
Test Reuse in the Spreadsheet Paradigm

Marc Fisher II, Dalai Jin, Gregg Rothermel, Margaret Burnett

Computer Science Department
Oregon State University

Corvallis, Oregon
grother@cs.orst.edu

Abstract

Spreadsheet languages are widely used by a variety of
end users to perform many important tasks. Despite their
perceived simplicity, spreadsheets often contain faults. Fur-
thermore, users modify their spreadsheets frequently, which
can render previously correct spreadsheets faulty. To ad-
dress this problem, we previously introduced a visual ap-
proach by which users can systematically test their spread-
sheets, see where new tests are required after changes, and
request automated generation of potentially useful test in-
puts. To date, however, this approach has not taken advan-
tage of previously developed test cases, which means that
users of the approach cannot benefit, when re-testing fol-
lowing changes, from prior testing efforts. We have there-
fore been investigating ways to add support for test re-use
into our spreadsheet testing methodology. In this paper we
present a test re-use strategy for spreadsheets, and the algo-
rithms that implement it, and describe their integration into
our spreadsheet testing methodology. We report results of a
case study examining the application of this strategy.

1 Introduction

Spreadsheet languages are widely used by a variety of
end users to perform important tasks, such as tax calcula-
tions, budget management, and quality assessments of phar-
maceutical products. The spreadsheets these end users cre-
ate steer important decisions that may affect the welfare or
safety of individuals, or even of large segments of society.
The spreadsheet language paradigm is also a subject of on-
going research; for example, there is research into using
spreadsheet languages for matrix manipulation problems
[28], for scientific visualization [9] for providing steerable
simulation environments for scientists [5], and for specify-
ing full-featured GUIs [17, 27].

Users of spreadsheet languages “program” by specify-
ing cell formulas. Each cell’s value is defined by that cell’s

formula, and as soon as the user enters a formula, it is evalu-
ated and the result is displayed. In essence, providing these
spreadsheet formulas is an example of first-order functional
programming.

It is important that spreadsheets function correctly, but
research shows that they often contain faults. A survey of
the literature [21] reports, for example, that in four field
audits of operational spreadsheets, faults were found in
20.6% of the spreadsheets audited; in eleven experiments in
which participants created spreadsheets, faults were found
in 60.8% of those spreadsheets; in four experiments in
which participants inspected spreadsheets for faults, an av-
erage of 55.8% of faults were missed. Research has also
shown that spreadsheet users tend to have unwarranted con-
fidence in the correctness of their spreadsheets [2, 30].

In spite of such evidence, until recently, little work had
been done to help end users assess the correctness of their
spreadsheets. Thus, we have been developing a testing
methodology for spreadsheets termed the “What You See
Is What You Test” (WYSIWYT) methodology [22, 24, 25].
The WYSIWYT methodology provides feedback about the
“testedness” of cells in spreadsheets in a way that is incre-
mental, responsive, and entirely visual. Empirical studies
have shown that this methodology can help users test their
spreadsheets more adequately and efficiently, and reduce
end-user overconfidence [15, 26]. In subsequent work, we
extended this approach to large grids of cells [6, 7], and to
incorporate automated test input generation [12].

The incremental, responsive nature of the spreadsheet
paradigm makes spreadsheets highly malleable, and spread-
sheet users often make small changes to formulas in es-
tablished spreadsheets. Such changes can render previ-
ously correct spreadsheets faulty, and merit re-testing. Our
WYSIWYT methodology helps with this by indicating the
areas of spreadsheets affected by changes; end users can
retest those areas.

Such retesting, however, can involve considerable effort.
This is due partly to the difficulty of finding test inputs that

1

exercise affected areas of spreadsheets, a task that auto-
mated test input generation can help with. However, au-
tomated test input generation may not produce outputs that
can be easily validated (judged correct), forcing end users
to repetitively call input generators until more suitable in-
puts are found, or even to generate inputs manually. When
a spreadsheet is changed, it may be much simpler to re-use
test cases that users have developed and found useful previ-
ously; for such test cases the correctness of outputs can be
more easily established.

Further, research shows that spreadsheets are very often
used and shared by other users, and passed on to still other
users [18]. Sometimes these users must test a spreadsheet
they have been given in order to verify its suitability for
their purposes [18]. If they then decide to further adapt the
spreadsheet to their own requirements, further re-testing is
required. Asking users to test or re-test “from scratch” a
spreadsheet they did not write wastes resources, and puts
the onus of testing on persons who may have the greatest
difficulties finding useful test inputs. In such a scenario,
saved test cases embedded in the spreadsheet by an expe-
rienced spreadsheet developer might more easily be selec-
tively re-used by end users following their modifications.

Finally, production spreadsheets are processed by com-
mercial spreadsheet engines that are periodically re-
released to provide new functionality or operate on new
platforms. New releases of these engines, however, can
cause spreadsheets to function differently than previously;
thus, organizations that use spreadsheets for safety-critical
tasks insist on revalidating their spreadsheets on new re-
leases of spreadsheet engines, prior to allowing their use
on those new releases.1 Such revalidation would be greatly
aided by the ability to re-use existing saved test suites.

To date, our WYSIWYT methodology has not taken ad-
vantage of previously developed test cases, but as the pre-
ceding scenarios suggest, there are many reasons for doing
so. Further, although test re-use has been frequently ad-
dressed for the imperative paradigm, particularly in the con-
text of regression testing, (e.g. [8, 16, 19, 23, 29]) it has not
yet been considered for the spreadsheet language paradigm.

We have therefore been investigating ways to add sup-
port for test re-use into our spreadsheet testing methodol-
ogy. We have developed algorithms for saving test cases
in spreadsheet programs that operate in concert with the
WYSIWYT methodology, algorithms for change impact
analysis that determine test cases of interest following mod-
ifications, and strategies for enabling end users to re-use
those test cases. We have implemented our test re-use
strategies within the Forms/3 research spreadsheet environ-
ment. This paper presents our approach, describing differ-
ences between that approach and those explored previously
in the imperative programming paradigm, and reports re-

1Personal communication, Scott Hutchinson, Amgen Corp..

Figure 1. Spreadsheet for calculating grades.

Figure 2. Forms/3 spreadsheet GrossPay.

sults of a case study examining factors relevant to the ap-
proach’s cost-effectiveness.

2 The WYSIWYT Methodology
In this paper, we present examples of spreadsheets in

the research language Forms/3 [3, 4]. Figure 1 shows
a traditional-style spreadsheet used to calculate student
grades in Forms/3. The spreadsheet lists several students,
and several assignments performed by those students. The
last row in the spreadsheet calculates average scores for
each assignment, the rightmost column calculates weighted
averages for each student, and the lower-right cell gives the
overall course average (formulas not shown).

Figure 2 shows an example of a Forms/3 spreadsheet,
GrossPay , which calculates an employee’s weekly pay
given a payrate and the hours they worked during that week.
As the figure shows, in Forms/3, cells aren’t restricted to
grids, and the user can display or hide formulas as desired.

In our “What You See Is What You Test” (WYSIWYT),
methodology for testing spreadsheets [22, 25, 26], as a user
incrementally develops a spreadsheet, he or she can also test

2

Figure 3. Spreadsheet GrossPay with testing
information displayed after a user validation.

that spreadsheet incrementally. As the user changes cell
formulas and values, the underlying engine automatically
evaluates cells, and the user validates the results displayed
in those cells. Behind the scenes these validations are used
to measure the quality of testing in terms of a dataflow ad-
equacy criterion, which tracks coverage of interactions be-
tween cells caused by cell references.

The following example illustrates the process from the
user’s perspective. It is important to understand the method-
ology’s attributes from this perspective because they lead to
requirements upon the test reuse strategy for spreadsheets
that are not usual for traditional programming languages.

Suppose the user constructs theGrossPay spreadsheet
by entering cells and formulas, reaching the state shown
in Figure 2. Note that at this point, all cells other than
input cells have red borders (light gray in this paper), in-
dicating that their formulas have not been (in user terms)
“tested”. (Input cells are cells whose formulas contain no
references and are, by definition, fully tested; thus, their
borders are thin and black to indicate to the user that they
aren’t testable.)

Suppose the user looks at the values displayed on the
screen and decides that cellGrossPay contains the correct
value, given the current input values. To communicate this
fact, the user clicks on the decision box in the upper right
corner of that cell. One result of this action, shown in Figure
3, is the appearance of a checkmark in the decision box,
indicating that the cell’s output has been validated under
the current inputs. (Two other decision box contents, empty
and question mark, are possible. An empty decision box
and a question mark each indicate that the cell’s output has
not been validated under the current inputs. In addition,
the question mark indicates that validating the cell would
increase testedness.)

A second result of the user’s “validation” action is that
the colors of the validated cell’s borders become more

blue (darker gray in this paper), indicating that interactions
caused by references in that cell’s formula have been ex-
ercised in producing validated outputs. In the example, in
the formula forGrossPay , references in thethen clause
have now been thus exercised, but references in theelse
clause have not; thus, that cell’s border is partially blue.
Testing results also “propagate” to other cells whose for-
mulas have been used in producing a validated value; in our
example, all interactions ending at references in the formula
for TotalHours have been exercised, hence, that cell’s
border is now fully blue (black in this paper).

If the user chooses, they can also view interactions
caused by cell references by displaying dataflow arrows
between cells or subexpressions in formulas; in the exam-
ple, the user has chosen to view interactions ending at cell
GrossPay . These arrows depict testedness information at
a finer granularity, following the same color scheme as for
the cell borders.

If the user next modifies a formula, interactions poten-
tially affected by this modification are identified by the sys-
tem, and information on those interactions is updated to
indicate that they require retesting. The updated informa-
tion is immediately reflected in changes in visual indicators
(e.g., replacement of blue border colors by less blue colors).

Although a user of our methodology need not be aware
of it, the methodology is based on the use of a dataflow test
adequacy criterion adapted from theoutput-influencing-all-
du-pairsdataflow adequacy criterion defined for imperative
programs [10]; for brevity we call our adaptation of this
criterion thedu-adequacycriterion. We precisely define this
criterion in [22]; here, we summarize that presentation to
provide a basis for discussion of our test reuse strategy.

The du adequacy criterion is defined in terms of an ab-
stract model of spreadsheets called acell relation graph
(CRG). Figure 4 shows the CRG for spreadsheet GrossPay.
A CRG consists of a set ofcell formula graphs(enclosed
in rectangles in the figure) that summarize the control flow
within formulas, connected by edges (dashed lines in the
figure) summarizing data dependencies between cells. Each
cell formula graph is a directed graph, similar to a control
flow graph for imperative languages, in which each node
represents an expression in a cell formula and each edge
represents flow of control between expressions. There are
three types of nodes in a cell formula graph: entry and exit
nodes, representing initiation and termination of the evalu-
ation of the formula; definition nodes, representing simple
expressions that define the value of a cell; and predicate
nodes, representing predicate expressions in cell formulas.
Two edges extend from each predicate node: these represent
the true and false branches of the predicate expression.

A definitionof cell C is a node inC ’s formula graph
representing an expression that definesC, and auseof C
is either acomputational use(a non-predicate node that

3

1:E

3:X

2:constant

Mon

5:constant

4:E

6:X

Tues

7:E

9:X

8:constant

Wed

11:constant

10:E

12:X

Thurs

14:constant

13:E

15:X

Fri

19:E

21:X

20: Mon + Tues + Wed + Thurs + Fri

TotalHours

16:E

18:X

17:constant

PayRate

22:E

23: if TotalHours <= 40

26:X

T F

GrossPay

25: Payrate * 40 + (TotalHours − 40) * Payrate * 1.524: Payrate * TotalHours

Figure 4. Cell relation graph for GrossPay

refers toC) or a predicate use(an out-edge from a pred-
icate node that refers toC). A definition-use association
(du-association) links a definition ofC with a use ofC
which that definition can reach. A du-association isex-
ercised by a testwhen inputs have been found that cause
the expressions associated with its definition and its use to
be executed, and where this execution produces a value in
some cell that is pronounced “correct” by a user validation.
Under the du-adequacy criterion, testing is adequate when
each du-association in a spreadsheet has been exercised by
at least one test case.2

In this model, atest casefor a spreadsheet is a tuple
(I ,C), whereC is a cell whose value the user has exam-
ined for correctness, and whereI is a vector of input cells
and their values, corresponding to those input cells in the
spreadsheet on whichC depends, directly or indirectly. Fur-
ther, atest(the user’s act of applying a test case) is an ex-
plicit decision by the user thatC ’s value is correct or in-
correct, given the current configurationI of input cells and
values.

Because the process of manually identifying test inputs
that will increase “blueness” is laborious, and may be dif-
ficult for users of spreadsheet languages, we have incorpo-
rated automated test case generation into our WYSIWYT
methodology [12]. With our methodology, a user may select

2It is not always possible to exercise all du-associations in a spread-
sheet, and those that can not be exercised by any inputs are calledin-
feasible du-associations. In general, the problem of identifying such du-
associations is undecidable [13].

any combination of cells or arrows on the visible display,
and then select the “Help Me Test” button in the Forms/3
toolbar.

At this point an underlying test case generation system
responds, using a technique adapted from [11] to attempt
to generate input cell values that will cause unvalidated du-
associations in the area of interest to be exercised. If the
system finds such inputs it applies them, and lets the eval-
uation engine update the display, indicating where the user
can validate outputs and increase testedness. The user can
then validate an output value, or can ignore the generated
values (if, for example, they dislike the input set gener-
ated) and try again with the same or different cells or arrows
selected, in which case the test case generation system at-
tempts again using new seeded values. In our initial exper-
iments using this methodology, the test generation system
was able to find inputs to exercise nearly 99% of the feasi-
ble du-associations in a set of 1377 du-associations found
in several spreadsheets [12].

3 Test Re-Use Methodology

In designing a test re-use methodology and incorporat-
ing it into the WYSIWYT approach, there are a number of
requirements to consider.

First, to support the highly interactive spreadsheet pro-
gramming environment and its reliance on immediate feed-
back, a test re-use methodology for spreadsheets must be
considerate of users’ time and attention. This means that it
must be computationally efficient, and avoid unduly delay-
ing users creating or modifying spreadsheets from making
progress on the tasks they are trying to accomplish by us-
ing the spreadsheet in the first place. This also means that
a methodology should not unduly control how users spend
their attention [1]: attempting to force a user to perform a
potentially lengthy regression testing task could be coun-
terproductive to the user’s spreadsheet efforts at that point
in the spreadsheet’s development. In such cases, users may
abandon the use of the methodology.

It follows that a test reuse strategy for spreadsheets
must be sufficiently precise in estimating affected areas of
spreadsheets and making test cases available for re-use. If a
user must perform actions that produce no apparent benefit,
like retesting parts of a spreadsheet that do not apparently
require retesting, they may become frustrated and choose
not to re-test at all.

Further, although a test re-use strategy should be pre-
cise in the sense just described, it must also be conservative
enough, in its estimates, to merit user trust. For example, in
responding to user modifications, a re-use strategy should
not miss areas of the spreadsheet that might be affected.
Such an omission might cause end users to become (at least
initially) overconfident in their spreadsheet, and later (on
finding their confidence misplaced) to distrust the approach.

4

Finally, a test re-use methodology for spreadsheets
should not, in general, require its users to practice (in any
formal way) “software engineering”, or have any formal
knowledge of testing theory. The users of the methodol-
ogy might not even think of “test cases” as “resources to be
re-used”, and they should not be expected to possess any
recorded specifications that could be used to determine ex-
pected test results.

Keeping the foregoing considerations in mind, we have
developed algorithms supporting test re-use in spreadsheet
validation that are integrated with our WYSIWYT method-
ology. As we shall show in the following subsections how-
ever, the foregoing considerations cause our approach to
differ from those that might be used in application to im-
perative programs and professional programmers.

Our first algorithm operates when an end user validates
a cell, collecting information about the test case associated
with that validation and storing it for later use. Our sec-
ond algorithm operates when an end user changes a cell
formula, determining impacted portions of the spreadsheet
and effects on testedness, and judging whether existing test
cases may be applicable to retesting the impacted portions.
(These first two algorithms partially replace, and partially
augment, previously presented WYSIWYT algorithms not
supporting test re-use; portions of the overall approach not
germane to an understanding of the test re-use issue that
is our focus in this paper are omitted for simplicity.) The
third algorithm operates when an end user requests help re-
testing the spreadsheet, replaying saved test cases so that the
user can use them to revalidate the spreadsheet. The sec-
tions that follow present the data structures used by these
algorithms, and then present each of the algorithms in turn.

3.1 Data Structures

Our test reuse algorithms rely on the data structures
shown in Table 1 to record information on test cases and
testedness and support test re-use; these data structures
are maintained within the spreadsheet engine, and in most
cases, updated incrementally as end users create, modify,
and validate their spreadsheets. The data structures contain
(1) information kept for each cell, (2) information kept for
each test case, and (3) information kept for the spreadsheet.
The data in these structures is also saved with a spreadsheet
as it is filed out, and restored when it is read in.

3.2 Saving Test Case Information

When an end user performs a test by validating a cell in
their spreadsheet, we walk backwards through the CRG for
that spreadsheet, updating information associated with the
test and its coverage, and saving the test case defined by the
users’ action. Our algorithm,Validate (Figure 5), takes
as input a cellC validated by an end user.Validate first
creates a newTeststructure to represent the test case just

Information kept per cell
Cell.Name identifier forCell

.Value a value displayed inCell

.Trace definition and use nodes exercised
in Cell’s most recent execution

.ReachingTests set ofTests that exerciseCell

Information kept per test case
Test.InputCells set of (Cell.Name,Cell.Value) pairs

serving as inputs forTest
.ValidatedCell (Cell.Name,Cell.Value) pair for the

cell validated inTest
.ReachedCells set ofCells exercised byTest
.ValidatedDUs set of du-associationsTestvalidates

Information kept for the spreadsheet
DUTable hash table of validation counts,

indexed by du-associations
ImpactedTests set ofTests impacted by changes,

and that might be rerunnable

Table 1. Data structures for test re-use.

created by this validation, initializing its fields to empty,
and setting itsValidatedCell field to (C.Name,C.Value).
The algorithm then proceeds in two phases, invoking pro-
ceduresGatherInputs and ValidateCoverage in
turn.3 Each invocation is preceded byInitWalk , which
initializes an integer flag used to mark cells “visited” and
avoid revisiting cells during the ensuing walk.4

GatherInputs , called with validated cellC and test
caseT, performs a static backwards slice on cell depen-
dence edges in the CRG, locating (recursively) all input
cells whose values could affectC. (We refer to cells affect-
ing C asproducersof C. Direct producersof C — main-
tained by the spreadsheet engine and returned by a call to a
functionDirectProducers in line 11 — are producers
explicitly listed inC’s formula.)5

ValidateCoverage , called with validated cellC and
test caseT, performs a dynamic backwards slice on du-
associations in the CRG starting atC, recursively visiting
each cell reached byT. Specifically, for each cell reached,

3These two phases, each performing a graph walk on the CRG, can
be merged into a single graph walk with the same worst-case cost as that
incurred by performing the phases separately, but with a lower constant;
however, we present them as separate phases for simplicity.

4This integer flag is initialized to zero by the spreadsheet engine at
startup, and incremented on each subsequent call toInitWalk ; algo-
rithms that walk the CRG use this flag to mark cells “visited” and avoid
revisiting cells during a given walk. This eliminates the need to reset “vis-
ited” information on all cells prior to each walk, except in the unlikely
event that the integer flag reaches its maximum value during a session us-
ing the spreadsheet engine.

5Using astatic rather than adynamicslice in this phase reduces the
number of test cases that must be discarded asobsoletefollowing a mod-
ification – the larger input cell sets recorded by the static slice reduce the
likelihood that changes to a formula will increase the set of input cells on
which that formula depends, making test cases associated with that cell
non-applicable. We discuss test obsolescence and our handling of it in
Section 3.4.

5

algorithm Validate (C)
input C : cell
1. T= new Test
2. T.ValidatedCell= (C.Name,C.Value)

/* Phase 1 */
3. InitWalk
4. GatherInputs (C,T)

/* Phase 2 */
5. InitWalk
6. ValidateCoverage (C,T)

procedure GatherInputs (C,T)
input C : cell; T : test case
7. MarkVisited (C)
8. if IsInput (C)
9. T.InputCells= T.InputCells[f(C.Name, C.Value)g

10. else
11. for each cell D 2 DirectProducers (C)
12. if not Visited (D)
13. GatherInputs (D,T)
14. endif
15. endfor
16. endif

procedure ValidateCoverage (C,T)
input C : cell; T : test case
17. MarkVisited (C)
18. C.ReachingTests= C.ReachingTests[T
19. T.ReachedCells= T.ReachedCells[C
20. for each useu in C.Trace
21. D = the cell referenced inu
22. d= the current definition ofD 2 D.Trace
23. increment DUTable(d,u)
24. T.ValidatedDUs= T.ValidatedDUs[f(d,u)g
25. if not Visited (D)
26. ValidateCoverage (D,T)
27. endif
28. endfor
29. UpdateDisplay (C)

Figure 5. Algorithm for collecting test infor-
mation when the user validates a cell.

the procedure addsT to that cell’s list of reaching tests (line
18), and adds that cell toT’s list of reached cells (line 19).
The procedure next uses trace information maintained by
WYSIWYT (collected and maintained by the spreadsheet
engine during its operations to update the display follow-
ing formula changes) to locate the du-associations ending
at the cell reached that were exercised byT. For each such
du-association (d,u), the procedure increments the cover-
age count for (d,u) (line 23), and adds (d,u) to the list of
du-associations covered byT (line 24). Finally, the pro-
cedure callsUpdateDisplay to cause the colors of the
cell’s border, and of any arrows ending at that cell and cur-
rently being displayed, to be updated.

As an example of how the algorithm works, consider the
GrossPay spreadsheet shown in Figures 2 and 3, and its
CRG shown in Figure 4. When the user clicks on the de-
cision box for cellGrossPay , Validate is called for

that cell. The algorithm first creates a newTestT, and sets
T.ValidatedCellto (GrossPay , 380). It then callsGath-
erInputs on GrossPay and T. Since GrossPay is
not an input cell,GatherInputs takes the else branch
from line 8, and then iterates over the setDirectPro-
ducers (GrossPay), containing cellsPayRate and
TotalHours , recursively callingGatherInputs on
each. PayRate is an input cell, soT.InputCellsis set to
f(PayRate , 10)g. Next, the recursive callGatherIn-
puts (TotalHours ,T) iterates overDirectProduc-
ers (TotalHours), adding (Mon, 8), (Tues , 8), (Wed,
8), (Thurs , 7), (Fri , 7) toT.InputCells.

Validate next calls ValidateCoverage
with GrossPay and T. ValidateCoverage addsT
to GrossPay .ReachingTests, and addsGrossPay to
T.ReachedCells. It then iterates through the use nodes,
(23, TotalHours , T), (24, PayRate), and (24,To-
talHours), found in GrossPay .Trace. On the first
use, (23, TotalHours , T), the procedure finds that
the currently active definition ofTotalHours is node
17, and increments the testedness counter inDUTable(17,
(23, TotalHours , T)). It adds (17, (23,TotalHours ,
T)) to T.ValidatedDUs, and recursively callsValidate-
Coverage (TotalHours , T), which updatesTotal-
Hours .ReachingTestsand T.ReachedCells, and iterates
through the five uses inTotalHours . When the iter-
ation in ValidateCoverage (GrossPay , T) reaches
(24, PayRate), (and subsequently (24,TotalHours)),
a similar procedure is performed (except thatValidate-
Coverage is not recursively called onTotalHours as it
was already marked “visited”).

The time complexity forValidate depends on the cost
of GatherInputs andValidateCoverage . The cost
of the initial call toGatherInputs depends on the num-
ber of times it is recursively called and the cost of each call.
SinceGatherInputs marks each cell when visited, and
is not recursively called on visited cells, the upper bound
on the number of calls toGatherInputs is p, wherep
is the number of producers of the validated cell. Each call
to GatherInputs iterates through each of a cell’s direct
producers even if it does not make a recursive call, so this
bounds the iterations in a call toGatherInputs at d,
whered is the maximum number of direct producers of a
cell in the spreadsheet. Each iteration involves a set union;
however, the sets unioned are always necessarily disjoint. If
these sets are implemented as lists and the union is imple-
mented as an append, each iteration can be accomplished in
constant time. Thus,GatherInputs runs in time O(dp).

Similarly, the cost of an initial call toValidate -
Coverage is determined by the number of recursive calls
that follow and the cost of each call. SinceValidate-
Coverage marks each cell when visited and is not recur-
sively called on visited cells, the upper bound on the num-

6

Type of Change Type of Cell
input intermediate output

Cell Deletion (1) Not possible, or no action needed.(4) Not possible. A cell cannot (7) Treat as formula change to
An input cell cannot be deleted if be deleted if it is currently being blank, and use algorithm
it is currently being referenced; referenced. ProcessMod
an input cell not being referenced
can be deleted, but due to other
operations can have no test cases
associated with it.

Formula Change (2) No action needed or use algorithm(5) Use algorithmProcessMod . (8) Use algorithmProcessMod .
ProcessMod . A formula change
involving insertion of a new constant
is simply a test execution; insertion
of a formula that references other
cells is handled byProcessMod .

Cell Insertion (3) No action needed. An input cell (6) Cell insertion involves (9) Cell insertion involves
being inserted cannot have any inserting blank cells, then inserting blank cells, then
referencing cells prior to insertion; updating formulas for those cells; updating formulas for those cells;
thus, its insertion changes no test thus, this situation reduces to thus, this situation reduces to
information. entry (3) followed by entry (2). entry (3) followed by entry (2).

Table 2. Actions per type of change

ber of calls toValidateCoverage is p wherep is the
number of producers of the initial validated cell. Each call
to ValidateCoverage with cell C and test caseT iter-
ates through each use that was reached inC on T , even if
it does not require a recursive call, so this places an upper
bound on iterations of the loop at lines 20-28 in a single call
atu, whereu is the maximum number of uses in a formula.
Assuming an efficient hash table implementation and given
that the sets unioned are disjoint and can be implemented
as lists with the union implemented as a list append, each
iteration of the loop can be accomplished in constant time.
Thus,ValidateCoverage runs in time O(up).

3.3 Responding to Changes

When a user modifies a spreadsheet, we must update all
testing-related information, in the spreadsheet, that may be
affected, and determine test cases that may be used to re-test
affected portions of the spreadsheet. The actions required
depend on the type of modification. Table 2 categorizes the
modification types we need to consider, which depend on
whether the user adds a cell, deletes a cell, or modifies an
existing cell’s formula, and on whether the cell in question
is an input cell, intermediate cell, or output cell (cell not
referenced by other cells).

For each entry in this table, we determined the actions
necessary to handle the type of modification; the table sum-
marizes those actions. (These actions hold for Forms/3
spreadsheets; a similar approach could be used to classify
and determine how to handle modification types in other
spreadsheet environments.) As the table and the following

discussion show, several types of modifications do not re-
quire any handling, and those requiring handling are all pro-
cessed by algorithmProcessMod , shown in Figure 6. The
actions and their use of the algorithm form a set of invariants
which, together, ensure correct updating of testing-related
information across possible change types, and ensure iden-
tification of test cases potentially useful for retesting.

Larger changes to a Forms/3 spreadsheet can only oc-
cur when users perform multiple smaller changes in suc-
cession; these can be handled by incrementally processing
each of these smaller changes. ApplyingProcessMod in-
crementally following each modification avoids problems
that can occur when multiple modifications, which may in-
terfere, are processed simultaneously [23].

ProcessMod relies on the fact that when a formula for
a cell is edited, we already possess, attached to that cell, a
list of all test cases that exercise that formula; this list in-
cludes all test cases that could be affected by the edit. The
outer loop of the algorithm processes these test cases one at
a time. For each test caseT, the algorithm first removesT
from theReachingTestslists on each other cell it is associ-
ated with (line 3), and then adjustsT’s coverage information
in DUTable(lines 6-8).ProcessMod saves the names of
those cells (line 4) for use later in updating the display (line
13). The algorithm also setsValidatedDUsandReached-
Cells information forT to empty, since it cannot predict the
behavior of the test case following modifications.

In line 11,ProcessMod lists T as impacted. Note that
at this stage in our approach, such test cases are simply in-
serted intoImpactedTests, where they may join other test

7

algorithm ProcessMod (C)
input C : cell

1. foreach test caseT2 C.ReachingTests
2. foreach cell D 2 T.ReachedCells
3. D.ReachingTests= D.ReachingTests� fTg
4. UpdateDisplaySet= UpdateDisplaySet[fDg
5. endfor
6. foreach (d,u) 2 T.ValidatedDUs
7. decrementDUTable(d,u)
8. endfor
9. T.ValidatedDUs= ;

10. T.ReachedCells= ;
11. ImpactedTests= ImpactedTests[fTg
12. endfor
13. UpdateDisplay (UpdateDisplaySet)

Figure 6. Algorithm for selecting re-usable
tests and updating testedness information.

cases placed there following previous modifications. Fur-
ther processing of these test cases, however, is postponed
to the test re-use phase, as described in Section 3.4. Note
further that the test case’sInputCellsandValidatedCellin-
formation are not altered byProcessMod , even though,
depending on the modification, that information may no
longer be valid. This will also be explained in Section 3.4.

By identifying as impacted all test cases that exercise
modified formulas,ProcessMod ensures selection of all
test cases whose execution traces can differ as a result of the
modification. Following results presented in [23], this al-
lows the algorithm to not omit, in this stage of our method-
ology, test cases that could expose faults related to the user’s
formula modification. However, adjusting coverage data to
reflect removal of such test cases also ensures that the algo-
rithm will err only conservatively in estimating the impact
of the modification on testedness, and in displaying affected
areas of the spreadsheet to the user. As stated earlier, this is
an important factor in limiting user distrust.

As an example, suppose an end user modifies the formula
for TotalHours in spreadsheetGrossPay . This modi-
fication is handled by entry (5) in Table 2, resulting in a call
to ProcessMod (TotalHours). ProcessMod iterates
over the set of test cases inTotalHours .ReachingTests.
Suppose this set contains just the single test case described
in Section 3.2. The algorithm decrements the coverage
counts associated with this test case inDUTable, and re-
moves it from theReachingTestslists of all cells it is asso-
ciated with. The test case is placed inImpactedTests, and
finally, the display is updated for all affected cells.

The time complexity forProcessMod is determined by
the number of iterations of each of its loops and the cost of
each iteration. The outermost loop iteratest times where
t is the number of test cases inC:ReachingTests. Within
this loop there are two separate nested loops. The first (lines
2-5) iterates at mostn times wheren is the maximum num-

ber of cells in theReachedCells field of a test case. The
second loop (lines 6-8) iterates for each du-association in
theV alidatedDUs field of a test case. Each test case can
validate at most O(nu) du-associations, whereu is the max-
imum number of uses for the cells reached by a test case. An
efficient hash table implementation holds the cost of each
such iteration to O(1). Combining the above costs yields a
total cost of O(tn� max(u, cost of set operations)).

3.4 Re-using Test Cases

Our algorithms for saving test cases and for determin-
ing impacted test cases following modifications provide two
classes of test cases that can be used to re-validate spread-
sheets, in two different scenarios.

1. Test cases that have been inserted intoImpactedTests
are related to modifications, and may be useful in
revalidating du-associations associated with changes.

2. All saved test cases can be replayed, allowing a spread-
sheet to be re-validated in full when ported to a new
spreadsheet environment.

We describe these two test classes and scenarios in turn.

3.4.1 Retesting Following Changes

Our algorithms cause test cases that might be useful in re-
testing modified formulas and re-establishing coverage to
be placed inImpactedTests. Replaying such test cases in-
volves applying the saved input values to appropriate input
cells, and allowing the user to re-validate output cells. There
are several aspects of this process to consider.

Test case replay strategy. The first aspect involves
choosing a test case replay strategy and designing an inter-
face that implements it. One strategy, based on typical tech-
niques used in the imperative programming paradigm [19],
is to require the user to replay and revalidate all impacted
test cases after each modification (or possibly after indicat-
ing that a set of related modifications has been completed).
This strategy offers the greatest level of assurance and con-
servatism, by requiring the user to rerun all test cases that
might be affected by their modifications, and might thus
conceivably expose faults related to those modifications.

Reflecting on the considerations with which we began
this section (Section 3), however, this strategy has draw-
backs. Re-running all test cases identified byProcess-
Modmight require more time than a user is willing to spend.
Further, it is possible that, due to changes in the spreadsheet
or the order in which test cases are rerun, some test cases
identified as “impacted” will not lead to increases in cov-
erage, and this violates the restriction on forcing users to
perform actions that produce no apparent benefit.

A second strategy involves requiring the user to reval-
idate all impacted test cases that could increase coverage.

8

These test cases can be determined automatically by the
system by having it save current input values, apply the
test inputs, activate the evaluation engine, and determine
whether uncovered du-associations are covered, and only
then update the display and allow the user to proceed with
validation. (Considering existing imperative language ap-
proaches, this strategy is most similar to those presented in
[14, 20].) While this approach solves the problem of per-
ceived wasted effort, it violates the principle of allowing
users to control how they spend their own attention [1].

The key drawback behind these two strategies is that the
system does not really have the power to “require” testing-
related actions, because an end user could simply turn off
the feature or turn to a different spreadsheet environment
that does not have such a requirement. The action must be
deemed worthwhile to keep the user from doing this, and
requirements that the user consider a large number of test
case applications, or consider test case applications that are
unproductive, is not likely to be deemed worthwhile.

A third strategy involving making only potentially use-
ful test cases available without forcing any particular user
action can be achieved by integrating test re-use with au-
tomated test case generation. This approach is triggered
when the user requests help generating test inputs, which
they might do following a modification to restore tested-
ness in affected areas of the spreadsheet. Given such a re-
quest, rather than attempting to generate new inputs, the test
case generation functionality first tries to find a rerunnable
test case that will increase coverage of the portion of the
spreadsheet indicated by the user. If a useful test case is
found, the test generation facility applies that test case’s in-
puts, displays the resulting changes, and the user can re-
validate cells under that input set.

This third strategy avoids the drawbacks of the first two,
and also avoids requiring a user to have any concept of a test
case as an existing, re-usable resource, instead, integrating
test re-use with the “Help-Me-Test” facility. We therefore
implemented this third strategy.

Obsolete test cases.The second aspect of test case re-use
to consider involves test cases that can no longer be applied
as first recorded, due to changes in the spreadsheet. If the
output cell associated with a test case is deleted, that test
case can no longer be applied. If formula changes cause a
cell to depend on new input cells, test cases formerly as-
sociated with that cell no longer come with all necessary
inputs. In the literature on regression testing of imperative
programs, such test cases are known asobsolete[16]. Such
test cases could be detected and eliminated byProcess-
Modwhen processing a modification; however, this adds to
the expense of that algorithm, and since subsequent modi-
fications may render a test case previously judged obsolete
valid again, we defer the handling of these test cases to the
test replay stage.

In our approach, when a user selects Help-Me-Test, as
the test case generation facility iterates overImpactedTests
seeking useful test cases, it begins by determining whether
each test caseT it encounters is obsolete. To do this, the test
case generation facility first determines whether the vali-
dated cellV associated withT still exists in the spreadsheet.
If not, thenT is obsolete and is discarded. IfV exists, the
generator determines the set of input cells that could affect
V, using an algorithm similar toGatherInputs . If this
set includes input cells not found in setV.InputCellsassoci-
ated with the test case originally, we do not know what val-
ues to use for those cells and cannot re-apply the test case
transparently, so we consider it obsolete.6 Obsolete test
cases can be discarded from the data structures, or retained
in case further modifications render them non-obsolete; to
avoid a potentially excessive build-up of such test cases we
take the first course of action.7

Output validation strategy. When test cases are saved,
their validated output cell values are also saved; these val-
ues could be re-used in re-testing the spreadsheet after mod-
ifications. Such an approach is typical in testing imperative
programs [19].

It is tempting to consider automatically checking test
case outputs against saved outputs when they are re-run,
and when saved outputs match new outputs, consider test
cases to have automatically passed. This strategy, however,
is inappropriate. An end user might modify a spreadsheet
in order to change its functionality, such that previous in-
puts are expected to produce different outputs than previ-
ously. Thus, for some test cases, the fact that saved outputs
match new outputs does not signal correctness, but rather,
incorrectness. In general, in the absence of specifications, a
test replay strategy cannot automatically infer that matching
outputs signal either correctness or incorrectness.

An alternative strategy, when replaying previous test
cases, is to display the previous test case output alongside
the new test case output, to help the user validate the new
output. It is not clear, however, whether such an approach
would actually assist the user, or whether users would be
inclined to make the potentially erroneous assumption that
old values should match new, and that matching indicates
correctness — an assumption that, as just discussed, may
be erroneous.

6Alternative approaches are possible. If the input cell set has increased,
we can apply those inputs that we know, leaving other inputs at their cur-
rent values; and if the validated cell is now absent, the test case’s input set
might nevertheless still be applied. In one other scenario – the scenario in
which the set of input cells now associated with a test case is a subset of
those previously associated with it, we do choose such an alternative, and
apply previous inputs to those input cells that still exist. Future work will
examine the cost-benefits of these alternatives.

7As foreshadowed in Section 3.2, it is to reduce the incidence of obso-
lete test cases that the first phase ofValidate uses a static rather than a
dynamic slice to determine the input cell set associated with a test case.

9

For these reasons, we do not yet use previous test case
outputs during test replay; we will first explore the rami-
fications of approaches empirically with end users before
selecting an output re-use strategy.

3.4.2 Re-applying Tests

By saving all test case information with a spreadsheet when
we save it to disk, and re-loading it when that spreadsheet
is re-loaded, we also support the complete re-execution of
saved test suites. End-users wishing to re-validate a spread-
sheet for a new release of an evaluation engine can take ad-
vantage of this. This test case re-use scenario differs from
the previous scenario in that it does imply that users be
aware of test cases as objects, and consider saved test cases
a resource; however, we expect that in certain contexts, for
certain users, this will not be appropriate.

Also, in this context, re-use of output values may make
more sense, and a utility that iterates through all saved test
cases may be palatable to end users. Our future studies will
consider this possibility.

4 Case Study

A primary goal of our test case re-use methodology is
to help users re-test their spreadsheets following modifica-
tions. Determining whether the methodology achieves this
goal will require empirical studies of users; however, before
undertaking such studies we must first address a more fun-
damental question: namely, whether the methodology can
in fact usefully select test cases for re-use. If the answer to
this question is negative, there is no reason to pursue more
expensive studies involving human subjects.

To assemble some initial data toward this question, we
prototyped our test re-use methodology in Forms/3, in con-
junction with our WYSIWYT and automated test case gen-
eration methodologies. We used this prototype to perform a
case study of the application of our methodology to a large
spreadsheet undergoing correction for errors.

4.1 Object of Study

As an object of study we selected a large spreadsheet,
MBTI, that had been used in earlier empirical studies of
automatic test case generation [12]. MBTI implements a
version of the Myers-Briggs Type Indicator (a personality
test), which tallies the scores and reports personality types
based on integer answers to twenty questions. The spread-
sheet contains 48 cells, 784 du-associations (780 feasible),
248 expressions, and 100 predicates.

We asked an experienced spreadsheet user unfamiliar
with our test case reuse methodology and the anticipated
case study to generate 14 different faulty versions of MBTI
by inserting minor faults in the spreadsheet.

We used our test case generation system to generate a
test suite for each faulty version through repeated applica-
tions of the generation algorithm, continuing until several
applications failed to find new useful inputs. The result-
ing test suites, although not 100% adequate in covering all
feasible du-associations in the erroneous spreadsheets, were
nearly so, with coverage ranging from 93.11% to 98.85%
of the du-associations in the spreadsheets. (The differences
in testedness across spreadsheets can be attributed primar-
ily to differences in feasible du-associations among faulty
versions, and to differences in the ability of the test case
generation system to cover the du-associations that differed
across those faulty versions.)

4.2 Study Design

To investigate our research question we collected data
on several measures related to our test re-use methodology
and the potential usefulness of the test cases our algorithms
identify both following modifications, and at the time test
cases are re-run. These measures include:

� the number and percentage of test cases identified by
our test re-use strategy of Section 3.4 as rerunnable fol-
lowing a modification to, and an end user’s request to
re-validate, a spreadsheet;

� the level of testedness that can be regained on the
spreadsheet by rerunning all rerunnable test cases.

To evaluate our test reuse methodology relative to these
measures, we wished to simulate a user performing a cor-
rection of a faulty formula inMBTI, and then re-running all
re-runnable test cases that can add coverage. To do this, for
each of our faulty versions ofMBTI, we loaded that ver-
sion, with all of its saved test cases, into the Forms/3 en-
vironment. We then corrected the fault in the spreadsheet,
causingProcessMod to be invoked and identify impacted
test cases. Finally, we ran a script that automatically per-
formed a “Help-Me-Test” operation repeatedly, invoking
the test case generation technique until all test cases had
been considered, and judged obsolete or, if able to add cov-
erage, re-applied. Following each application of a re-used
test case, we automatically validated the output cell associ-
ated with that test case. We repeated this process on each of
the fourteen faulty versions of MBTI, in turn.

4.3 Evidence Analysis

Our case study involves only a single spreadsheet, and a
set of modifications made to correct relatively small faults,
and thus, cannot generalize to the range of situations in
which we would like to apply our approach. Keeping this
limitation in mind, however, the data gathered do let us draw
some observations about the feasibility of the approach and
its possible benefits.

10

1 2 3 4 5 6 7 8 9
Spreadsheet Total Initial Testedness Impacted Rerunnable Obsolete Final

Version Test Testedness After Test Test Cases Test Testedness
Cases Modification Cases Count Percentage Cases

1 464 98.21 88.64 51 42 9.05 0 98.09
2 474 96.30 87.88 46 46 9.71 0 95.54
3 479 98.09 89.29 57 57 11.90 0 98.09
4 488 97.83 95.41 21 21 4.30 0 97.83
5 428 98.41 90.69 21 16 3.74 0 95.28
6 445 97.83 89.29 41 0 0.00 41 89.29
7 493 98.60 89.16 53 0 0.00 53 89.16
8 433 97.99 87.25 39 0 0.00 39 87.25
9 494 97.45 89.92 45 45 9.11 0 95.41
10 447 97.58 85.46 54 54 12.08 0 93.11
11 472 98.85 86.48 65 58 12.29 0 98.34
12 448 98.45 89.67 44 39 8.71 0 97.58
13 465 98.60 87.50 60 37 7.96 0 98.60
14 402 93.11 86.35 36 31 7.71 0 93.88

Table 3. Test re-use data gathered in case study on MBTI.

Table 3 presents the data collected in our study. For each
faulty version ofMBTI, the table lists the total number of
associated test cases (column 2), the initial testedness these
test cases achieved on the faulty version prior to correction
of the fault (column 3), and the spreadsheet’s reduced level
of testedness following the fault correction (column 4). Col-
umn 5 shows the number of impacted test cases identified
by ProcessMod . Columns 6 and 7 show the number and
percentage (over all test cases) of test cases identified as
rerunnable by the methodology, and column 8 shows the
number of test cases identified as obsolete. Column 9 dis-
plays the final testedness achieved on the spreadsheet after
re-running the rerunnable test cases.

First we consider the number of rerunnable test cases.
There are two questions to consider here: are useful re-
runnable test cases available, and is the number of such test
cases a reduction over the entire test suite? For three of the
14 modified versions ofMBTI, all impacted test cases were
identified as obsolete. On the other 11 versions, however,
rerunnable test cases were found, and their numbers repre-
sented only 3.74% to 12.29% of the entire test suite. Such
results suggest that, at least for the types of corrective mod-
ifications considered, our test re-use approach can identify
a reasonable number of test cases for re-use.

Columns 3, 4, and 9 let us consider the effectiveness of
re-used test cases in re-establishing testedness after modifi-
cations. In six of the 14 cases considered, test re-execution
restored testedness to within 1% of its original level (in
three cases final testedness equaled, and in one case it ex-
ceeded, initial testedness). In all other cases except those

where test cases were obsolete, final testedness fell within
5% of original testedness. This shows that when our test
reuse methodology finds rerunnable test cases, those test
cases can be effective at restoring testedness in portions
of the spreadsheet affected by modifications, allowing end-
users to re-achieve much of their initial coverage without
creating new test cases.

5 Conclusions

We have presented a test re-use methodology for use
with spreadsheets, and algorithms that implement it. The
algorithms operate in concert with our WYSIWYT spread-
sheet testing methodology, and are tightly integrated with
the highly interactive spreadsheet programming environ-
ment, presenting testing-related information visually, and
allowing end-users to re-use testing information without re-
quiring formal understanding of testing. We have proto-
typed our methodology, and our case study shows that it
can usefully select test cases for reuse.

Given these results, our next step in this research is the
design and performance of additional experiments, includ-
ing (1) experiments with a wider range of spreadsheets, in-
cluding representatives of commercial spreadsheet applica-
tions, and (2) experiments involving human users of our
methodology. Such studies will help us further investi-
gate open questions about design strategies (such as re-use
of output information), and ultimately, assess whether our
methodology can be used effectively by end users on pro-
duction spreadsheets.

11

Acknowledgements

We thank the Visual Programming Research Group and
Curt Cook for their work on Forms/3 and on the WYSIWYT
and Help-Me-Test methodologies, and for their feedback
on our test re-use methodologies. This work has been sup-
ported by the National Science Foundation by ESS Award
CCR-9806821 and ITR AwardCCR-0082265 to Oregon
State University.

References

[1] A. Blackwell. See what you need: Helping end users to
build abstractions.J. Vis. Lang. Computing, 12(5):475–499,
Oct. 2001.

[2] P. Brown and J. Gould. Experimental study of people cre-
ating spreadsheets.ACM Trans. Office Info. Sys., 5(3):258–
272, July 1987.

[3] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reich-
wein, and S. Yang. Forms/3: A first-order visual language
to explore the boundaries of the spreadsheet paradigm.J.
Funct’l. Prog., 11(2):155–206, 2001.

[4] M. Burnett and H. Gottfried. Graphical definitions: Expand-
ing spreadsheet languages through direct manipulation and
gestures.ACM Trans. Computer-Human Int., pages 1–33,
Mar. 1998.

[5] M. Burnett, R. Hossli, T. Pulliam, B. VanVoorst, and
X. Yang. Toward visual programming languages for steering
in scientific visualization: a taxonomy.IEEE Computing –
Science and Engineering, 1(4), 1994.

[6] M. Burnett, A. Sheretov, B. Ren, and G. Rothermel. Testing
Homogeneous Spreadsheet Grids with the “What You See Is
What You Test” Methodology.IEEE Trans. Softw. Eng., (to
appear).

[7] M. Burnett, A. Sheretov, and G. Rothermel. Scaling up a
“What You See is What You Test” Methodology to Spread-
sheet Grids. InProc. 1999 IEEE Symp. Vis. Lang., pages
30–37, Sept. 1999.

[8] V. Chen, D. S. Rosenblum, and K. Vo. TestTube: A system
for selective regression testing. InProc. 16th Int’l. Conf.
Softw. Eng., pages 211–220, May 1994.

[9] E. H. Chi, P. Barry, J. Riedl, and J. Konstan. A spreadsheet
approach to information visualization. InIEEE Symp. Info.
Vis., Oct. 1997.

[10] E. Duesterwald, R. Gupta, and M. L. Soffa. Rigorous data
flow testing through output influences. InProc. 2nd Irvine
Softw. Symp., Mar. 1992.

[11] R. Ferguson and B. Korel. The chaining approach for soft-
ware test data generation.ACM Trans. Softw. Eng. Meth.,
5(1):63–86, Jan. 1996.

[12] M. Fisher, M. Cao, G. Rothermel, C. R. Cook, and M. Bur-
nett. Automated Test Case Generation for Spreadsheets. In
Proc. 24th Int’l. Conf. Softw. Eng., May 2002 (to appear,
preprint available at http://www.cs.orst.edu/~grother).

[13] P. Frankl and E. Weyuker. An applicable family of data flow
criteria. IEEE Trans. Softw. Eng., 14(10):1483–1498, Oct.
1988.

[14] M. J. Harrold and M. L. Soffa. An incremental approach
to unit testing during maintenance. InProc. Conf. Softw.
Maint., pages 362–367, Oct. 1988.

[15] V. B. Krishna, C. R. Cook, D. Keller, J. Cantrell, C. Wal-
lace, M. M. Burnett, and G. Rothermel. Incorporating in-
cremental validation and impact analysis into spreadsheet
maintenance: An empirical study. InProc. Int’l. Conf. Softw.
Maint., Nov. 2001.

[16] H. Leung and L. White. Insights into regression testing.
In Proceedings of the Conference on Software Maintenance,
pages 60–69, Oct. 1989.

[17] B. Myers. Graphical techniques in a spreadsheet for speci-
fying user interfaces. InACM CHI ’91, pages 243–249, Apr.
1991.

[18] B. Nardi. A small matter of programming: Perspectives on
end user computing. The MIT Press, Cambridge, MA, 1993.

[19] K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma.
Regression testing in an industrial environment.Comm.
ACM, 41(5):81–86, May 1998.

[20] T. Ostrand and E. Weyuker. Using dataflow analysis for re-
gression testing. InSixth Annual Pacific Northwest Softw.
Qual. Conf., pages 233–247, Sept. 1988.

[21] R. Panko. What we know about spreadsheet errors.J. End
User Computing, pages 15–21, Spring 1998.

[22] G. Rothermel, M. Burnett, L. Li, C. DuPuis, and A. Shere-
tov. A methodology for testing spreadsheets.ACM Trans.
Softw. Eng., pages 110–147, Jan. 2001.

[23] G. Rothermel and M. J. Harrold. Analyzing regression test
selection techniques.IEEE Transactions on Software Engi-
neering, 22(8), Aug. 1996.

[24] G. Rothermel, L. Li, and M. Burnett. Testing strategies for
form-based visual programs. InProc. 8th Int’l. Symp. Softw.
Rel. Eng., pages 96–107, Nov. 1997.

[25] G. Rothermel, L. Li, C. DuPuis, and M. Burnett. What you
see is what you test: A methodology for testing form-based
visual programs. InProc. 20th Int’l. Conf. Softw. Eng., pages
198–207, Apr. 1998.

[26] K. J. Rothermel, C. R. Cook, M. M. Burnett, J. Schonfeld,
T. R. G. Green, and G. Rothermel. WYSIWYT testing in
the spreadsheet paradigm: An empirical evaluation. InPro-
ceedings of the 22nd International Conference on Software
Engineering, June 2000.

[27] T. Smedley, P. Cox, and S. Byrne. Expanding the utility of
spreadsheets through the integration of visual programming
and user interface objects. InAdvanced Visual Interfaces
’96, May 1996.

[28] G. Viehstaedt and A. Ambler. Visual representation and ma-
nipulation of matrices.J. Vis. Lang. Computing, 3(3):273–
298, Sept. 1992.

[29] F. I. Vokolos and P. G. Frankl. Pythia: A regression test
selection tool based on textual differencing. InProc. 3rd
Int’l. Conf. Rel., Quality, and Safety of Softw.-Intensive Sys.,
May 1997.

[30] E. Wilcox, J. Atwood, M. Burnett, J. Cadiz, and C. Cook.
Does continuous visual feedback aid debugging in direct-
manipulation programming systems? InACM CHI’97,
pages 22–27, Mar. 1997.

12

