct, cell border colors update to indicate how fully tested the cell is. Although users may not realize it, these “testedness” colors reflect the use of a dataflow test adequacy criterion that measures the interrelationships in the formulas that have been covered by the users’ tests (Rothermel et al., 2001). A cell is fully tested if all its interrelationships have been covered; if only some have been covered then the cell is partially tested. Along the top of the Forms/3 window, a progress bar shows the average percent “testedness” of all cells in the spreadsheet (e.g., 30% tested).

The user can also “X off” cells with incorrect values (e.g., Course_Avg). The interior color of a cell indicates the likelihood that the cell contains a fault. A fault-likelihood bar (below the testedness bar) shows how much of the spreadsheet has particular levels of fault likelihood.

Arrows display dataflow relationships among cells (e.g., the arrow from Quiz5 to Quiz_Avg). The arrows follow the testedness color scheme to show how thoroughly a relationship between two cells has been tested. In Fig. 1, the user has displayed Quiz5’s arrow showing that the formula in Quiz_Avg references Quiz5. The color of the arrow indicates that the user has not tested the relationship.

3.1.2. Participants and procedures

The participants were 27 male and 24 female undergraduates, all of whom were familiar with spreadsheets. Most of the participants were business students, and none were studying computer science. Background data collected with a pre-experiment questionnaire indicated that the gender groups did not have significant differences in major, grade point average (GPA), or experience with spreadsheets, programming (as measured by number of classes and years of experience at the high school, college, and professional level), or the study’s spreadsheet environment. (We did not collect background data relating to affinity for mathematics or computing because spreadsheets are expected to be used successfully in the workplace by males and females regardless of potential gender differences in such affinities.) The females were academically younger than the males by a small but significant margin (ANOVA: \(F(1, 48) = 4.53, p < .04\)). Post-hoc analyses, however, showed that academic age was not predictive of any outcome measures.

Prior to the main study session, we assessed participants’ pre-task self-efficacy (pre-self-efficacy) by adapting Compeau and Higgins’ computer self-efficacy questionnaire for spreadsheet-debugging tasks (Compeau and Higgins, 1995). The original questionnaire consisted of a prompt, “I could complete the job using the software package if...” followed by ten different completions of the sentence, such as “…I had used similar packages before this...”
one to do the same job.” Each completion reflected a different level of self-efficacy, and allowed responses on a 10-point scale from “not at all confident” to “totally confident”. To adapt this questionnaire to spreadsheet debugging, we changed the prompt to “Given a spreadsheet which performs common tasks (such as calculating course grades or payroll) I could find and fix errors if…” In each completion, we changed the word job to task and package to spreadsheet (e.g. “… I had used similar spreadsheets before this one to do the same task”).

For consistency with other questions on our questionnaire, we also changed the response scale to a 5-point scale from “strongly disagree” to “strongly agree”. (Note that this scale change is a departure from the Compeau/Higgins questionnaire, implying that our results should not be compared with other researchers’ uses of this questionnaire. Therefore we compare our self-efficacy results within only our own participants and our own studies.)

Participants then completed a hands-on tutorial to become familiar with Forms/3. The tutorial thoroughly covered Forms/3’s checkmarks and arrows features, but merely mentioned X-marks. Varying the coverage of these features enabled us to check for three levels of feature usage by participants: (1) use of previously familiar features (formula editing), (2) use of unfamiliar but taught features (checkmarks and arrows), and (3) use of unfamiliar and untaught features (X-marks).

For the main study tasks, participants were to find and fix errors in two spreadsheets, each seeded with five bugs. One spreadsheet, Gradebook, contained a teacher’s gradebook, and the other, Payroll, captured a real company’s method of calculating payroll checks. For each task, we instructed participants to “Test the … spreadsheet to see if it works correctly and correct any errors you find.” Participants had 22 min to complete the Gradebook task and 35 min to complete the Payroll task. We assigned the tasks in random order.

3.1.3. Results

To address RQ1, we measured usage of familiar and taught features by counting number of uses (formula edits and feature toggles). From the taught-features count, we excluded repeated toggles on the same cell after ceasing formula edits because such toggling suggested an absence of intellectual involvement. We considered usage of the untaught features when a participant placed more than one X-mark and subsequently edited a colored cell’s formula. Because only about 60% of the participants exhibited this behavior and their frequency of usage was low (1 or 2 was typical), we classified participants as having used or not used untaught features rather than counting instances of use. Analysis revealed that females relied on familiar features significantly more than males (ANOVA: F(1, 49) = 4.979, p < .03) (Table 1). In contrast, males used both taught features (ANOVA: F(1, 49) = 4.971, p < .03) (Table 2) and untaught features (Fisher’s Exact Test: p < .001) (Table 3) significantly more than females.

How did the differences in feature usage play out in terms of success? There was no significant gender difference in the number of bugs fixed (Mann-Whitney: U = 300.5, p < .651). However, females introduced significantly more bugs than males (Mann-Whitney: U = 227.5, p < .011), and were significantly more likely than males to introduce bugs (Fisher’s Exact Test: p < .015). Table 4 summarizes these results. Females may have introduced more bugs than males simply because females edited formulas more.

Table 1

<table>
<thead>
<tr>
<th>Gender</th>
<th>n</th>
<th>Mean</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>27</td>
<td>23.8</td>
<td>9.58</td>
</tr>
<tr>
<td>Females</td>
<td>24</td>
<td>29.8</td>
<td>9.66</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Gender</th>
<th>n</th>
<th>Mean</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>27</td>
<td>123.41</td>
<td>68.27</td>
</tr>
<tr>
<td>Females</td>
<td>24</td>
<td>87.54</td>
<td>47.67</td>
</tr>
</tbody>
</table>

Note that editing formulas is the only way to introduce bugs in a spreadsheet. Thus, it stands to reason that if females had spent more time with the unfamiliar debugging features and less with formula editing, then they would have had fewer chances to introduce bugs.

To address RQ3, we investigated whether self-efficacy played a role in participants’ feature usage. We analyzed the pre-self-efficacy questionnaires by summing each participant’s answers to all 10 questions and found that females had significantly lower pre-self-efficacy scores than males (Mann-Whitney: U = 181, tied p < .018). Fig. 2 depicts this difference.

For females, self-efficacy was a good predictor of feature usage. In particular, self-efficacy significantly predicted the final percent testedness for females (linear regression: F(1, 22) = 4.52, β = 2.09, R² = .177, p < .046) (but not for males). Fig. 3 depicts the relationships by gender. Percent testedness was a good measure of feature usage because it increased only if the participant strategically checked off values, indicating deliberate feature use. Spreadsheet testedness further predicted the number of bugs fixed by both males and females (linear regression: males: R(1, 25) = 16.60, β = .632, R² = .399, p < .0004; females: R(1, 22) = 6.818, β = .486, R² = .237, p < .016), suggesting important ties between self-efficacy, feature use, and success.

The results of Study #1 suggest that designers of problem-solving software should look for new ways to encourage users to consider relevant features they have not tried before. The (predominantly female) participants who favored the formula editor may have been drawn to the feature’s familiarity. Since many of the users who favored the familiar formula editor had low self-efficacy, possibilities include finding ways to reinforce users’ confidence in their success or finding ways to suggest that high certainty is not important in the use of particular features. We will discuss techniques that leverage these ideas in Section 4.

3.2. Study #2: tinkering and self-efficacy

Researchers in education (Rowe, 1978) and other domains (Martocchio and Webster, 1992; Webster and Martocchio, 1993) have found tinkering (playful exploration) in an environment to be beneficial for learning. Education research further suggests that gender may influence a person’s willingness to tinker; for instance, males reportedly tinker more frequently than females (e.g., Jones et al., 2000). However, such differences have not previously been investigated in problem-solving software.

To understand the relationship between gender and tinkering in problem-solving software (RQ2), we empirically studied the tinkering behavior of males and females in the context of testing and debugging spreadsheets. Building upon Study #1, Study #2 also investigated the relationship between self-efficacy and tinkering (RQ3). We thus used a 2-by-2 between-subjects design with two factors: gender and spreadsheet environment. The two
variants of the spreadsheet environment were (1) a low-cost version and (2) a high-support version. The low-cost version encouraged tinkering for users by minimizing the cost of manipulating features (e.g., in terms of number of clicks). The high-support version provided greater support for debugging, but also increased the cost of tinkering. Comparing males and females’ tinkering in the low-cost environment versus the high-support environment enabled us to observe the influence that feature design can have on tinkering.

3.2.2. Participants and procedures

Participants comprised 36 males and 40 females with spreadsheet experience and minimal programming experience. They were recruited from a university community, had a variety of educational backgrounds, and ranged in age from under 20 to older than 60. Prior to the main study session, participants completed a pre-experiment questionnaire that collected background data on GPA, spreadsheet experience, and programming experience, and also measured pre-self-efficacy. We randomly assigned the males and females each into the two treatment groups (low-cost and high-support), using the background data only as needed to balance the groups. The low-cost group comprised 20 males and 17 females, and the high-support group comprised 16 males and 23 females. The groups showed no significant differences in the background data.

The main study session began with a 35-min hands-on tutorial to familiarize participants with the appropriate version of Forms/3. Next, participants performed the same two tasks as in Study #1 (randomly ordered): debugging the Gradebook and Payroll spreadsheets. Participants had 22 min and 35 min to work on Gradebook and Payroll tasks, respectively. After each task, participants filled out questionnaires regarding how they perceived their performance. Finally, participants completed a post-experiment questionnaire that measured post-self-efficacy and comprehension of the debugging features.

3.2.3. Results

To address RQ2, we analyzed whether the relationship between tinkering and performance on task was the same for females as for males. In educational settings, such exploration has been encouraged for improved performance (Rowe, 1978). Although our context was different, we expected the trend to hold—that is, we expected that participants who tinkered more would exhibit better performance.

To measure tinkering, we operationally defined a tinkering instance as turning a feature on and then immediately turning it off, e.g., placing a checkmark on a cell and then removing the feature design and possible actions the user might take (Fig. 5). A “Help Me Test” feature could recommend test inputs to improve coverage of untested logic in the spreadsheet.

3.2.1. Low-cost and high-support spreadsheet environments

The low-cost variant of Forms/3 is the version described in Section 3.1.1. Its acting/tinkering cost was low: it required only a single action to toggle (or undo) a testing decision for cells (left-click for checkmark and right-click for X-mark), and it kept tooltip explanations as brief as possible.

The high-support variant emphasized support for the debugging features, but also increased the cost of acting/tinkering. The X-mark/checkmark box on each cell now enabled users to denote “maybe” values, but at a cost of two clicks (Fig. 4). Expandable tooltip explanations provided information about the current state of the spreadsheet and possible actions the user might take.

Table 4

<table>
<thead>
<tr>
<th>Gender</th>
<th>n</th>
<th>Seeded bugs fixed (10 possible)</th>
<th>New bugs introduced</th>
<th>Num who introduced bugs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean (standard deviation)</td>
<td>Mean (standard deviation)</td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>27</td>
<td>5.815 (2.167)</td>
<td>0.111 (0.424)</td>
<td>2</td>
</tr>
<tr>
<td>Females</td>
<td>24</td>
<td>5.667 (2.014)</td>
<td>0.583 (0.974)</td>
<td>9</td>
</tr>
</tbody>
</table>

Fig. 2. Males’ and females’ pre-session self-efficacy (maximum was 50). The center line of each box represents the median score. The boxes show the ranges encompassed by 50% of the scores of each gender. The whiskers extending above and below the boxes show the remaining upper and lower 25%.

Fig. 3. Self-efficacy as a predictor of final spreadsheet testedness. The regression lines show the females’ positive relationship of self-efficacy to spreadsheet testedness. For males, the relationship was not significant.
checkmark. A participant's tinking frequency for a task comprised the total number of tinkering instances. A tinking episode comprised a sequence of one or more tinking instances, terminated by a cell edit or the end of the task. A participant's episode count served as a measure of his or her consistent usage of tinking. Finally, a participant's tinking rate averaged his or her tinking frequency per episode and was interpreted as commitment to tinking within episodes. The first three rows of Table 5 summarize the tinking results.

We considered three measures of performance: bugs fixed, percent testedness, and understanding of debugging features (as measured on the post-experiment questionnaire). The last three lines of Table 5 summarize the results for these task outcomes.

Correlating tinking with performance, we were surprised to find that the relationship for females was essentially the opposite of the relationship for males. Tinking positively predicted debug effectiveness for males, whereas it negatively predicted bugs fixed for them (linear regression: $R^2 = .11, p < .05$). In contrast, no measure of tinking predicted bugs fixed for females (linear regression: $R^2 = .19, p > .01$). For females, tinking episodes also predicted understanding (linear regression, frequency: $F(1, 38) = 8.04, R^2 = .19, p < .01$; episodes: $F(1, 38) = 4.44, R^2 = .10, p < .05$). In contrast, no measure of tinking correlated with males' understanding of the features.

To understand why males' tinking correlated negatively with their performance, we considered two types of tinking: exploratory and repeated. Repeated tinking instances are the number of tinking instances in a sequence of two or more consecutive tinking instances on the same feature and the same cell. For example, turning the arrows for a cell on and then immediately back off again three times in a row is three repeated tinking instances. Hence, the repetitions can only repeat information already revealed by the previous tinking instances. Exploratory tinking instances, which we define as the difference between total tinking instances and repeated tinking instances, potentially can impart new information.

An increase in female exploratory tinking (which accounted for 91% of their overall tinking) was a significant predictor of increased understanding (linear regression: $F(1, 38) = 4.61, R^2 = .11, p < .05$). In contrast, males' exploratory tinking oddly was not statistically predictive of understanding or of any of the effectiveness measures.

As Fig. 6 shows, repeated tinking instances accounted for a significantly greater proportion of the low-cost males' tinking than in any other group, with a significant effect of interaction between gender and treatment (ANOVA: $F(1, 72) = 5.82, p < .05$). In fact, nearly 17% of the low-cost males' tinking instances were of the repeated type, almost twice as many as for the next highest group.

The high-support treatment, with its increased tinking cost, not only reduced males' tinking, but also selectively reduced their ineffective repeated type of tinking. Because it did not affect the females' tinking effectiveness, this approach appears to be the better of the two treatments for both genders, albeit for different reasons.

Still, the different types of tinking alone do not explain the inverse relationship between tinking and performance for males. Education research suggests a second reason: the males may not have reflected enough. Research has shown that when students have a "wait-time" of 3 s or more to process a classroom response, their critical thinking improves (Rowe, 1978). To see whether such wait-times also apply in this context, we likewise defined pauses as three or more seconds of inactivity after a user action.1

Overall, females had significantly more pauses than males (ANOVA: $M_{Male} = 109, M_{Female} = 220, F(1, 74) = 4.22, p < .05$). Thus, males did not take time that might have been used to reflect upon the feedback from their actions as often as the females did. These pauses mattered; participants who paused long enough to reflect on the environment's responses showed evidence of understanding the features better and used them more effectively. For both genders, more frequent pauses were predictive of greater effectiveness

1 We considered pauses after any action (not just tinking instances), because every action provides feedback.
as measured by bugs fixed (linear regression: $F(1, 74) = 5.36, R^2 = .07, p < .05$), final percent testedness (linear regression: $F(1, 74) = 31.3, R^2 = .30, p < .01$), and understanding of features (linear regression: $F(1, 74) = 14.11, R^2 = .16, p < .01$). Males’ tendency to tinker more appears to be useful only when they make regular use of pauses. In our study, their tendency to pause too little may have interfered with the potential benefits of tinking.

To address RQ3, we considered changes in participants’ self-efficacy before and after they completed the tasks. We expected that increased tinking would increase females’ post-self-efficacy, as would the set of features in the high-support treatment. Surprisingly, females using the high-support treatment experienced a dramatic fall in self-efficacy (Fig. 7) that was significant (paired t-test: $t(74) = 3.19, p < .05$). The other groups showed little to no change in their self-efficacy between pre-self-efficacy and post-self-efficacy. The relationships between tinking and post-self-efficacy were also surprising. For high-support females, the rate of tinking per episode was predictive of the efficacy were also surprising. For high-support females, the rate of tinking per episode was predictive of the efficacy were also surprising. For high-support females, the rate of tinking per episode was predictive of the efficacy were also surprising. For high-support females, the rate of tinking per episode was predictive of the efficacy.

One possible reason for the high-support females’ extreme drop in self-efficacy is that they did not perceive tinking as helpful for understanding how their debugging environment worked. Therefore, the more they tinkered, the more they reinforced this perception of their inability to understand what was happening in the environment. Taken in combination with the other tinking/efficaciveness results of this study, it appears that the tinking issue for females is complex. Females were better than the males at consistently extracting problem-solving benefits from tinking, but were worse than the males at maintaining their self-efficacy levels.

Since tinking was not a straightforward win for females, one implication for products in which there is an underlying assumption that adopting new features will start by people tinking with them is that designers could provide alternative ways to enable users to become comfortable with new features, such as by tutorial snippets. Additional design remedy possibilities include finding ways to encourage pauses for reflection during exploratory tinking while reducing the incidence of repetitive tinking, which our results suggest are particularly important for males. We consider these possibilities in the next section.

4. Study #3: gender-pluralist design

Our third study investigated whether it is possible to close the gender gaps revealed in Studies #1 and #2 in ways that do not penalize either gender (RQ4). We introduced variants of the testing/debugging features described earlier and investigated their influence on the feature use, effectiveness, and confidence of male and female problem-solvers.

The experiment was a 2-by-2 between-subjects design with two factors: gender and version of the spreadsheet environment (treatment versus control). The treatment and control groups both used the Forms/3 environment, but the treatment group’s version contained the two additional features: “maybe” marks (described in Section 3.2.1) and a strategy-explanation feature.

4.1. Gender-conscious spreadsheet environment

The design of the treatment features was motivated by both theoretical and empirical research relating to gender differences in problem-solving environments. We designed a strategy-explanation feature with video-snippet and hypertext media (Fig. 8), drawing inspiration from research reporting that tutorial materials benefit females’ performance in software development (Kelleher et al., 2007; Subrahmaniyan et al., 2007). The explanations emphasized strategic debugging in the software environment, not feature-by-feature usage. The videos were developed according to self-efficacy theory, which states that one way for people to gain confidence is through vicarious experience, i.e., watching other people like themselves succeed at a similar task. They aimed primarily to help low self-efficacy females gain confidence. Each video snippet involved a male/female pair and showed the female struggle and then succeed with a debugging situation. Also taking into account the attention investment model, we began each video with explicit lead-ins to make explicit the benefit of viewing the video. We labeled the video snippets with their viewing times (usually a minute or less) to align users’ perceived costs with actual costs of viewing the videos. We also included hypertext variants of the same text as the videos to accommodate users and situations for which text was perceived as less costly or otherwise preferable. We combined this feature with “maybe” marks. (“Maybe” marks had also been used in Study #2, but were not explicitly evaluated in that study.) “Maybe” marks were intended to beckon to low self-efficacy users by suggesting that being certain was not required to be “qualified” to pare down possible locations of spreadsheet errors.

4.2. Participants and procedures

Participants comprised 67 male and 65 female undergraduate students from a variety of majors, about half of whom were science/engineering majors (e.g., mechanical and nuclear engineering) and about half non-technical majors (e.g., Spanish, theater arts, business administration). No computer science students were allowed to participate. Prior to the experiment, we gathered background data that included GPA, age, year in school, programming experience, spreadsheet experience, and self-efficacy, and we randomly assigned participants to treatment groups (balanced by
A post-hoc analysis showed no significant differences between genders or treatment groups on any of these background data except self-efficacy. (We handled the self-efficacy difference by taking it into account statistically, as detailed below.)

For the experiment, participants first completed a tutorial on their group’s variant of Forms/3 (30 min). They then debugged the payroll spreadsheet from the first two studies (45-min limit). For this study, we seeded the spreadsheet with six bugs. To ensure treatment participants used the strategy-explanation feature, we interrupted them after 30 min and asked them to view either a video or hypertext explanation of their choosing. Finally, participants completed a questionnaire that asked them to rate the usefulness of features, to describe how parts of the software affected their confidence in fixing bugs (open-ended question), and to answer the self-efficacy questions again.

4.3. Results

Our analysis emphasized three comparison groups. First, we compared treatment females with control females to see if the features influenced females’ outcomes. Second, we compared treatment males with control males to see if the features influenced males’ outcomes. Third, we compared treatment male/female gender gaps with control male/female gender gaps to see if the features affected the gender gap.

Although males fixed significantly more bugs than females in this study (females: \(M = 2.88, SD = 1.75 \); males: \(M = 3.84, SD = 1.46 \); ANOVA: \(F(1, 130) = 15.67, p < .00013 \)), this is not surprising given that the first two studies revealed barriers to females’ success in debugging spreadsheets. Complicating the situation, a self-efficacy background difference was present in this study. Thus, in making the comparisons, we statistically took into account potential confounds: gender/treatment group differences in pre-self-efficacy, and individual differences in minutes available for debugging. Females in the treatment group had significantly lower pre-self-efficacy than females in the control group (treatment females: \(M = 3.36, SD = 0.74 \); control females: \(M = 40.13, SD = 4.28 \); ANOVA: \(F(1, 63) = 7.96, p < .0064 \)). Furthermore, control participants had more time to debug than the treatment participants because the latter spent time viewing explanations. All of our subsequent statistical tests accounted for these differences except where indicated otherwise. Taking these factors into account, our results showed that the feature changes helped to close the gender gap in usage of debugging features. Specifically, treatment females used both the checkmarks and X-marks significantly more than control females and closer to the males’ level (Table 6; illustrated in Fig. 9) due to increased tinkering. We distinguished playful usage (e.g., quickly checking and unchecking a box) from lasting usage. We used ANCOVA (with pre-self-efficacy as a covariate) to test the difference in checkmark tinkering, whereas we used Wilcoxon rank-sum to test the difference for X-marks because the number of ties at zero made the distribution non-normal.

The increased feature usage of the treatment group is noteworthy because females who used the features more achieved greater success. Specifically, the total (playful plus lasting) number of checkmarks used per debugging minute (accounting for pre-self-efficacy) predicted the maximum percent testedness per debugging minute achieved by females in the control group (total checkmarks per debugging minute: \(M = 0.59, SD = 0.43 \); ANCOVA: \(F(2, 27) = 18.04, p < .00001 \)) as well as in the treatment group (total checkmarks per debugging minute: \(M = 0.63, SD = 0.53 \); ANCOVA: \(F(2, 32) = 31.11, p < .00001 \)). We used testedness as a measure of success because it was a significant factor (accounting for pre-self-efficacy) in the number of bugs fixed (maximum percent testedness: \(M = 0.57 (56.5\% \) testedness), \(SD = 0.22 \); bugs fixed: \(M = 3.36, SD = 1.65 \); ANCOVA: \(F(2, 129) = 8.88, p < .00024 \)). This experiment did not tease apart the effects of the nuanced (“maybe”) judgments feature from the effects of the strategy explanations on success. We attempted to analyze the relationships between the number of minutes spent viewing explanations and measures of each participant’s success. However, assessing ties to success involved the interaction of participants’ use of strategies and their

![Fig. 9. Tinkering with X-marks (left) and checkmarks (right), in marks applied per debugging minute. Note the gender gaps between the control females’ and males’ medians. These gaps disappear in the treatment group.](image-url)
self-efficacy. These relationships were complex and non-linear, making interpretation difficult. However, although we were not able to separate the impacts of nuance from strategy explanations, we know that the combination was tied to quantifiable benefits for females.

Turning to self-efficacy, we hypothesized that the features would positively influence female self-efficacy, but not lead to inappropriately high self-efficacy. Low self-efficacy is only appropriate when it positively influence female self-efficacy, but not lead to inappropriate confidence. Table 8 provides the results of Wilcoxon rank-sum tests of 35 treatment females’ and 30 control females’ responses regarding what influenced their confidence.

To fix bugs. To analyze the responses, we coded participant comments as positive or negative and as related to environmental conditions, user features, software feedback, information given, software usability, or experiment setup. Two researchers individually coded the same 20 participants’ answers using this scheme, achieving a 91% agreement rate. Given the high agreement, a single researcher coded the remaining participants’ answers.

Participant responses confirmed that the treatment environment fostered females’ confidence better than did the control environment. Treatment females said significantly more positive things than control females about the features and information’s effects on their confidence. Table 8 summarizes the analysis results for females.

Additionally, the results suggest that the features did not hinder treatment males. Overall, treatment males’ comments were not significantly more positive or negative than control males’. Moreover, treatment males spoke more positively about information than their control counterparts did (Wilcoxon rank-sum test: \(Z = -2.21, n = 67, p < .028 \)).

5. Discussion: generality

The three studies reported here together define our “core” results. However, they were all done in the context of one research prototype, allowing controlled manipulation of features of the software at a fine-grained level, but raising the issue of generality: whether our results would also apply to other software environments, other tasks, and other populations. Therefore, we ran a number of studies in other problem-solving contexts to assess...
the extent to which these results can be replicated in other environments and with other populations. We briefly summarize these results here.

In our first such study, we closely replicated the procedure of Study #1, but in the context of Excel (Beckwith et al., 2007). We generalized the population also, incorporating a population of Seattle-area experienced Excel practitioners rather than college students as in Study #1. We found that several of the results from Study #1 generalized to Excel. First, females’ self-efficacy predicted task success, but the same did not hold true for the males. Second, low self-efficacy females relied more heavily on the “familiar” type of features, particularly value edits: a relationship that did not hold for males. Third, these results could not be attributed to females being better judges of their weaknesses. Females’ comprehension of the software features was no different than the males’ and was not predicted by self-efficacy. This was the first study in a commercial environment, but the fourth study in total (including the three reported in this paper) in which we found that the effects of self-efficacy playing out differently for males and females.

Moving beyond spreadsheets, we have also investigated gender differences in the context of problem solving about the learned behaviors from machine learning systems. For example, email spam filters and recommender systems learn rules of computational behavior particular to one end user and these learned rules (which we term “learned programs”) sometimes require adjustment (“debugging”). We performed two studies in the context of an email sorter that learns how to help users sort emails into folders. We found gender differences in both of them. In our first study in this domain (Stumpf et al., 2008), males and females handled the same number of messages, but females spent significantly more time doing so. This was because females used the provided features more comprehensively (recall the selectivity hypothesis (Meyers-Levy, 1989), notifying the system of significantly more keywords than males did. Our second study in this domain (Kulesza et al., 2009) found that females had significantly lower self-efficacy, encountered more “selection” barriers (knowing what to do, but not which feature to use) and “design” barriers (cognitive difficulties, separate from the features) with the environment’s debugging features, and responded differently than males did in their attempts to overcome those barriers. For example, when females encountered a selection barrier, their next barrier was more likely than the males’ to be a selection barrier. Thus, although these two studies did not consider all the issues of the spreadsheet studies reported in this paper, the questions that they did consider produced results consistent with those found in the spreadsheet studies.

Turning to the paradigm of web automation, in a study of end-user mashup programmers (Cao et al., 2010), as with the above studies, females had lower self-efficacy and focused their efforts on familiar webservice features (versus unfamiliar webservice features) significantly more than the males did. Rosson et al.’s study of web developers also showed suggestive gender differences in the use of novel web-based database features that are consistent with these findings (Rosson et al., 2007).

Finally, we performed a multi-study that generalized beyond end-user problem solvers to a wide range of problem solvers ranging from administrators to professional programmers (Burnnett et al., 2010). Specifically, in a gender-based analysis of almost 3000 participants from multiple studies’ data at a large software company, we considered the same three research questions as RQ1–RQ3 in the core studies of this paper, but across multiple platforms and populations. The multi-study covered a study of technical problem-solving practices of multiple populations (from administrators to professional software developers), two studies of hobbyist programmers using Visual Studio Express, and two studies of professional software developers using Visual Studio as well as a variety of other platforms. As with the three studies reported in this paper, we found significant gender differences across all programming environments and populations as to which features males and females elected to use, as to males’ and females’ willingness to tinker and explore, and between males’ or females’ technical problem-solving confidence. Furthermore, as with the other studies reported in this paper, the confidence differences were not the sole explanation for the differences in feature usage and tinkering.

In summary, we have incorporated gender analyses in a variety of studies spanning multiple software environments and populations, and these studies have all found gender differences similar to those reported in this paper: in feature usage, in tinkering, and in how confidence plays out for males versus females.

6. Conclusions

In this paper, we have reported three core studies investigating gender differences in problem-solving environments. We also point to evidence that many of these results generalize, with similar results spanning ten other studies, seven problem-solving platforms, and thousands of participants ranging from end users to professional programmers. Our results were as follows:

RQ1: There were significant gender differences as to which features males and females use in problem-solving software.

RQ2: There were significant gender differences as to males’ and females’ willingness to tinker and explore.

RQ3: Although there were significant differences between males’ or females’ technical problem-solving confidence, these differences clearly were not the sole explanation for the differences in feature usage and tinkering.

RQ4: Early results suggest that it is possible to design problem-solving software in a way that takes gender differences into account, such that it overcomes gender gaps without penalizing either gender.

Our findings underscore the importance of taking gender differences into account when designing problem-solving software. For instance, software that assumes that users will discover advanced features solely through tinkering and exploring will likely marginalize females. Fortunately, our RQ4 results suggest that pluralist designs need not sacrifice the needs of one gender to serve the other: researchers have shown that taking gender differences into account in designing software features can benefit both genders. As an additional example, Tan et al. showed that displaying optical flow cues helped close a gender gap in virtual world navigation while benefiting both females and males (Tan et al., 2003). Furthermore, education researchers found that pair programming, which was expected to help female computer-science students, not only reduced the gender gap but also increased success and reduced attrition among both male and female students (Berenson et al., 2004; McDowell et al., 2003).

Finally, these gender differences do not suggest that males are somehow “better” software users than females. For instance, using unfamiliar features is not always better than using familiar ones, and tinkering is not always productive. Furthermore, although gender differences in feature usage, willingness to tinker, and confidence are all implicated in our results, an individual male or female generally does not bear every trait associated with his or her gender. Although our statistical analyses revealed gender differences, a portion of the males still exhibited traits associated with the majority of females, and vice versa. Thus, informing the design of problem-solving software based on the differences...
revealed by our investigation need not penalize either gender—doing so can help everyone.

Acknowledgment

This work was supported in part by NSF 0917366 and 0324844.

References

