
ARTICLE IN PRESS
 Journal of
Visual Languages
 & ComputingJournal of Visual Languages and Computing

17 (2006) 187–202
1045-926X/$

doi:10.1016/j

�Correspo
E-mail a

burnett@eec
www.elsevier.com/locate/jvlc
Impact of high-intensity negotiated-style
interruptions on end-user debugging

T.J. Robertson, Joseph Lawrance�, Margaret Burnett

Oregon State University, Corvallis, OR, USA

Received 10 June 2004; received in revised form 17 August 2005; accepted 16 September 2005
Abstract

Extending our previous work [T. Robertson, S. Prabhakararao, M. Burnett, C. Cook, J. Ruthruff,

L. Beckwith, A. Phalgune, Impact of interruption style on end-user debugging, ACM Conference on

Human Factors in Computing Systems (2004)], we delve deeper into the question of which

interruption style best supports end-user debugging. Previously, we found no advantages of

immediate-style interruptions (which force the user to divert attention to the interruption at hand)

over negotiated-style interruptions (which notify users without actually preventing them from

working) in supporting end-user debugging. In this study, we altered our negotiated-style

interruptions [A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook, M. Durham,

G. Rothermel, Harnessing curiosity to increase correctness in end-user programming, Proceedings of

the CHI 2003 (2003), 305–312] (which were shown to help end-user debuggers learn about and use

debugging features of our programming language) such that they were more intense (larger, blinking,

and/or accompanied by text).

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Interruptions; End-user software engineering; Debugging; Surprise-Explain-Reward; Spreadsheets
1. Introduction

Unlike most research on end-user programming, which focuses on the creation of new
programs, our research team has been focusing on supporting aspects of software
- see front matter r 2005 Elsevier Ltd. All rights reserved.

.jvlc.2005.09.002

nding author. Tel.: +1541 760 9374.

ddresses: tjjuggle@yahoo.com (T.J. Robertson), lawrance@eecs.oregonstate.edu (J. Lawrance),

s.oregonstate.edu (M. Burnett).

www.elsevier.com/locate/jvlc

ARTICLE IN PRESS
T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202188
engineering for end-user programmers. Recently, our group and other researchers have
begun to focus on helping end-user programmers debug their programs. Most systems that
aim to help end-user debug programs have to notify the users of information relevant to
debugging (e.g., [1–4]). The mechanism for communicating such information can have a
significant impact on the systems’ effectiveness. We have been investigating the
appropriateness of various methods of communicating this information to users.
In [5], we presented our findings from a study comparing the effects on end users of two

styles of interruptions. We studied the effects on the end users in terms of their ability to
learn the debugging features of the software, their ability to fix bugs, and their ability to
accurately rate how successful they were at fixing bugs. The two debugging styles
compared were negotiated-style interruptions and immediate-style interruptions, according
to McFarlane’s [6] classification of interruptions. Negotiated-style interruptions are
interruptions that inform users of a pending message, but do not force them to
acknowledge the message immediately. For example, in our study, a red circle appearing
around possibly incorrect values in spreadsheet cells serves as a negotiated-style
interruption, thereby letting the user know that they should check that cell for errors.
Immediate-style interruptions are interruptions that must be acknowledged by the user. In
our study, we used modal pop-up ‘‘ok’’ boxes that displayed messages.
Our study in [5] concluded that negotiated-style interruptions were superior to

immediate-style interruptions in all aspects studied (participants’ learning of debugging
features, fixing bugs, and predicting their performance). Additionally, analysis of the
actions in which the different participants engaged suggests that the immediate-style
interruptions may have encouraged over-reliance on shallow debugging strategies that had
low short-term memory requirements.
This paper extends [5] in that we delve deeper into the question of how to interrupt end-user

programmers in order to help them better debug their programs. We have already shown that
negotiated-style interruptions were superior to immediate-style interruptions in every metric
we used. Now we wish to explore how the intensity of the negotiated-style interruptions affects
end-user programmers. In this paper, we present the results of a study in which we compare
the previous participants with a new group of participants. The new participants had much
more intense negotiated-style interruptions, i.e., the interruptions had more intense
characteristics such as being larger, blinking, and being accompanied by text. We will refer
to these more intense forms of negotiated-style interruptions as high-intensity negotiated-style
interruptions. In contrast, our original negotiated-style interruptions (such as the red circle
around cell values) will be referred to as low-intensity negotiated-style interruptions.
Because negotiated-style interruptions can range from barely noticeable to extremely

hard to ignore, we felt that it was not sufficient to simply endorse negotiated-style
interruptions (as in [5]). This study will, therefore, compare the higher intensity negotiated-
style interruptions with both the lower intensity negotiated-style interruptions and the
immediate-style interruptions. In doing so, we hope to paint a more complete picture of the
possible effects on users of negotiated-style interruptions.
For this study, our research question is as follows.
What are the effects on end-user programmers (in terms of learning debugging
features, debugging productivity, and ability to predict debugging performance) of
high-intensity negotiated-style interruptions as compared to both low-intensity
negotiated-style interruptions and immediate-style interruptions?

ARTICLE IN PRESS
T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202 189
2. Related work

Researchers have recently begun to study aspects of end-user programming beyond just
the programming stage; examples include [1,3,7,8].

McFarlane [6] created a classification for interruptions in which he described four styles
of interruptions, each with associated strengths and weaknesses. Negotiated interruptions

alert users of pending notifications, but do not force them to acknowledge the notification
immediately. Immediate interruptions prevent the user from continuing with their work
until the interruption is dealt with. Mediated interruptions present information when the
system decides it is an appropriate time to interrupt the user. Scheduled interruptions

present interruptions at fixed time intervals. In [5], our group found negotiated-style
interruptions to be better for assisting end-user debugging than immediate-style
interruptions in all metrics we measured.

It has been shown, however, that the properties of negotiated-style interruptions can
have significant effects on users. In a study of peripheral scrolling text displays [9], it was
found that displays that scrolled continuously were more distracting than displays that
only scrolled in new information when it was available. In addition, it was found that the
information remembered by users was the same in either case. Still, in a study of animated
displays, McCrickard et al. [10] found that animated displays can be used with minimal
negative impact. McCrickard et al. attributed this difference from [9] to the facts that
their primary task was less cognitively demanding, and their animations were slower than
in [9].

Berlyne [11] explains that the intensity variables (traits such as size and color) will affect
the amount of arousal (a psychological term which essentially refers to the amount of
mental stimulation a person is experiencing). Thus, our high-intensity negotiated-style
interruptions are likely to evoke high arousal in our participants. Furthermore, arousal
research [12] shows that people have an optimal level of arousal, and they will adjust their
activities to reach this optimal level. Exceeding this level can result in the user becoming
desperate to get rid of the arousal evoking stimuli. Thus, though high-intensity
interruptions are negotiated-style interruptions, it may be so hard to ignore them that
they pull the user from their work just as an immediate-style interruption would. If this is
the case, then we should expect their performance to suffer, just as the performance of the
participants with immediate-style interruptions suffered in [5].

It has been shown that waiting until the user has completed certain tasks is less
disruptive than interrupting them in the middle of the tasks [13]. Indeed, it was found that
in a data entry task, an immediate-style interruption on screen was more distracting than a
phone call or walk-in visitor (both of which can be considered negotiated-style
interruptions, because the user can continue working for a brief period of time until
they get to an appropriate stopping point) [14]. A potential problem with high-intensity
negotiated-style interruptions is that they may disrupt the user (cause them to reach overly
high arousal levels) at inopportune times.

On the other hand, new work [15] shows that software that receives data from a
relatively simple set of sensors can determine the best times to interrupt users. So intelligent
timing of such high-intensity interruptions may mitigate such a problem.

It is interesting to note that even low-intensity negotiated-style interruptions work on the
principle of raising arousal in order to evoke action from the user. This study is intended to
provide some data showing what the effects are at high-intensity levels.

ARTICLE IN PRESS
T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202190
3. Experiment

We conducted a controlled laboratory experiment with three groups of end-user
participants. For brevity, throughout this paper we will refer to our different groups of
participants as high-intensity, low-intensity, and immediate-style participants.

3.1. Design, procedures, and tasks

We replicated the experiment done in [5,16], except for the way in which interruptions
were presented. In this study, we modified the environment from [16] so that the
negotiated-style interruptions were more intense.
We reused data from [16] as our low-intensity group (16 participants) and data from [5]

as our immediate-style group (22 participants), and added in a new group of 15
participants for our high-intensity group. As in earlier studies, participants responded to
an invitation given to business majors who were at least sophomores and who had prior
spreadsheet experience. This study, however, occurred during Fall term, rather than during
summer term as the other two studies did.
Reusing prior groups and adding a new group was a necessary pragmatic design decision

but it is not ideal, as it opens the door to validity questions. To guard against differences in
our participants that might bias our results, we administered and analyzed a background
questionnaire. No difference was found in the participants’ confidence in their ability to
create a spreadsheet. There was also no difference found in the participants’ GPAs.
Additionally, these participants were all business majors, as were most participants in
previous studies. However, we uncovered two differences. First, the high-intensity
participants had less professional spreadsheet experience than the low-intensity
participants (Mann–Whitney p ¼ 0:0418) and less total spreadsheet experience than the
immediate-style participants (Mann–Whitney p ¼ 0:0370). Second, the high-intensity
participants tended to be of junior standing, whereas the other participants tended to have
senior standing (Mann–Whitney p ¼ 0:0023 for high-intensity vs. low-intensity partici-
pants and Mann–Whitney p ¼ 0:0295 for high-intensity vs. immediate-style participants).
To statistically account for potential impacts of these differences, we checked our results
by analyzing main and interaction effects of background data using ANOVA. In
particular, unless stated otherwise in Section 4, ANOVA showed no evidence to suggest
that results of interest differed based on background, nor did ANOVA show evidence to
suggest that the results of interest varied based upon the interaction of background data
and interruption style.
We gave the participants a 25-min tutorial introducing them to the spreadsheet language

Forms/3. After the tutorial, they were asked to debug two spreadsheets, Grades and
Weekly Pay, with time limits of 35 and 22min, respectively; see [16,17] for details of these
spreadsheets. The time limits were to ensure that all participants worked on both
spreadsheets, to avoid possible peer influences of some participants leaving early, and to
ensure consistent treatment of all participants. Roughly half of the participants did Grades
first and the other half did Weekly Pay first. This was done so as to evenly distribute
learning effects over the problems.
The participants were given problem descriptions that described what the spreadsheet

was to accomplish, and what individual cells were for. The problem description instructed
participants to ‘‘test the spreadsheet thoroughly to ensure that it does not contain errors

ARTICLE IN PRESS
T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202 191
and works according to the spreadsheet description. Also, if you encounter any errors in
the spreadsheet, fix them’’.

All user actions were recorded in electronic transcripts for later review. After each
problem, participants were given a questionnaire in which they rated how well they
thought they had debugged the spreadsheet. At the end of the study, every participant
answered questions that tested their understanding of the debugging feature that pertained
to our high-intensity interruptions.

3.2. Assertions and Surprise-Explain-Reward

This study was conducted using the research spreadsheet language Forms/3 [18]. Among
the features of Forms/3 are assertions on spreadsheet cells, which past empirical work has
shown that end users can use effectively [17,19]. Although spreadsheet users can debug and
find errors through means other than assertions, this study focuses on assertions in that we
intensified only those interruptions that related to assertions. Therefore, the results and
discussion focus on the interruptions’ impacts on participants’ responses to assertions.

Assertions in Forms/3 are represented as allowable ranges for a cells’ value. When a
cell’s value falls outside the allowable range, the assertion is violated; such a violation is
called a value violation. Forms/3 draws red circles (shown as gray circles in this paper)
around value violations. When a user enters an assertion on a cell, this user-entered

assertion is propagated through the dataflow chain of the spreadsheet, generating new
assertions called system-generated assertions, and these too are propagated.

Assertion propagation is done as follows. Just as traditional spreadsheets compute the
value for a cell based on its formula, Forms/3 computes an assertion for a cell based on its
formula. Forms/3 can compute an assertion for a cell if all the cells referenced in its
formula also have assertions. When a system-generated assertion for a cell conflicts with
the user-entered assertion for that cell, Forms/3 draws a red circle (shown as a gray circle
in this paper) around the two conflicting assertions; such a conflict is termed an assertion

conflict.
For example, in Fig. 1, when the user entered an assertion for input_temp, Forms/3

computed a system-generated assertion for output_temp. When the user subsequently
entered an assertion ‘‘0 to 100’’ for output_temp, Forms/3 circled the assertion conflict
since the user-entered assertion disagrees with the cell’s system-generated assertion. Forms/3
circled the values ‘‘200’’ and ‘‘33.3333’’ because they violate their cells’ assertions.

Besides assertions, participants had other debugging devices available. Forms/3 includes
a ‘‘testedness’’ indicator that measures testing progress for an entire spreadsheet as
participants check off cell values as correct. If a participant decided a cell’s value was
correct, the participant could check it off using the checkbox in the upper-right corner of
the cell (see the checkbox in Fig. 1’s output_temp cell). As participants checked off
previously untested values in a spreadsheet, the border colors of each checked-off cell
changed from red to a bluer hue to indicate increased testedness; also, the ‘‘testedness’’
indicator showed increased progress toward 100% testedness. If participants wanted help
conjuring up more test inputs, participants could push a Help-Me-Test button to
automatically generate values that had not yet been tested [19].

Surprise-Explain-Reward is a strategy we use to introduce users to features that may
benefit them, such as assertions. A vehicle for this strategy is the Help-Me-Test button
designed to help users test their spreadsheets. When a user clicks the Help-Me-Test button,

ARTICLE IN PRESS

Fig. 1. Assertion examples.

T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202192
Forms/3 not only generates values for input cells, but also creates a (usually incorrect)
‘‘guessed’’ assertion to place on these cells. These guessed assertions, termed HMT

assertions (because they are generated by Help-Me-Test), are intended to surprise the user
into becoming curious about assertions. They can satisfy their curiosity using tool-tips,
which explain the benefits and syntax of assertions. If the user accepts an HMT assertion
(either as guessed or after editing it), Forms/3 rewards the user with the benefits of
assertions by circling value violations or assertion conflicts that may occur, which helps
ensure that cell values, user-entered assertions, HMT assertions and system-generated
assertions are consistent. All surprises are communicated via interruptions.

3.3. High-intensity negotiated-style interruptions

In [16], the mechanisms for communicating surprises to the user came in the form of
low-intensity interruptions. Surprise-Explain-Reward with these low-intensity interrup-
tions was found to be beneficial to end-user programmers [16]. In [5], the low-intensity
interruptions were accompanied with immediate-style interruptions in the form of pop-up
‘‘ok’’ dialog boxes that contained the same text as the tool-tip.
In this study, we substituted high-intensity interruptions for the low-intensity

interruptions and removed the experimental immediate-style interruptions. Recall that
by intensity, we refer to properties of the interruption. Fig. 2 shows each property that was
manipulated.

4. Results

4.1. Learning results

In this section, we will examine the effects of high-intensity interruptions on users’
ability to learn the debugging features of the software. We examine this because much of
the research in end-user programming focuses on guiding users to find bugs [3,4]. This
necessarily involves teaching them about the debugging features of the software.

ARTICLE IN PRESS

Fig. 2. What the high-intensity interruptions look like (top row) vs. low-intensity interruptions (bottom row).

Event Low intensity High intensity

1 When the user shows interest

in assertions (by clicking the

button to make an assertion

visible, or deleting an HMT

assertion)

Stick figure next to guard Large stick figure and

explanation

2 When there are value

violations

Red circle around value Blinking red circle and cell

background

3 When Help-Me-Test generates

assertion(s)

Help icon with assertion range Large icon with blinking

background on assertion range

4 When there is an assertion

conflict

Red circle around assertion

icons

Blinking red circle around

enlarged icons

5 When system-generated

assertion(s) are created

Computer icon with assertion

range

Larger icon with temporarily

blinking background on

assertion range

T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202 193
We analyzed the participants’ post-session questionnaire scores for questions that test
participants’ understanding of assertions. In [5], it was found that immediate-style
participants answered fewer questions correctly, and furthermore, the questions that posed
a problem for them were ones that tested their understanding of advanced assertion
features (specifically propagation of assertions through dataflow chains). The deficit in
understanding advanced features is important, because those features are the ones that will
aid users by automatically identifying software errors.

To test for differences in comprehension between the high-intensity vs. low-intensity and
immediate-style participants, we formulated the following null hypotheses.

Hypothesis H1. There will be no difference in the high-intensity and low-intensity
participants’ comprehension of assertions.

Hypothesis H2. There will be no difference in the high-intensity and immediate-style
participants’ comprehension of assertions.

ARTICLE IN PRESS
T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202194
As discussed in Section 2, the high-intensity interruptions may affect users similar to the
immediate-style participants. If so, they should result in a lower comprehension of
assertion features (just as they did the immediate-style participants).
Indeed, the high-intensity participants did perform very similar to the immediate-style

participants. The high-intensity participants correctly answered 43% of assertion-related
questions, compared to 67% for the low-intensity participants, and 46% for the
immediate-style participants. Thus, we cannot reject Hypothesis H2 (Mann–Whitney
p ¼ 0:6933). Just as with the immediate-style participants, the high-intensity participants
were found to have significantly lower comprehension than the low-intensity participants
(Mann–Whitney p ¼ 0:0080). Therefore, we reject Hypothesis H1.
Observe from Fig. 3 and Table 1 that the high-intensity participants’ performance in

answering assertion-related questions mirrored that of the immediate-style participants. As
in [5], they had trouble understanding the advanced features of assertions, including
propagation of assertions and HMT assertions. The lack of knowledge about HMT
assertions is interesting, because in this study, the high-intensity participants had HMT
assertions that blinked (presumably increasing their awareness of them). As we will address
in Section 5, the blinking may have caused them to care less about learning the reason
behind assertions existence, and more about getting them to go away.

4.1.1. First assertion time

Surprise-Explain-Reward’s goal of teaching users how to use the debugging features of
software hinges on its ability to draw the users’ attention to those features. To evaluate the
Fig. 3. Participants’ scores on assertion-related comprehension questions.

Table 1

Categorizations of the comprehension questions

Question number Question content

q1, q2 Ability to recognize user-entered assertions and values being outside these

ranges (shown as red circles in the environment).

q5, q6 Comprehension of the computer-guessed HMT assertions.

q3, q4, q7 Comprehension of assertions’ propagation through the dataflow chains

formed by formulas, including conflicts between user-entered and system-

generated assertions that could arise.

ARTICLE IN PRESS

Table 2

Average time until users entered their first assertion on both tasks, as well as after they started Help-Me-Test for

the first time (on the first task)

Average time to first assertion 1st task 2nd task After Help-Me-Test (1st task)

High intensity 7:33 6:25 4:42

Low intensity 13:26 5:54 3:44

Immediate 7:10 5:01 4:04

Times after Help-Me-Test were calculated by considering only participants who used Help-Me-Test and then

assertions.

T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202 195
ability of high-intensity interruptions to draw users to use assertions, we examined the
average time that it took for participants to enter assertions under three different
conditions. The three conditions were: first task, second task, and after they started Help-
Me-Test for the first time (on the first task).

Hypothesis H3. The time when participants are first enticed to enter assertions will not
differ among interruption styles.

Times for the first and second tasks were calculated by taking the difference between the
time participants entered their first assertion and the time they made their first action. As
Table 2 shows, the immediate-style participants had the fastest time to enter an assertion
on the first task. On the first task, the immediate-style participants were significantly faster
at creating their first assertion than the low-intensity participants (Mann–Whitney
p ¼ 0:0288).1 The high-intensity participants appeared to perform just slightly slower than
the immediate-style participants, but they were not quite significantly faster than the low-
intensity participants at entering their first assertion on the first task (Mann–Whitney
p ¼ 0:0580).

On the first task, we also checked for differences between the first time participants used
Help-Me-Test and the first time they entered an assertion. This is because Help-Me-Test is
Surprise-Explain-Reward’s gateway to the interruptions that we manipulated in this study.
The delays between starting Help-Me-Test and entering their first assertion were not
significantly different for any of the participants (all Mann–Whitney p40:60).

On the second task, the time differences were not very pronounced, and there were no
significant differences in any participants’ times.

4.1.2. Conjuring up accurate assertions

As part of assessing how well participants learned how to use assertions, we examined
how accurate they were at creating correct assertions. This is an important metric, as the
goal of Surprise-Explain-Reward is to teach users how to properly use debugging features.
Additionally, creating correct assertions is crucial because when they propagate (regardless
of whether users understand how they propagate) through the dataflow chain, the red
circles and the propagated assertions will only be correct if the original was correct.
1There is another way of scoring the immediate-style participants’ first assertion time, and that is because they

had to hit an ‘‘experiment start’’ button, which could be considered to be the first action they took. If that scoring

method is used, 8:34 s is their start time (as was reported in [5]). The alternative scoring method for the immediate-

style subjects, however, is inconsistent with the way first assertion times were graded for the rest of the

participants.

ARTICLE IN PRESS
T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202196
Hypothesis H4. There will be no difference between the percentage of assertions created
correctly by high-intensity participants vs. the low-intensity and immediate-style
participants.

As can be seen in Table 3, the high-intensity participants appeared to be slightly less
accurate than the low-intensity participants and immediate-style participants (which have
approximately equivalent accuracy at creating assertions). However, none of the
participants were significantly different from each other in terms of assertion accuracy.
Thus, we cannot reject Hypothesis H4.

4.2. Debugging productivity

In [5], we found that the participants with low-intensity negotiated-style interruptions
were significantly more effective at fixing bugs than the immediate-style participants. The
significant difference was found to be on the second task (after the learning phase of the
first task in which there was no significant difference).
Again, we propose that the high-intensity interruptions will affect participants similar to

the way that immediate-style interruptions affected participants. Thus, we expect high-
intensity participants to perform roughly the same as immediate-style participants of [5].
To investigate, we use the following null hypotheses.

Hypothesis H5. There will be no difference in the high-intensity and low-intensity
participants’ debugging productivity on the first task.

Hypothesis H6. There will be no difference in the high-intensity and immediate-style
participants’ debugging productivity on the first task.

Hypothesis H7. There will be no difference in the high-intensity and low-intensity
participants’ debugging productivity on the second task.

Hypothesis H8. There will be no difference in the high-intensity and immediate-style
participants’ debugging productivity on the second task.

Table 4 shows the debugging productivity of all three groups of participants and the
Mann–Whitney p-values comparing the high-intensity participants with the other two
groups of participants.
On the second task, the high-intensity participants performed significantly worse than

the low-intensity participants (Mann–Whitney p ¼ 0:007) at fixing bugs. Two-way
ANOVA validated this result with a main effect for interruption-style, F2;47 ¼ 5:0350,
p ¼ 0:01. There was also an interaction effect, F 2;47 ¼ 7:1965, p ¼ 0:002, indicating that the
effect of interruption style also depends on total spreadsheet experience, but this
Table 3

Percentage of correct assertions that participants created and the percentage of cells with correct assertions

Percent of correct assertions

High intensity 0.877

Low intensity 0.918

Immediate 0.912

ARTICLE IN PRESS

Table 4

Productivity at fixing bugs for both tasks

Interruption style Total bugs fixed Bugs per minute—1st task Bugs per minute—2nd task

High intensity (n ¼ 15) 10.73 0.193 0.198

Low intensity (n ¼ 16) 13 0.202 (p ¼ 0:827) 0.263 (p ¼ 0:007)
Immediate (n ¼ 22) 11.18 0.205 (p ¼ 0:543) 0.206 (p ¼ 0:3989)a

p-values given are for low intensity and immediate style compared to high intensity with Mann–Whitney.
aThere was a mistake in [5], in that the 2nd task debugging performance for immediate-style participants was

reported as 0.163. This was incorrect; the actual number is 0.263, but it does not change the statistical significance

reported in that paper.

Table 5

Average number of each type of activity engaged in by the participants

Interruption style Edit formula Edit

assertion

Use Help-Me-

Test

Check off

value

Avg.

total

1st Task

High intensity 12.07 11.27 9.20 20.27 52.81

Low intensity 17.81 11.19 18.00 30.31 77.31

Immediate style 12.73 12.68 17.50 23.86 66.77

High intensity vs. low

intensity

(Mann–Whitney)

p ¼ 0:0546 p ¼ 0:2755

2nd Task

High intensity 12.73 16.80 17.40 26.93 73.86

Low intensity 16.13 10.75 10.94 23.69 61.51

Immediate style 10.00 10.91 16.45 27.82 65.18

High intensity vs. low

intensity

(Mann–Whitney)

p ¼ 0:4048 p ¼ 0:0040 p ¼ 0:0173

Significant differences (po0:05) between the low-intensity and high-intensity participants are emphasized in bold

(there were no interaction effects impacting any of these results).

T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202 197
interaction impacted only the high-intensity vs. immediate participants. Thus, we can
safely reject H7.

4.2.1. How participants spent their time

In [5], we attempted to understand immediate-style participants’ lower scores at fixing
bugs by examining the types of actions they chose to do. We found significant differences
in the actions they engaged in, and those differences suggested fundamental differences in
their debugging strategies.

As can be seen from Table 5, there were significant differences in activities engaged in by
high-intensity participants compared to low-intensity participants. On the second task, the
high-intensity participants edited significantly more assertions and used Help-Me-Test
significantly more than the low-intensity participants. This differs from the immediate-style

ARTICLE IN PRESS
T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202198
participants who did approximately the same number of assertion edits, but did
significantly less formula edits than the low-intensity participants.
The more frequent use of debugging features during the second task (after the majority

of learning effects have occurred) tells us that the high-intensity interruptions encou-
raged participants to make use of the debugging features. This is interesting because
we have shown that they were less knowledgeable of the features and less effective
at debugging compared to the low-intensity participants. We will address the more
frequent use of assertions in Section 5. As for the more frequent use of Help-Me-Test, it is
possible that an effect similar to what we believe occurred to the immediate-style
participants of [5] occurred. Namely, the high arousal state that the high-intensity
interruptions induced in the participants encouraged them to use tools such as Help-Me-
Test which do not require as much mental effort, or short-term memory load. Indeed, there
is psychological research showing that under high arousal, people’s short-term memory
can suffer [12].
4.3. Debugging self-assessment

With end-user programs being used for important calculations, it is important that these
programs not go into use prematurely. In practice, end-user programmers are notorious
for overestimating their ability to create correct software [20]. For this reason, we
considered the participants’ abilities to evaluate their accuracy at debugging spreadsheets.
After participants completed each problem, we administered a questionnaire that asked

them to rate how confident they were that they had corrected all the bugs in the
spreadsheet. Their choices ranged from 1 (‘‘not confident’’) to 5 (‘‘very confident’’). In [5],
it was seen that the low-intensity participants’ self-ratings were significant predictors of
actual performance at fixing bugs whereas the high-intensity participants’ scores were not.
We now investigate how well the high-intensity participants were able to judge their
debugging performance.

Hypothesis H9. The high-intensity participants’ self-ratings will not be significantly
correlated with their ability to fix bugs on a per problem basis.

Table 6 shows the regression analysis of the participants’ ability to rate how well they
corrected bugs for both problems. As the table shows the high-intensity participants’ self-
ratings were not significant predictors of their performance at fixing bugs (unlike the low-
intensity participants). Thus, we cannot reject Hypothesis H9.
5. Discussion—agitated users

Theories on arousal suggest that if a users’ arousal exceeds an optimum amount,
the user will resort to avoidance strategies, in which they attempt to make the stimuli
go away [12]. This is different from a more constructive state of curiosity, which
might compel them to explore the surprise and learn how it works [21]. Rather, in such an
overly aroused state, a user may be satisfied with any action that causes the arousing
stimuli to go away. It seems likely that some of our high-intensity participants were in just
such a state.

ARTICLE IN PRESS

Table 6

Linear regression p-values for number of bugs fixed vs. belief in how successful they were at fixing all bugs

Linear regression p-value

Grades

High intensity 0.966392

Low intensity 0.0410

Immediate style 0.1194

Weekly pay

High intensity 0.3383

Low intensity 0.0190

Immediate style 0.1711

T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202 199
As noted earlier, the high-intensity participants edited significantly more assertions in
the second task than other participants. Indeed, the assertion edits on the second task
reveals some interesting information about the high-intensity participants.

On the second task, all of the high-intensity participants except for two edited at least 13
assertions with a maximum of 25. By contrast, the low-intensity and immediate-style
participants had an average of slightly less than 11 assertion edits each. What’s remarkable
is that the two high-intensity participants who did not perform double-digit numbers of
assertion edits performed zero assertion edits (though they did use Help-Me-Test about as
frequently as the other participants, so they were exposed to blinking HMT assertions).
That is, the high-intensity participants appeared to be polarized in that they performed
either many assertion edits, or zero assertion edits.

It is trivial to see how participants performing large numbers of assertion edits are
compatible with the theory that they were experiencing an excess of arousal (and thus
avoidance behavior). They found that editing assertions was a way to make the blinking
HMT assertions go away. One of our high-intensity participants epitomized this avoidance
behavior. This participant deleted 21 (out of 22) HMT assertions to stop the blinking. This
means that 21 times the participant highlighted a blinking HMT assertion, deleted the text
(e.g., ‘‘3 to 14’’), and hit the ‘‘Apply’’ button. In doing so, this participant not only stopped
the blinking, but also threw away potentially valuable debugging information. This
participant clearly had little concept of the purpose of the assertions, but was very vigilant
about deleting them. Indeed, this participant only got the simplest two questions (out of
seven) correct on the post-session questionnaire. Thus, the participant seemed eager to
take any action (no matter how counterproductive) that made the blinking go away. As
this illustrates, high-intensity interruptions potentially have the serious drawback of
causing users to respond with counterproductive behaviors. Other participants also edited
assertions to stop the blinking.

But what about the participants with zero assertion edits? It was noticed during pilot tests
and during the administration of the experiment that some participants found a way to hide
all of the blinking HMT assertions by pressing a ‘‘Close HMT’’ button that appears whenever
Help-Me-Test is invoked. It is possible that some participants learned to press Help-Me-Test
to get new test values and then press the ‘‘Close HMT’’ button (which would leave the new
test values in place) to make all the blinking HMT assertions go away. Unfortunately,
pressing this button was not recorded in our electronic transcripts, so we have no way of
knowing whether the two participants with zero assertions used this strategy.

ARTICLE IN PRESS
T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202200
6. Threats to validity

Here we address potential threats to the validity of our results.
Threats to internal validity are unintended factors that may have influenced our results.

To provide a uniform treatment for participants, we used a tutorial script (though for the
immediate-style participants, the script was read by a non-native English speaker) and
written problem descriptions which were the same for all participants. We did have to
rearrange the spreadsheet layouts slightly for the high-intensity participants so that the
high-intensity interruption mechanisms (such as the larger icons) would fit onto the screen
without overlapping with other spreadsheet cells. While rearranging them, however, we
made every attempt to hold the relative locations of cells constant. On the Grades
spreadsheet, unfortunately, high-intensity participants had to scroll down to see all the
cells whereas the other participants did not. To ensure that our participants were uniform,
we sent out an email to business students asking for a specific set of characteristics that
were the same as for the earlier participants. Additionally, we asked the participants for
background information so that we could analyze the data for differences. A possible
source of bias was that the high-intensity study was done during fall term, whereas the
other studies were done during the summer. The difference between fall term and summer
school students may not be negligible (e.g., the summer school students may have been
older than their fall term counterparts). Indeed, as mentioned earlier, we did find
significant differences in seniority and participants’ prior experience creating spreadsheets.
Construct validity refers to the question of whether the results are based on appropriate

information. We used electronic transcripts to record user actions, so that there would be
no question of what participants did (though as mentioned in the discussion, the
transcripts did not record when participants pressed the ‘‘Close HMT’’ button). For most
of our statistical data, we wrote tools to automatically harvest data from the transcripts for
use in statistical comparisons. Additionally, we tended to use multiple choice questions
rather than free response questions in order to avoid ambiguity in participants’ responses.
Sometimes, however, participants would write in a free response answer because they did
not realize that the questions were multiple choice. This may have lead to some bias,
because we had to choose the closest multiple choice answer to what they wrote.
External validity relates to how well the results can be generalized. About 50% of the

participants in each group had at least some professional spreadsheet experience, and we
discovered that the significant differences in our data were primarily contributed by these
participants. This supports external validity because it implies that our results should be
applicable to spreadsheet developers in the business world. However, because our study
only lasted about 1.5 h, the results may not hold for long-term usage. Indeed, it has been
found [22] that when people train on a system with immediate-style interruptions, they are
better equipped to handle working with those immediate-style interruptions. Thus, it is
possible that the effects of high-intensity/immediate-style interruptions may become less
negative with time.

7. Conclusion

To further investigate the question of how interruption styles affect end-
user programmers’ abilities to effectively learn and use the debugging features
of a programming language, we have extended [5] to examine user performance when

ARTICLE IN PRESS
T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202 201
high-intensity negotiated-style interruptions are used. As expected, the high-intensity
interruptions seemed to affect the users the same way as did immediate-style interruptions.
However, we caution that these results should only be considered in light of the threats to
validity discussed above.

Specifically, when compared to users with low-intensity interruptions:
�
 High-intensity interruptions impaired the users’ ability to learn the debugging features
of the language.

�
 Participants with high-intensity interruptions were less effective at debugging.

�
 Participants with high-intensity interruptions were not effective at judging their ability

to debug.

Additionally, psychological theories, as well as user actions indicate that high-intensity
interruptions may push the user into an uncomfortable state of mental arousal. This highly
aroused mental state may have driven users to engage in any activity that would make the
interruptions go away regardless of whether those actions were productive in terms of
learning the debugging devices or improving the software.

What do these results tell the designers of end-user programming environments? Not
only is it important to use negotiated-style interruptions when attempting to assist end-user
programmers in learning and using debugging features, but the nature of the negotiated-
style interruptions must also be considered. In particular, negotiated-style interruptions
that are very intense should be avoided, as they can have similar effects on end users as
immediate-style interruptions.

Acknowledgment

Dr. Douglas Derryberry in Oregon State University’s Psychology Department provided
help in finding relevant psychological research.

References

[1] A.J. Ko, B.A. Myers, Development and evaluation of a model of programming errors, Proceedings of the

IEEE Symposium on Human-Centric Computing Languages and Environments (2003) 7–14.

[2] S. Mathan, K. Koedinger, Recasting the feedback debate: benefits of tutoring error detecting and correction

skill, International Conference on Artificial Intelligent Education (2003).

[3] R. Miller, B. Myers, Outlier finding: focusing user attention on possible errors, in: Proceedings of the User

Interface Software and Technology, ACM Press, New York, 2001, pp. 81–90.

[4] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Prabhakararao, M. Fisher II, M. Main, End-user software

visualizations for fault localization, Proceedings of the ACM Symposium on Software Visualization (2003)

123–132.

[5] T. Robertson, S. Prabhakararao, M. Burnett, C. Cook, J. Ruthruff, L. Beckwith, A. Phalgune, Impact of

interruption style on end-user debugging, ACM Conference on Human Factors in Computing Systems

(2004).

[6] D.C. McFarlane, Comparison of four primary methods for coordinating the interruption of people in

human–computer interaction, Human–Computer Interaction 17 (1) (2002) 63–139.

[7] A.J. Ko, B.A. Myers. Designing the whyline: a debugging interface for asking questions about program

behaviour, Proceedings of the CHI 2004 (2004) 151–158.

[8] E. Wagner, H. Lieberman. Supporting user hypotheses in problem diagnosis on the web and elsewhere, in:

Proceedings of the International Conference on Intelligent User Interfaces, Funchal, Madeira Island,

January 2004, pp. 30–37.

ARTICLE IN PRESS
T.J. Robertson et al. / Journal of Visual Languages and Computing 17 (2006) 187–202202
[9] P.P. Maglio, C.S. Campbell, Tradeoffs in displaying peripheral information, in: Proceedings of the CHI 2000

Conference on Human Factors in Computing Systems, ACM Press, New York, 2000, pp. 241–248.

[10] D.S. McCrickard, R. Catrambone, J.T. Stasko, Evaluating animation in the periphery as a mechanism for

maintaining awareness, in: Proceedings of the IFIP TC.13 Conference on Human–Computer Interaction,

Tokyo, Japan, July 2001, pp. 148–156.

[11] D.E. Berlyne, Conflict, Arousal, and Curiosity, McGraw-Hill, New York, 1960 (pp. 170–174).

[12] H.I. Day, Advances in Intrinsic Motivation and Aesthetics, Plenum, New York, 1981.

[13] M. Czerwinski, E. Cutrell, E. Horvitz, Instant messaging: effects of relevance and time, in: S. Turner,

P. Turner (Eds.), People and Computers XIV: Proceedings of the HCI 2000, vol. 2, British Computer Society,

2000, pp. 71–76.

[14] N.A. Storch, Does the User Interface Make Interruptions Disruptive? A Study of Interface Style and Form

of Interruption (Report UCRL-JC-108993), Lawrence Livermore National Laboratory, Springfield, 1992.

[15] S. Hudson, J. Fogarty, C. Atkeson, D. Avrahami, J. Forlizzi, S. Kiesler, J. Lee, J. Yang, Predicting human

interruptibility with sensors: a wizard of Oz feasibility study, in: Proceedings of the ACM Conference on

Human Factors in Computing Systems (CHI ’03), ACM Press, New York, 2003, pp. 257–264.

[16] A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook, M. Durham, G. Rothermel,

Harnessing curiosity to increase correctness in end-user programming, Proceedings of the CHI 2003 (2003)

305–312.

[17] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, C. Wallace, End-user software engineering with

assertions in the spreadsheet paradigm, in: Proceedings of the 25th International Conference on Software

Engineering, 2003, pp. 93–103.

[18] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reichwein, S. Yang, Forms/3: a first-order visual language

to explore the boundaries of the spreadsheet paradigm, Journal of Functional Programming 11 (2) (2001)

155–206.

[19] M. Fisher, M. Cao, G. Rothermel, C. Cook, M. Burnett, Automated test generation for spreadsheets,

in: Proceedings 24th International Conference on Software Engineering, 2002, pp. 141–151.

[20] R. Panko, What we know about spreadsheet errors, Journal of End User Computing (1998).

[21] G. Loewenstein, The psychology of curiosity: a review and reinterpretation, Psychological Bulletin 116 (1)

(1994) 75–98.

[22] S.M. Hess, M. Detweiler, Training to reduce the disruptive effects of interruptions, in: Proceedings of the

HFES 38th Annual Meeting, Nashville, TN, 1994, pp. 1173–1177.

	Impact of high-intensity negotiated-style interruptions on end-user debugging
	Introduction
	Related work
	Experiment
	Design, procedures, and tasks
	Assertions and Surprise-Explain-Reward
	High-intensity negotiated-style interruptions

	Results
	Learning results
	First assertion time
	Conjuring up accurate assertions

	Debugging productivity
	How participants spent their time

	Debugging self-assessment

	Discussion--agitated users
	Threats to validity
	Conclusion
	Acknowledgment
	References

