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ABSTRACT

Explainable AI (XAI) is growing in importance as Al pervades mod-
ern society, but few have studied how XAI can directly support
people trying to assess an Al agent. Without a rigorous process,
people may approach assessment in ad hoc ways—leading to the
possibility of wide variations in assessment of the same agent due
only to variations in their processes. AAR, or After-Action Re-
view, is a method some military organizations use to assess human
agents, and it has been validated in many domains. Drawing upon
this strategy, we derived an AAR for Al to organize ways people
assess reinforcement learning (RL) agents in a sequential decision-
making environment. The results of our qualitative study revealed
several strengths and weaknesses of the AAR/AI process and the
explanations embedded within it.
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1 INTRODUCTION

Consider people tasked with assessing Al systems—specifically
those responsible for asserting that the technology is safe and
regulation-compliant. An example of such a technology is a self-
driving car, where the importance of evaluating its safety is para-
mount, especially since failures have such grave consequence that
they are likely to wind up in court [7]. Assessing accidents caused
by self driving cars increasingly tread into legal grey areas. Who is
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held liable? The driver for failing to react in time, or the company
for delivering defective code? [35].

When considering the question of how to do assessment, we
note that an intelligent agent interacts with the world in ways
analogous to those of a human agent. Thus, perhaps we could adapt
established techniques for evaluating the quality of human agents
for use on AL The technique we specifically refer to is the After-
Action Review (AAR), devised by the U.S. Army in the mid-70’s [33].
The AAR was a success in various branches of military, and has also
been adapted for other domains including medical treatments [47],
transportation services [31], and fire-fighting [21].

We term our adaptation AAR/AI (“AAR for AI”). AAR/Al is a
process for domain experts to use in assessing whether and under
what circumstances to rely upon an Al agent. We envision AAR/AI
to be suitable for sequential domains, such as real-time strategy
(RTS) games. It contains a series of steps the human takes to evaluate
an Al agent and the explanations it provides of its behaviors.

To investigate AAR/AI, we created a custom game in StarCraft
II (Section 4.1). Then, we created a reinforcement learning (RL)
agent that yielded high-quality actions in the domain (Section 4.2).
For this agent, we also devised an explanation for the model-based
agent to show its search tree (Section 3.3). To evaluate the AAI/AR
process in the context of this domain, explanation, and agent, we
conducted a qualitative study designed to investigate these RQs:

RQ1 When using AAR/AI for assessment, what do people need
to make good assessment decisions?

RQ2 What are the strengths and weaknesses of guiding human
assessment in this way?

RQ3 What are strengths and weaknesses of search tree explana-
tions, as we have designed them?

2 BACKGROUND & RELATED WORK

There are many papers describing the challenges of evaluating Al
systems’ quality (e.g. [5, 15]), including specific attacks (e.g. [12]).
Rising to meet these challenges, approaches like DeepTest [54] at-
tempt to utilize concepts from software engineering to improve
testing of deep neural networks. In particular, they seek to measure
and improve “neuron coverage” (proposed by Pei et al. [38], similar
to code coverage). To accomplish this, they apply a series of trans-
formations to the input, a form of data augmentation conceptually
similar to fuzzing. Other approaches have transported software
engineering concepts, such as test selection [16, 20] and formal
verification [41]. However, these approaches are system-oriented
in terms of exposing problems, not human-oriented by giving an
assessor the tools to determine appropriate use for the AL
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2.1 People Analyzing Al

Human-oriented evaluation of Al is an active area of research,
though much of it is at a different granularity than we needed.
For example, Lim et al. researched how their participants’ sought
information in context-aware systems powered by decision trees.
The result of their research was a code set of several “intelligibil-
ity types” describing the information. They discovered that their
participants demanded Why and Why Not information, especially
when the system behaved unexpectedly [29]. Using Lim’s code
set, Penney et al. studied how experienced RTS players looked for
information when understanding and evaluating an “Al,” but they
found that participants preferred What information over Why in-
formation and that the large action space of StarCraft II led to high
navigation costs, which meant missing important game events [39].
Dodge et al. analyzed how shoutcasters (human expert explainers,
like sports commentators) assessed competitive StarCraft II players.
They showed the ways that shoutcasters present information that
they thought their human audiences needed [10]. Kim et al. gath-
ered 20 experienced StarCraft II players to play against competition
bots and rank them based on performance criteria. They noted how
human evaluations of the Al bots differ from the evaluations used
for AI competitions and that the human player’s ability plays a
huge role in their evaluations of the AI’s overall performance and
human-likeness [24]. These studies found how people evaluate an
AlJ, but they did not present a structured process for assessment.

There are several models which consider system assessment in
a human-oriented way; however, these works do not provide an
assessment process for Al but rather on whether humans will adopt
systems or not. One such framework is Technology Acceptance
Modeling (TAM) [9]. TAM can predict how well a system will be
accepted by a user group and explain differences between individ-
uals or subgroups. More recently, the UTAUT (Unified Theory of
Acceptance and Use of Technology) model was proposed as an ac-
ceptance evaluation model [18]. These approaches could be used to
examine the quality of Al systems, but they do not offer a concrete
process for human assessors to enact.

2.2 People Explaining Al

Our process has an explanation explicitly embedded within it, so we
briefly survey explanation strategies for Al The primary purpose
of explanations is in their ability to improve the mental models of
the Al systems’ users. Mental models are “internal representations
that people build based on their experiences in the real world” that
assist users to predict system behavior [34].

Explanations are also a powerful tool for shaping the attitudes
and skills of users. One such example is Kulesza et al’s proposed
principles for explaining (in a “white box” way) machine learning
based systems, wherein the system made its predictions more trans-
parent to the user [26], which in turn improved the quality of their
participants’ mental models. Another study by Anderson et al. [1]
provided insights on the varying changes in the mental models of
participants with different explanation strategies of an Al agent.

Another direct consequence of altering the mental models of
users is the improvement in their ability to command the system.
According to a study by Kulesza et al. [27], participants with the
most improved mental models were able to customize the system’s
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US Army AAR Process

Introduction and rules.

Review of training objectives.

Commander’s mission and intent (what was supposed to happen).
Opposing force commander’s mission and intent (when appropriate).
Relevant doctrine and tactics, techniques, and procedures (TTPs).
Summary of recent events (what happened).

Discussion of key issues (why it happened and how to improve).
Discussion of optional issues.

Discussion of force protection issues (discussed throughout).
Closing comments (summary).

Table 1: Steps of the US Army AAR process [55].

recommendations the best, accommodating for the explanations
that the researchers provided.

Explanations in the domain of Al agents in RTS games have been
gaining traction over the years. In a study by Metoyer et al. [32],
they present a format where experienced players played while
providing explanations to non-RTS players. The strategy that expert
players used while demonstrating how to play the game was found
to be key to the explanation process. The study by Kim et al. [25]
had experienced players play against Al bots in order to assess the
bot’s skill levels and overall performance. However, despite the
existing research mentioned above, there is a dearth in literature
concerning what humans really need in order to understand and
assess such systems [37].

2.3 After-Action Review

To structure our assessment method, we turned to processes that
have been used for humans to assess other humans, including Post-
control, Post-Project Appraisal and After-Action Review (AAR) [48].
Our criteria for the process to use as our basis included: (1) have
a structured and logical flow, (2) be well established, and (3) be
suitable for evaluation during a task, not just useful at the end of
a task. We selected the AAR method as the one that best fulfilled
these criteria.

AAR is a debriefing method created by the United States Army,
and it has been used by military and civilian organizations for
decades [46], to encourage objectivity [31]. The purpose is to un-
derstand what happened in a situation and give feedback, so people
can meet or exceed their performance standards by going through
a structured series of steps shown in Table 1.

The AAR process was primarily used as a method to provide per-
formance feedback after soldier training sessions. Before starting
an evaluation session, the leader (a designated individual across all
sessions) performs groundwork to collect and aggregate data from
the session for further analysis. The leader enters the session with
a pre-planned mechanism to collect data and begins the session by
reiterating the objectives of the analyzed exercise. From there, the
leader asks a series of open-ended and leading questions about what
happened during the training session, making sure to encourage
a diverse range of perspectives. These responses are then filtered
into a recapitulation that the group collectively agrees on, and the
discussion is shifted to scrutinizing any shortcomings in perfor-
mance. This is followed by brainstorming solutions to avoid or
improve responses to problematic outcomes. The session concludes
by delineating an action plan to adhere to for future training [55].
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AAR/AI Empirical Context

1. Define the rules

How are we going to do this evaluation?
What are the details regarding the situation?

We established the rules of evaluation and the domain (see Sup-
plemental Materials).

2. Explain the agent’s
objectives

What is the AT’s objective or objectives for
this situation?

We explained the AT’s objectives for the situation (see Supplemen-
tal Materials).

3. Review what was

What did the evaluator intend to happen?

We asked, “What do you think should happen in the next three

supposed to happen rounds?”.

4. Identify what | What actually happened? The participant watched three rounds. Then, we asked, “Could you
happened briefly explain what actually happened in these past three rounds?”.
5. Examine why it | Why did things happen the way they did? | We asked, “Why do you think the rounds happened the way they
happened did?”. Next, the participant summarized anything good, bad, or

interesting on an index card. Last, we provided the participant
the agent’s explanation for that decision (Figure 1), and requested
they, “Think aloud about why the Friendly Al did the things it did.”.

6. Formalize learn-
ing (end inner loop)

AAR/AI Inner Loop

Would the evaluator allow the AI to make
these decisions on their behalf? What
changes would they make in the decisions
made by the Al to improve it?

We asked three questions: “Would you allow the Al to make these
decisions on your behalf?”, “What changes would you make in the
decisions made by the Al to improve it?”, “Would you allow the
Friendly AI to make this category of decisions on your behalf?”.

7. Formalize learning

What went well, what did not go well, and
what could be done differently next time?

The participant completed a post-task questionnaire (see Supple-
mental Materials).

Table 2: How AAR/AI (right two columns) adapts the original After-Action Review steps (left column). The “Empirical Context”
column explains how we realized it in our empirical study. Note that steps 3-6 form an “inner loop” that we repeated every
three decisions. The parts outside the inner loop are documented in our Supplemental Materials (tutorials, questionnaires,

etc), so we describe them only briefly here.

AAR showed effectiveness for combat training centers [46], and
the military still uses it, with a recent investigation of current
methodologies for simulation-based training [17]. Outside military
applications, AAR has been used in other domains, from medical
treatment [42, 47], emergency preparedness [8], and response [21,
28]. The closest research to ours discusses how AAR will be different
for manned-unmanned teams, but focused on the technologies
needed to support the AAR process, not the process itself [4].

3 THE AAR/AI PROCESS

Our After-Action Review for Al (AAR/AI) is an assessment method
for a human assessor to judge an Al. We base the steps of our
method from Sawyer et al’s DEBRIEF adaptation from the Army’s
AAR [47]. In their adaptation, they Define rules, Explain objectives,
Benchmark performance, Review what was supposed to happen,
Identify what happened, Examine why, and Formalize learning.
Table 2 outlines our AAR/AI adaptation.

The original AAR method is a facilitated, team-based approach,
but our AAR/AI method is for an individual reviewing, learning
the ATl’s behavior, and assessing its suitability [48]. The outcomes
are different for the approaches: AAR aims for transfer of knowl-
edge within a team, and AAR/AI aims for individual acquisition
of knowledge and assessment of an Al These two primary differ-
ences between AAR and AAR/AI are what generated the specific
ways AAR/AI (Table 2’s columns 2 and 3) carries out the original
method’s steps (Table 2’s column 1).

3.1 AAR/AI Defining Rules & Objectives

A facilitator starts each session with a tutorial on the user inter-
face, domain, explanations, and the objectives of the assessment
(Steps 1-2, Table 2). This contextualizes the discussion in terms

of what the assessor is supposed to do and the agent that they
are assessing. After that, the facilitator begins the AAR/AI “inner
loop” (discussed next), and after every loop is done, the assessor
completes a questionnaire.

3.2 AAR/ATI’s Inner-Loop: What, Why, How

During each iteration of the inner loop, the facilitator asks the
assessor, “ What was supposed to happen?”, “What happened?”, “Why
did it happen?”, “How can it be improved?” (Steps 3-6, Table 2). The
assessor also summarizes what happened in the past three rounds
and writes down anything they observed that was good, bad, or
interesting on an index card. At Step 5, we provided the assessor
with the Al's explanation for the most recent round, and asked to
explain why the AI did the things it did, according to the process in
Table 2. Following this, to formalize learning about this particular
decision, the facilitator asks the assessor the questions listed in
Table 2 step 6, (e.g. whether they would allow the AI to make these
decisions on their behalf). Thus ends the inner loop, which would
repeat until the end of that analysis session.

3.3 AAR/AI: Explanation Component

AAR/AI evaluators, like the AAR equivalent, require information
on what happened, so our process requires an Explanations Compo-
nent, since the evaluators not only must they know what happened,
but the agent must be able to explain why it performed an action.
In our evaluation study, we used a model-based agent, so we proto-
typed a model-based explanation.

A model-based agent (and its explanation) offers the benefit of
explicitly representing the future states the agent is trying to reach
or avoid. Our model-based explanation captures the agent’s search
tree, shown in Figure 1. We described the search tree to participants
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Figure 1: Search tree explanation for decision point 22. Blue
background boxes show: (1) game state at decision point 22,
(2) top 4 most rewarding actions, as estimated by the Al (3)
top 4 most rewarding actions for the enemy in response to
its “best” action, as estimated by the Al and (4) predicted
game state at decision point 23. Our agent searches to depth
2, so the explanation includes another turn of search from
the predicted state (box 4). Note that all states below the root
(box 1) are predicted by the agent. Green highlighted num-
bers indicate parts of the principal variation.

as, “..a diagram of decisions, where the Friendly Al decides what
actions or decisions it must take to complete a round in the game.”

The explanation lays out the agent’s “explanatory theory” [51]
of how the game could play out in different situations. In essence,
the theory’s “constructs” of that theory are: game states, roles
(e.g. friends or enemies), actions available to various roles, and
(estimated) values of different states and actions.

In Figure 1, the root node (region 1) shows the current game state
and its estimated value. One layer down (region 2) shows the 4 best

Figure 2: Left: An example of State node presentation. Each
bar shows a number of unit production facilities for each
lane and type. Here, the Friendly AI has 6 marines and
5 banelings in the top lane—with 3 marines and 16 banel-
ings bottom. Right: An example of Action node presentation.
Similar to the state, bars are split by lane and by unit. Each
node is given with the agent’s estimate of the win probabil-
ity associated with that action (number at the bottom.)

actions available to the friendly Al in the current game state—and
their values, as estimated by the agent based on the tree expansion.
The third level of the tree (region 3) shows actions available to the
opponent—again, the 4 best actions and their values as estimated by
the agent. The fourth level of the tree (region 4) shows the predicted
state that the agent thinks will ensue based on the current state,
taken together with the simultaneous actions from itself and the
opponent. From that level, the agent performs another round of
search in the same way, resulting in an agent that looks ahead
2 rounds. Each node is shown with the state or action that node
depicts, alongside the estimated value of that state/action, shown
with more detail in Figure 2. If that value is part of the principal
variation (colloquially, the most likely trajectory given “optimal”
play from both sides), its value is shown in green instead of blue.

In AAR/AI then, the evaluators’ mission is to evaluate one as-
pect of the Al agent’s theory: its falsifiability [40]. We explain our
strategy for doing so next.

3.4 AAR/AT’s Artifacts

Part of AAR/AI involves creating materials to help keep everyone
on task during the assessment. The US Army AAR uses cards in
order to log observations [55], though the information collected is
largely focused on personnel and their positioning. Since the Al
performs within the RTS domain, we turned to how professional
shoutcasters analyze Al like AlphaStar [52]. They used formatted
text for actions that they found “good,” “bad,” or “interesting,” which
we replicated in the AAR/AT’s index cards. This prevents assessors,
regardless of the AI's use, from relying on memorizing when a
decision is good or not. By using such written artifacts, the AAR/AI
process has the benefit of gaining retrospective feedback on process
or explanations. Further, artifacts like these can assist in comparing
the assessment results from multiple different individuals.

4 EMPIRICAL STUDY: METHODOLOGY

To inform our design of AAR/AI, we ran an in-lab think-aloud qual-
itative study. One goal was to investigate what participants needed
when doing Al assessment, alongside strengths and weaknesses
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of our process. Additionally, since the AAR/AI process embeds
an explanation, our other goal was to obtain feedback about the
model-based explanation strategy we described in Section 3.3.

We recruited 11 students at Oregon State University who had
not taken classes in Al or ML. Since our game is based on StarCraft
II, we recruited those familiar with real-time strategy games, to
ensure that participants could understand the game sufficiently to
assess the AL

A researcher facilitated for the participant (assessor) during the
AAR/AI process, starting with a tutorial about the interface, domain,
and task (Steps 1/2). Since each session was limited to 2 hours, we
wanted to ensure that each participant reached the end of the replay
and had time for our post-task questionnaire. Thus, we decided to
have them analyze every third decision point out of the 22 available,
including the last one (e.g. 3,6....,21,22). This allowed up to 5-7
minutes for each iteration of the AAR/AI inner loop—though it was
rarely necessary to enforce limits during the study.

At each iteration, the researcher asked the assessor a structured
series of open-ended questions to elicit their thoughts as they per-
formed their assessment of the AI’s actions (Steps 3-6). Additionally,
the participant wrote on index cards (Section 3.4) to help them for-
malize thoughts and offer the option to refer back to previous ones.

Upon completion of the task (Step 7), we asked: “Did the pro-
cess of the questions I asked you help you understand and assess the
Al better?”, “Do you think the Al's diagrams have enough detail?”,
“Would you prefer the width of the diagram to be narrower or wider?
Or do you like the way it is?”, “What kind of actions would you have
liked to see on the diagram?”, and “In the main task, did you find
these cards useful?”. Finally, we compensated participants $20.

Each session spent ~30 minutes for the briefing/tutorial (pre-
task), ~50 minutes on the inner-loop (the main-task), and ~25 min-
utes on the post-task questionnaire. This timing was consistent with
Sawyer et al’s recommendations (25/50/25%, respectively) [47].

4.1 The Domain

StarCraft II is a popular Real-Time Strategy (RTS) game that of-
fers hooks for AI development ([56, 57]) and a flexible engine for
map creation!. The game used for this study is a tug-of-war like
customized game based on StarCraft II, shown? in Figure 3. The
objective of the game was to destroy either of the opponent’s Nexus
in the top lane or bottom lane . If no Nexus is destroyed after 40
rounds, the player whose Nexus has the lowest health will lose.
At every round of the game:

o Each player receives income (100 minerals, +75 per pylon)
e The player chooses to build any combination of unit pro-
duction facilities (i.e. barracks) which will exist for the next
round, subject to the following constraints:
(1) Total cost cannot exceed current mineral count
(2) Players are only allowed to build in one lane at a time
(3) Players do knot know the opponent’s action until both
actions are finalized
e Players spawn units equal to the total number of unit produc-
tion facilities currently held (i.e., 5 barracks = 5 marines)

!Many map creation resources are available at places such as [53].
2Materials to replicate this state are freely available in our Supplementary Materials.
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FRIENDLY Minerals: 150  Pylons: 0/3
Friendly Current Units  Adding Units
Marines: 6
Banelings: 5
Immortals: 0

ENEMY Pylons: 0/3
Friendly _ Current Units
: 9

Nexus Health: 1540 Nexus Health: 2000

Nexus Health: 265

Friendly ~ Current Units
Marines: 12
Banelings: 11
Immortals: 0

Friendly  Current Units  Adding Units
Marines: 3 NA
Banelings: 16 +1
Immortals: 0 NA

Figure 3: Game screen at decision point 22. Note the
text boxes offering state information (current units, nexus
health, etc) as well as action information (adding units).

Each round, both players choose which lane to build in and
the number of unit-producing buildings to spend resources on for
each of 3 unit types, who share a rock-paper-scissors relationship.
Marines (50 minerals) are low health units that attack in small
quick shots. They are effective against immortals. Banelings (75
minerals) are medium health units that attack by exploding on
contact. Banelings are effective against marines. Lastly, Immortals
(200 minerals) are high health units that attack in large slow shots.
Immortals can inflict significant damage on a Nexus. Players may
also choose to build a pylon to increase their income per round.
The maximum number of pylons they can build is 3, and the cost of
a pylon increases each time one is purchased. Note that an action in
this context is essentially an integer vector, meaning the branching
factor is combinatorial with respect to minerals possessed.

Once a unit spawns, the players can no longer control it; they
will move toward the enemy Nexus and attack any enemies along
the way. Also, units always spawn at the same location each wave.

4.2 The Agent Implementation

The agent is model-based, so it has access to a transition function
that maps a state-action tuple to the successive state. Applying
the transition function allows the agent to expand a move tree,
and perform minimax search® on it. The system uses three learned
components (all represented by neural networks): the transition
model, the heuristic evaluation performed at leaf nodes, and the
action ranking at the top level.

The heuristic evaluation function estimates the value, or qual-
ity, of non-terminal leaf nodes in the search tree. This function
is necessary to address the depth of the full game tree, since the
search will rarely be able to expand the tree until all leaf nodes are
terminals. The action ranking function provides a fast estimate of
the value associated with taking each action in a state. This function
is necessary to address the large action-branching factor by only
performing the more expensive tree expansion under some number
of top-ranked actions to improve estimates (similar to AlphaGo and
AlphaZero [49, 50]). A big difference, however, is that our system
uses a learned transition model, due to the stochastic and complex

3For more information on game tree search, see Russell and Norvig, Chapter 5 [45].
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Code: Description
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Example

Explanation Overall Quality: Participant found the explanation useless or helpful
in a general sense (very vague), or in determining reasons for actions in the decision
process (clarity, or lack thereof).

P2: ‘I think it’s pretty easy to understand, like, after looking at for a
little while.”

Diagram Color Coding: Participant comments on the manner in which an expla-
nation object is colored.

P17: “The color coding is okay. Um, it’s pretty distinctive. Um, I don’t
know if the background is gray or- and even the marines are gray...
it was confusing because if it was different color”

Changing Diagram Data Contents: Participant talks about changing data in the
diagram (such as changing the node definitions, changing the key, etc). This is NOT
about showing an action/state node that is not present.

P18: “How much minerals it has, something like that. I would like
that to be represented on the diagram.”

Diagram Node Contents: Participant wants the diagram to contain more/fewer
nodes, (e.g. wishes to interactively expand a node, request a specific action be
examined, or have a “wider/narrower” tree) OR thinks it contains the right amount.

P11: ‘T would just have more options available, you know. ... So some-
times, there are missing... missing options which should be taken.”

16

Diagram Glyph Presentation: Participant comments on the glyphs for the action
or state nodes, referring to the way the state information is presented in the glyph

P10: “As the number of units goes on increasing, the line goes on
increasing. And that is why it’s short. That’s clear, but vertical lines
are... if it would have been 1, it would have been great. Just 1 line.”

Table 3: Helpful/Problematic code set for the explanations. Frequencies are from three post task questions centered on the

explanation and its contents.

nature of the transitions between states, whereas Silver et al’s used
a perfect move-transition model (e.g., Chess’s deterministic rules).

4.3 Analysis Methods

To answer RQ2 and RQ3, two researchers applied content analy-
sis [19] to the coded statements from the post-task questions about
helpful or problematic elements of the process or explanations,
resulting in the code set in Table 3. The two researchers coded
21% of the data corpus separately, achieving inter-rater reliability
(IRR) of 82.4%, computed via Jaccard Index [22]. Given this level of
reliability, they then split up the remaining coding.

To answer RQ1, we drew from a code set that Dodge et al. used in
their StarCraft II study, who had adapted from Lim et al’s work [10,
30]. Dodge et al. also added in a “judgment” code, which the AAR/AI
needed because of the nature of assessment. Individually, the two
researchers coded 20% of the data corpus, achieving an inter-rater
reliability (IRR) of 76.4%. Given this level of reliability, they then
split up the remaining coding.

5 RESULTS

Our explanation strategy consists of three components: the AAR/AI
process itself, the specific explanation content and presentation,
and a “keep the user active” tactic to facilitate their learning of the
agent’s behaviors. Accordingly, this section has three parts: 1) how
the AAR/AI process affected participants’ understanding, 2) how
the Explanation (tree diagram) content and presentation affected
participants’ understanding, and 3) how the integration of all three
elements of our strategy affected participants’ understanding.

5.1 Results: The AAR/AI Process

The goal of our project’s explanation strategy is to enable partici-
pants to understand how the Al agent is “thinking” well enough to
evaluate how suitable the Al agent is for different situations that
arise. In essence, our explanation strategy aims to help people build
mental models. In this subsection, we consider what the AAR/AI
process itself brought to our participants’ mental-model building.

> L«

Many of the participants commented on how AAR/AT’s “struc-
turedness” helped their understanding by keeping their thinking
organized, structured, and/or logical. (Only one participant said
it was not helpful, but this was because they believed that with
their experience in RTS games, they already understood the AI’s
behavior without the need of any assistance.) For example:

P8: “Uh, yes, I would say <AAR/AI was helpful>. It definitely
directed me towards what I should be paying attention to.”

P18: ‘T could think what it should improve on and why the pre-
vious round happened the way it did. So, when those questions
were broken down... Really helped in following the game.”

P14: “..it categorized the flow of logic that we should’ve had
in analyzing the prediction and what actually happened, so it
kept it more organized, and therefore, more logical.”

P17: ‘T know it was too much information ... it helped me
understand it better. ...it just helps me ... to understand it better,
and makes it more logical.”

To understand the level of our participants’ mastery of under-
standing the agent, we applied Bloom’s Taxonomy [3], which is
a framework used by educators to categorize the different levels
of learning. The taxonomy has six levels [2], ranging from basic
understanding of a concept (level 1), through a fairly advanced un-
derstanding (level 6). Each level requires learners to engage with a
higher level of abstraction than the last. The application of Bloom’s
taxonomy to our context is detailed in Table 4.

As Table 4 shows, subsets of participants showed mastery of
every Bloom’s level. In fact, all participants achieved Bloom’s Level
5 at least once during the study. Further, all except one of the
participants achieved Bloom’s Level 6 at some point.

Bloom’s Level 5 is of particular interest to our project: it is the
level of understanding that allows evaluation. Evaluation is a form
of problem-solving—working out whether the AI agent is “capable
enough” for a particular situation—and problem-solving greatly
benefits from diversity of thought [14]. Although most research
into diversity of thought is in the context of team problem-solving,
at an abstract level it amounts to bringing diverse perspectives to a
problem (e.g. [14]).
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Examples from our participants

1. Remembering: Have stu-
dents acquired the ability to
correctly recall information?

Participants recall domain information,
such as game rule(s), what an agent can do
with particular game units, etc. (Supported
by AAR/AT’s questions about the game.)

+P20: “It’d probably buy another baneling... to counter the marines...”

2. Understanding: Can stu-
dents understand information
they have learned to recall?

Participants understand the domain infor-
mation provided. (Supported by AAR/AT’s
“What” and first “Why” question.)

+P8: “..you <the AI> don’t necessarily know which lane they’re coming through...
it’s not much of an informed decision until the first round happens.”

3. Applying: Can students ap-
ply their newly learned knowl-
edge?

Participants apply the explanation of the Al
to the game. (Supported by second “Why”
question.)

+P2: “I...like it how <the explanation diagram> is, because like I could try to draw
my own conclusions from it rather than just like ‘oh this is just what happened’”

4. Analyzing: Can students
see patterns and make
inferences about a problem?

Participants analyze the AI's problems in
the game, and reason about solving them.
(Supported by the prediction task and the

+P2: “So the bottom one did pretty well like overpowering the enemy Al and
even attacking nexus, lowering its health while the top one, the enemy Al did a
better job sending more marines and the friendly Al sent banelings which got

“What changes would you make” question.)

overpowered by the marines.”

+P19: “So we have almost same health on top and bottom. So, to defeat us, they
have to focus on either one. So I guess they will focus bottom, because they have
to save them at the time. I guess we have to use minerals to buy immortal here,

so that we can save ourselves and at the same time, kill the enemy.”

5. Evaluating: Can students
take a stand or decision, and
justify it?

Participants evaluate the Al agent, and
judge if they would allow the agent to
make decisions on their behalf in this or
similar situations. (Supported by the
“Would you allow...” question series.)

+P5: “Producing these banelings <in both> lanes allowed nexus damage bottom
lane, and then having the one or two marines do consistent damage on the nexus
really took down the nexus health, so that was actually a really good decision.”
+P20: “This is gonna be sad. Yep. It’s all downhill from here. (after watching the
replay) Uh, the friendly Al lost, uh, due to their misinvestment in the top row,
and only increasing their baneling count, which only works at melee range which

is ineffective to marines if there’s already a baneling wall in front of them.”

6. Creating: Can students Participants create new points of view by
generalizing upon, abstracting above, or

recommending differences in the AI's

create a new point of view?

behaviors.

+P14: “Well, the enemies will invest in banelings, and I feel that the friendly’s
will invest in marines, especially more in the top row, since it is more damage...”
+P21: “Twould consistently save a small quantity of minerals each round, rather
than trying to save them all in a single round.”

Table 4: Bloom’s taxonomy levels participants achieved in learning the agent’s behavior.

To consider whether the AAR/AI process was able to elicit di-
verse perspectives from our participants, we turned to the Lim-Dey
intellibiligy types, which we used as a codeset for our qualitative
coding (Table 5). As the results show, each of AAR/AI steps guided
participants’ thinking (according to their self-reports) toward dif-
ferent Lim/Dey perspectives [29]. For example, the first question
guided most participants to focus on “What Could Happen,” the
second on “Input” and “Output” types of information, and the last
on “How To” information. Since other research has shown each
intelligibility types has its own advantages and disadvantages, we
see the diversity of perspectives that AAR/AI seemed to elicit as a
particular strength of AAR/AI [2].

5.2 Results: Explanation Content and
Presentation

The tree diagrams provided participants with a more global view of
the agent’s decision process, supplementing the local-only “right
now” view provided by the game state. As two participants put it
aptly:
P2: “Tkinda of like it how it <explanation diagram> is, because
like I could try to draw my own conclusions from it rather than
just like ‘oh this is just what happened’.”

P14: “<In the game state>... difficult to grasp the whole situa-
tion, so having the graph gave me a chance to get my footing
on overall trends and options.”

This way of using the explanation was a theme which was in a
post-task response from another participant:
P17: “The diagrams used to make it easier also helped to under-
stand the predictions. To look at one thing from many angles
and make appropriate predictions.”

However, a pitfall some participants fell into was extrapolating
too much information from the tree diagrams. Several participants
seemed certain about the agent’s long-term plan, which was trou-
bling because the explanation did not make such a plan explicit—if
the agent even had one.

P21: “At this point, I feel certain that the friendly’s trying to
destroy the bottom nexus of the enemy. ”
P10: T think it’s because it was a whole game plan from the
beginning. ... like from the beginning of the bottom lane, the
friendly Al started increasing the troop numbers. ”
However, the explanation could not possibly have shown a many-
step game plan, because the agent was only looking head two states.

Another participant also expressed difficulty in seeing long term
strategies, but for a different reason—granularity mismatches be-
tween moves, tactics, and strategies:

P20: “There are subtasks and decisions that go into making
a strategy and not being able to see this had me make less
informed assumptions about the future decisions.”

Part of P20’s complaint above also was a desire for more informa-
tion, and this issue arose in multiple ways. One participant wanted
the explanation to show an estimation of the resources available to
both the friendly Al and its opponent:
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P20: “Twould enjoy to see ... the AI's, calculation of their miner-
als. ...further extrapolation of getting this many more minerals
allows you to buy these units. ...Because in RTS games you
think about is the enemy’s resources as well and how to man-
age those as well as your own.”

5.2.1  How Much More/Less/Different to Show? Addressing the pre-
viously described requests for more or different information is not
straightforward. With the agent considering combinatorial action
spaces, showing the full search tree all at once would have been too
large for humans to process. Thus, we needed to choose a smaller
set of noteworthy actions to show—but which ones and how many?

To situate the “which” question, the explanations participants
saw showed only four actions (recall Figure 1). Some participants
thought there should be more and/or different ones. For example:

P5: “.. since there are only four options ... if it was a possibility
for more options ‘cause there was definitely more possibilities.”

However, these four options were only “top” as per the agent’s

estimations, which may not have been the right four:

P5: “T would think the AI would have the best four, which it
didn’t have the best four. ”

One participant proposed also showing the worst possible choice:
P20: “T’d like to see ... what the friendly Al thinks is the ...
choice that would give them the least chance of winning as
well as their greatest chance of winning...”

As to how many actions to show, seven of the participants indi-
cated that they liked the tree—but one wanted a smaller one, and
three wanted a larger tree.

P8: ‘I liked the way it is. It’s easy to read.”
P21: ‘T do not have any problem with narrow diagram...
P11: ‘T would just have more options available... ”

Finally, one wanted everything—which is of course an infeasibly
large amount of information to present statically, but might be
possible to at least navigate via dynamic mechanisms:

P5: “All the possible actions and all possible outcomes.”

»

5.2.2 Explanations as Axioms and Theorems. In the explanation
trees, leaf nodes used a neural network to evaluate the quality of
states. These estimates were, in essence, axiomatic and the mini-
max search that proceeds atop those values are akin to theorems.
Thus, if the axioms hold true, then the theorems were true. Some
participants were open to “grant the axioms”
P14: “T mean because, those are the ones with greater scores.
So I guess that is why it chose those decisions.”
Others did not grant them and found themselves not understanding
or possibly disbelieving parts of the diagram.
P10: ‘T think diagram needs improvement, because those are
not that clear at some times. ...It does have enough details, but
the decisions were, not made... according to the diagram.”
In fact, one participant identified the issue quite well: that the win
probabilities have no clear provenance.
P8: “.. If there’s any easy way to say why it came up with these
numbers... there were several steps that I just didn’t know why
it was taking that action... ”

We found that RTS experience seemed to be a potential driver
for rejecting the heuristic evaluation function, with P5 and P20
being particularly critical of the agent’s decisions:

P5: “Wow, rewards went down... A baneling is better than a
marine by rewards points, but there’s clearly a better answer.”
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What
What
Could
How To
Judgment
Why Did
Why Didn't
Inputs
Model
Outputs

sum

"What do you think should
happen in the next 3 rounds?"
(Before watching them) 2.1 16 1 0 Of 24 6 2|122
"Could you briefly explain about
what actually happened in these
past three rounds?" (After

watching them) 13 6 2 6 18 2 53 12| 74| 186
"Why do you think the the rounds
happened the way they did?" 2 6 3 1 32 2§ 24 31 30(131

"Why do you think the Friendly Al
did what it did?" (After seeing the
explanation) 2 8 8 055 1) 60 27 36(197
"What changes would you make
in the decisions made by the
Friendly Al to improve it?" 3 8 656 2 2 O0f 38 3 2/114
Sum| 22 99 85 10 107 5199 79 144|750
Table 5: Lim Dey coding of participant responses, sliced by

question asked during the AAR/AIL

Those with less RTS experience seemed less critical of the agent’s

explanation, but they still compared the agent’s actions to the tree:
P14: “Information didn’t always line up with what occurred.
Therefore, it gives a false belief on what/how the Al is doing.”

5.3 Results: Combined Explanation Strategy

Some results seemed directly tied to the integration of all three
aspects of our explanation strategy: the AAR/AI process to provide
structure, the tree diagrams to provide content, and the tactic of
keeping the user active along the way to encourage engagement.

5.3.1 Encouraging Metacognition. Researchers in the field of edu-
cation have long pointed to the benefits of metacognition, in which
learners evaluate the success of their own learning/understanding
processes [13]. Metacognitive activity is well-established as an im-
portant influence on learning and understanding [58].

Our participants showed several instances of metacognition that
seemed to come from the integration of AAR/AL the tree explana-
tion, and the “active user”. For example:

P5: “It made me think of it like how the Al is thinking. Is it
thinking long term? Is it thinking short term? Thinking about
the two different lanes each time? what the best decision would
be or what I would make as the decision, so you asking that
question made me think was my own decision better.”

P8: “..it was good to kind of evaluate myself where I was at
when thinking about what decisions the Al was doing, so I can
better evaluate the next stage.”

One form of metacognition is self-explanation, and our approach
encouraged some participants to generate their own explanations:

P10: ‘T think the aim of the Al is to increase the number of
minerals, and then go to the last one that is immortals, so that
they can make a great damage to the nexus”

Finally, while our process promoted thinking about the future,
the cards also supported participants’ ability to reflect on the past:
P19: “These cards? It’s good to write good points and bad points
for every three rounds, so that we can go back and see what
mistakes we did from the bad.”
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Evidence to date for or against

Testability

...empirical refutation is possible:
constructs and <predictions> are
understandable, internally con-
sistent, free of ambiguity

...this explanation of the agent’s
model of the world.

Empirical: The agent’s explanations were found to be understandable by
several participants, as described in Section 5. The diagrams were clear
and explicit in their information, from most, but not all, participants’
reports.

Falsifiability| ...is supported by empirical ...this explanation of the agent’s | Empirical: Our explanations explicitly represented the agent’s predictions
/Empirical | studies that confirm its validity | model of the world. about likely future states and their values, which participants could falsify.
Support ...this style of model-based ex- | Empirical: AAR/AI evaluators (one instance: our participants).
planation.
Explanatory ...accounts for and predicts all ...this explanation of the agent’s | Empirical: One measure is whether the agent’s theory and explanation
known observations within its model of the world. correctly predicted everything, in our study, the agent did not achieve
Power scope this. Criteria-based: Whether its constructs are sufficient to express
...this style of model-based ex- | every possible action and state, i.e. completeness. In this study, the
planation. constructs have full explanatory power—but our explanation limited the
...all model-based explanations. | number, so the actual explanation was not complete.
Parsimony | ..<has>a minimum of concepts | ...this explanation of the agent’s | Criteria-based: This explanation had 4 constructs/concepts that do not
and propositions model of the world. overlap, so cannot be reduced further.
. .breadth of scope... and ...this explanation of the agent’s Crit?ria—based: This explanation’s scope is limited to explaining this
Generality | . X X model of the world. particular domain.
independent of specific settings ...this style of model-based ex- | Criteria-based: The style of explanation is not restricted to games, and
planation. should be usable for any sequential setting of model-based AL
...all model-based explanations. | Model-based explanations are restricted to model-based agents.
Utility _supports the relevant areas ...this explanation of the agent’s | Empirical: Most, but not all, participants reported the agent’s explanations

model of the world.

to be useful to understanding its actions.

planation.

...this style of model-based ex-

Empirical: AAR/AI evaluators (one instance: our participants).

Table 6: Applying Sjeberg et al’s Evaluation Criteria for Theories [51] to the agent’s model-based explanation

5.3.2  Falsifying the Agent’s Predictions. One of the strengths of
the model-based explanations was that it made part of the search
tree explicit and that the agent made concrete predictions about
the future. However, we observed that this allowed participants to
falsify [40] those predictions:
P14: “So the friendly had ... two banelings, so one baneling and
some marines. Yes, that seems right. ... it predicted that the
enemy would buy two more marines, and it ended up being
so. Yep, it was right ... it was predicted that they would buy a
baneling, and they did ... so far, it’s going as predicted.”
We explicitly crafted parts of the process to allow the human to
reflect on their past thoughts, but this participant focused on the ac-
curacy of the agent’s predictions about the future. Notably, this type
of assessment was made possible by the model-based agent, and
our explanations revealed relevant information to be able compare
different time slices.

6 DISCUSSION

6.1 Future AAR/AI implementations

AAR/AI is highly adaptable, and this provides leeway to iteratively
improve it. Two areas for improvement that we observed were that
participants thought they could remember what happened in the
past, and that participants found questions/artifacts repetitive and
burdensome at times. For example:

P20: “.. I am fairly confident in my ability to remember what

occurred.”

P5: “Some of this stuff kind of repeats...”

An alternative might be to instead enable people to decide where

to pause, in an approach similar to the empirical mechanism used by
Penney et al. [39]. In that study, participants watched a replay until

they came to a decision that seemed important, at which point they
could pause, consider our questions, and write down their thoughts.
In essence, blending this device with our inner loop would give
more control to the evaluators as to how often and exactly where
the evaluation questions need to be answered.

6.2 Prediction as Explanation

6.2.1 Trend 1: People used explanations as prediction tools. Reed et
al. suggested that explaining a solution to a problem helps people
to solve similar problems [43]. Our strategy followed a similar
approach, where participants predicted the agent’s action (i.e., the
problem), saw the action (i.e., the solution), and then provided an
explanation to the action (i.e., explanation of the solution). Some
participants even began using the explanations as the basis for their
prediction:

P8: “Understanding the diagram gave some insight into how
the Al thought, which made predicting its next move easier.”
Participants engaging with the model-based explanation reported
attitudes consistent with a series of studies Kelleher and Hnin
observed, “suggest that learners who attempt to understand the steps
of a problem solution may have higher germane load but improved

ability to apply these elements in novel situations.” [23].

6.2.2  Trend 2: The process of predicting the actions, and then show-
ing the actions, was powerful. Another trend we observed is that
predicting the Al agent’s decisions prior to observing the Al agent’s
actual actions turned out to be part of our explanation strategy. One
of the pillars of learning effectively is self-explaining [6]. “Good”
students learn with understanding the material and forming self-
explanations on their own, while “poor” students rely heavily on
examples to learn and struggle to generate explanations on their
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own. Positioning the prediction task before the observation task
effectively caused participants to create self-explanations for the Al
agent’s actions. Participants used the process and the explanation,
to generate their own explanation for predicting the agent’s actions:

P10: ‘T think the aim of the Al is to increase the number of
minerals, and then go to the last one that is immortals, so that
they can make a great damage to the nexus.”

Participants who answered AAR/AI questions perform a “rationale
generation” [11] task, which appears to offer some benefits as an
Al evaluation strategy.

Renkl et al. found that acquisition of transferable knowledge
can be supported by eliciting self-explanations [44]. Learners with
low levels of prior topic knowledge profit from such an elicitation
procedure. We observed this effect in our study, as participants with
little experience in RTS comfortably navigated through the process
of assessing the Al's actions—even forming their own explanations.

6.3 The agent’s explanations as theory

Recall from Section 3.3 that the agent’s explanations are its explana-
tory theory of the game. Since it is a theory, we draw upon criteria
that can be used to evaluate theories [51]. In Table 6, we consider
how to apply these criteria to evaluate this agent’s model-based
explanation, this style of model-based explanations, and in some
ways, even all model-based explanations.

7 THREATS TO VALIDITY

Any study has threats to validity, which can skew results towards
particular conclusions [59].

One such threat was the participants’ amount of domain exper-
tise. Evaluators of an Al system need domain knowledge to evaluate
the AT’s performance in the domain, and some of the participants
may not have had enough RTS experience. 46% of participants had
at least 10 hours of RTS gaming experience. It is possible that these
participants’ experience levels may have impacted their ability to
evaluate an Al in that domain. Also, it was not clear how to inter-
pret large decreases in the number of clarifications a participant
requested early vs. late in the process. It could have meant that the
participants understood the explanations over time, or alternatively
that they simply gave up. The question wording could also have in-
fluenced participants’ responses. Many were written and uniformly
worded in a balanced set of positive, negative, and neutral wording,
but the verbal post-task interview wording was informal, so more
subject to individual variation.

The reliability of qualitative coding rests upon inter-rater relia-
bility (IRR) measures. We used Jaccard [22], and 80% is considered
good agreement, but for one code set we achieved only 76%. Other
hindrances to the generalizability of our findings include the small
size of our study and circumscribed design.

Also, qualitative studies are intended to reveal phenomena on
approaches that have not been investigated before, and are not
suitable for generalization. That said, we think our study helps
inform model-based explanations for domains where the branching
factor is small (or can be made small via pruning, as we have done).
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8 CONCLUSION

In this paper, we have presented AAR/AI (After-Action Review
for AI), a new assessment method to bring accountability to both
AT agents and to the humans who must assess them. To inform
the design of AAR/AI, we present results from a qualitative in-lab
study to learn what people need when assessing an Al agent, as
well as pros/cons of both the AAR/AI process and the explanations
embedded in the process. Among the phenomena we found were:

o “Organized,” “Logical,” and...Repetitive”: Some participants re-
marked that AAR/AI process helped them think logically and
stay organized. Some appreciated its support for reflection on
past thoughts. Notably, the process helped participants gener-
ate rationale for events with long time lags. However, some
bemoaned the repetitiveness of the AAR/AI questions.

o Explanation complexity: Our search tree explanations for a model-
based agent were approximately the right complexity for some
of the participants to understand. They reported being able to
“draw their own conclusions” from them, and appeared to be using
them to align the agent’s prediction with the actual future. Other
participants did not fully understand the diagram. This mix of at-
titudes toward the same explanation corroborates other research
reporting that explanations are not “one size fits all people” (e.g.
[1]), and suggests allowing people to access different actions
and/or explanation types on demand.

o Diversity of perspectives: As we observed and participants re-
ported, AAR/AT’s questions encouraged participants to consider
their observations from multiple, different perspectives, which
research suggests may produce problem-solving benefits [14].

e How many and which: To answer some of the AAR/AI questions,
participants needed to compare items in the explanation from
a very large set of options, the sheer quantity of which made
them hard to co-locate. We provided the AT’s four most promis-
ing options, but some participants wanted to see options the Al
considered bad as well. Accommodating different people’s com-
parison needs to answer the AAR/AI questions is an unresolved
issue—so methods to support scalable comparisons of items in
large datasets (e.g. [36]) is an active area of Info Viz research.

e From whence: Some participants needed to know the provenance
of axiomatic values (value estimations at the leaf nodes). That
said, if people are to be held accountable for relying on an Al
agent, then the ability to “audit” its decision making by allowing
the ability to trace provenance may be a requirement.

While AAR/AI was useful in guiding participants to think logi-
cally, adding explanations assisted participants in the overall assess-
ment process. Notably, developing useful explanations and rigor-
ously measuring their quality remains quite difficult. We hope that,
by appealing to educational frameworks (e.g. Bloom’s Taxonomy),
we can help people like P14 see “the flow of logic that we should’ve
had’, a benefit we hope our process will be able to extend to others
tasked with assessing Al systems that impact us daily.
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