
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Journal of Visual Languages and Computing

Journal of Visual Languages and Computing 20 (2009) 16– 29
1045-92

doi:10.1

� Cor

E-m

metoye

burnett
journal homepage: www.elsevier.com/locate/jvlc
End-user strategy programming
Christoph Neumann �, Ronald A. Metoyer, Margaret Burnett

School of Electrical Engineering and Compurer Science, Oregon State University, Corvallis, OR, USA
a r t i c l e i n f o

Article history:

Received 20 September 2006

Received in revised form

20 March 2008

Accepted 28 April 2008

Keywords:

End-user programming

Natural programming

Visual programming

Computer animation

American football
6X/$ - see front matter & 2008 Published b

016/j.jvlc.2008.04.005

responding author. Tel.: +1541758 4624.

ail addresses: christoph@neumannhaus.com

r@eecs.oregonstate.edu (R.A. Metoyer),

@eecs.oregonstate.edu (M. Burnett).
a b s t r a c t

Rule-based programming systems can be fragile because they force the user to account for

all logical alternatives. If an unconsidered case does arise during execution, program

behavior falls through the cracks into unspecified behavior. We investigate rule-based,

end-user strategy programming by introducing our Interactive Football Playbook—

a domain specific, end-user programming environment to allow American football

coaches to create animated football scenarios by associating strategy information with

virtual football players. We address the problem of rule explosion through ‘‘rule bending’’

to support a minimalist, scaffolding-driven programming environment. Additionally, we

introduce visual language representations for logical and sequential ‘‘and’’ to mitigate

end-user confusion with the semantic meaning of these ‘‘and’’ constructs.

& 2008 Published by Elsevier Ltd.
1. Introduction

Computer generated content is richer than ever before,
taking advantage of the greater capabilities of modern
hardware. Scientific visualization experts can program
complex software which generates visual, interactive
content for users from data. Professional animators can
use general purpose animation tools to create a vast array
of content from instructional visualizations to life-like
scenes for motion pictures. As the complexity of content
increases, so do the challenges for content authors; the
divide between the content creator and the content
consumer grows.

Content consumers who want to bridge the gap and
create content of their own are faced with a significant
learning curve to get up to speed with readily available,
general purpose content authoring tools. Lacking pro-
gramming skills, an individual is limited to the domain-
agnostic environment of the chosen content authoring
y Elsevier Ltd.

(C. Neumann),
tool (spreadsheet, animation tool, etc.), so the individual
must learn a tool more abstract than the needed domain
without supportive features relevant to the domain. This
problem is compounded by the user’s need to create
content quickly and update it often. For example, an
animation created using an animation tool is expressed at
a low level—a set of concrete property changes over time
(e.g. x–y location, orientation, scale, etc.) for a particular
object being animated. Each of these points in time is
termed a ‘‘keyframe’’ and properties are interpolated
between keyframes in the ‘‘inbetween’’ frames. So a
change to one object in part of the animation may
result in large number of cascading changes to keyframes
for other objects to keep the animation looking physically
correct.

A simulation approach to animation allows a user to
create animated content at a more abstract level than
specifying concrete property changes over time. Rather
than specifying desired properties for specific objects at
points in time, the values of particular properties are
determined by the simulation engine. This approach is
used when there are many objects which are animated
simultaneously and may have complex interactions
between them. An example of such are particle systems
which are used to model water, fur, and smoke. An end

www.sciencedirect.com/science/journal/yjvlc
www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2008.04.005
mailto:christoph@neumannhaus.com
mailto:metoyer@eecs.oregonstate.edu
mailto:burnett@eecs.oregonstate.edu


ARTICLE IN PRESS

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–29 17
user could use extension mechanisms, such as macros
or plugins, to customize a keyframe-oriented, general
purpose animation environment to add domain-specific
abstractions to support simulation-oriented authoring.
However, developing macros and plugins often requires
the user to learn another programming language (likely a
scripting language) which represents information quite
differently than the content authoring environment.

The research community has turned to visual program-
ming languages to lower the barriers for end users to
create domain-specific, interactive, animated content.
Novices can use a visualization tool such as OpenDX [1]
(a visual dataflow language) to create their own inter-
active visualizations that would otherwise require a
strong background in a general purpose language such
as C and a graphics API such as OpenGL. Agentsheets [2,3]
allows end-user programmers to create domain-specific
visual abstractions and use them to create simulation
oriented, animated content. We believe rule-oriented
visual programming environments hold promise for
allowing end users to create computation-driven content
such as what is required for visualization or animation.

We explore end-user creation of rule-based, computa-
tion-driven, animated content through our Interactive
Football Playbook (IFP). The IFP is a simulation-driven,
strategy-oriented approach to allow coaches to program
animated football simulations. Fortunately, football coa-
ches rely on a fairly standard symbolic language for
specifying plays on static media such as paper or a
whiteboard. The IFP builds on this standardized symbolic
language and augments it with primitives and language
enhancements that allow the coaches to specify strategy
information for virtual players. Animations are then
rendered by executing the programmed scenario and
visualizing the parameters for the virtual players in the
scene (Fig. 1).

Our approach is novel in a number of ways. Firstly,
we contribute an approach for end-user strategy pro-
gramming. Our approach differs from prior end-user
programming work because we associate high-level,
Fig. 1. A screenshot of the Inter
strategy-oriented rules with a virtual agent rather than
using global, imperative rules to modify the state of the
agents. The coaches’ current use of static diagrams
involves formulating a strategy in the coach’s mind,
translating that strategy into a drawn diagram, and then
using the diagram as an aid to communicate the strategy
to the football players. Only simple parts of the overall
strategy are captured in the static diagram notation. Our
approach elevates the semantic level of the captured
information by allowing coaches to express more strategy
information in the IFP than in the static playbook
notation. For example, the coaches can use our notation
to specify distance and sequencing information whereas
in a playbook, that behavior is described using English.
This richer language allows the IFP to generate animated
simulations rather than simply representing static dia-
grams. Effectively, coaches author by using strategic
concepts to create rather than simply scripting out
animation actions. The outcome is more than a set of
fixed animations; it is a repertoire of executable scenarios
which exhibit specific strategies responding to the states
encountered in the scenarios.

Our second contribution is our novel approach to rule
bending. Like Repenning’s work [4,5], we address the issue
of rule explosion, but Repenning focuses on managing
discrete permutations of rules. We apply rule bending in a
continuous fashion.

We also contribute a notational device to express
parallel and sequential ‘‘and’’ within a visual program-
ming environment. Boolean expressions have been notor-
iously problematic for end users [6], so our device allows
the user to express sequential and parallel ‘‘and’’ without
the confusion that stems from using the overloaded
English word ‘‘and’’. Prior work focused on logical ‘‘and’’
used in conditions for selection, but not on ‘‘and’’ used
with regard to execution flow.

Finally, we contribute further evidence of the useful-
ness of the Natural Programming design process [7,8]. We
successfully used the Natural Programming design pro-
cess for creating the IFP and found the process to be
active Football Playbook.



ARTICLE IN PRESS

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–2918
helpful. The process helped shaped our design decisions
for the visual programming notation itself as well as the
characteristics of the programming environment.
2. Literature review

Our work on the IFP builds on contributions from
several research areas including computer graphics and
visual programming and ideas from the commercial
world. Our previously published research describes the
needs and challenges for coaches authoring animated
football content and our initial goals in trying to meet
those needs [9–11]. We also build upon our previous
explorations into interfaces for programming by demon-
stration [12,13]. Although many commercial products
exist for designing football plays, these products generally
assist the coach in automating administrative tasks and
building static plays [14] but do not allow coaches to
create animated football simulations.

We extend previous agent-oriented programming ap-
proaches by allowing end users to associate strategy
notation with agents via a domain specific visual program-
ming notation. The RoboCode project [15] allows the user
to associate strategy behavior with virtual agents in a 2D
simulated environment, but the strategy is defined by Java
code and the RoboCode tool is intended to be pedagogical.
Likewise, the Alice programming environment [16] allows
the user to associate behavior with a 3D agent, but Alice
focuses on using textual code to teach programming and
not on strategy programming for the virtual agents. We
take this idea of agent centered programming, focus it on
strategy, and make it accessible to end users.

End-user, visual programming environments that sup-
port simulation-driven animation are not new. Good
examples of such environments include HANDS [17] and
Agentsheets [2]. ‘‘Human-centered Advances for Novice
Development of Software’’ (HANDS) [17], though specifi-
cally designed for children, supports a variety of event-
oriented 2D simulations. For our design approach for the
IFP, we used the Natural Programming design process [7]
which Pane first outlined in his Ph.D. thesis [8] and
applied when designing HANDS. Our use of the process is
detailed in Section 3.

Agentsheets is an end-user, programming by example
system [2]. Users can develop their own simulations by
creating a grid of interacting ‘‘agents’’. This approach
forces all visual primitives to be constrained to a grid—

largely to support implicit spatial notation. Repenning
notes the importance of implicit spatial relationships to
increase the density of representation. We found the idea
of implicit spatial notation intriguing and this lead us to
identify spatial aspects of the coaches’ notation. We could
not use Agentsheets directly because it lacks continuous
representations for implicit spatial relationships, but we
found this concept helpful.

Additionally, Repenning developed the idea of ‘‘bend-
ing the rules’’ [4,5] within Agentsheets’ rule system.
Agentsheets employs graphical rewrite rules to define
agent behavior. Due to the demonstrational aspect of
graphical rewrite rules, an example must be given for
every circumstance the agent may encounter. This leads to
a rule explosion because all possibilities must be defined
explicitly. Repenning employed two higher-order con-
structs, rule bending and connectivity, to allow the user to
generalize a rule to symmetric and similar cases. In this
sense, the demonstrated rule is not being used solely as
demonstrated, but is being ‘‘bent’’ to work in new
situations. We extend the idea of rule bending into the
continuous domain and use bending to avoid the fragility
associated with rule-oriented approaches.

We use a physical model to generate animation from
constraints defined by the rules associated with the virtual
agents. Witkin and Kass were one of the first to apply
constraints to generate animation [18]. Their optimization-
driven approach uses a physical model of the object being
animated, keyframe positions, and optimization prefer-
ences to create a physically realistic animation which
passes through all of the keyframe positions. Myers et al.
bring constraint-driven animation to an end-user environ-
ment by developing a toolkit (Amulet) which allows the
user to declaratively specify animation effects [19]. Both of
these approaches satisfy hard constraints whereas we use
soft constraints which permit imperfect satisfaction to
support our rule bending approach.

There is some published research pertaining to visual
programming environments for the American football
domain. Casner examined the semantics of football play
diagrams to demonstrate how those diagrams could be
represented within his general purpose diagramming tool,
BOZ [20]. The semantic structure for our visual program-
ming language in the IFP is similar to the structure
identified by Casner. Also, Pickering’s COACH system
[21,22] is similar to the IFP. The primary exploration of
Pickering’s research was to develop an animated COACH
playbook with an efficient and intuitive interface for
entering rules. Pickering focused on a gestural interface
and created a set of distinguishable gestures that map to
rule assignments for players. Since an animation language
itself was not the subject of the research, no formal
treatment of the language was performed. Rather, a large
set of rules were developed to cover very specific
behaviors. Additionally, the COACH system only permits
a single rule to be assigned to a player. This approach
requires all behavior to be encapsulated in predefined
rules whereas the IFP focuses on creating a basic set of
primitive rules that can be combined to describe more
complex behavior. We seek to enable coaches to create
sophisticated behaviors that were not and could not be
specifically envisioned by us when creating the IFP (due to
the coaches’ stronger understanding of the domain). We
use a simplified point-mass physics model to simulate the
2D mechanics and interactions of the moving players.
Such models have been used for many purposes including
the modeling of pedestrian motion as well as modeling
flocks, herds, and schools [23,24]. Pickering also used a
similar model in COACH [21].

El-Nasr and Smith take a novel approach for creating
football scenarios by using the game editor for the
commercially available Warcraft III game [25]. Program-
ming in this environment requires that the user define
player behavior by associating triggers with a 3D



ARTICLE IN PRESS

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–29 19
character. A trigger is a list of conditions that when met,
cause specific actions to be run. These actions modify the
state of the game with the intent of more triggers being
fired—advancing the user-programmed simulation for-
ward in time. As the authors note, this approach requires
extensive modification to the game’s primitives since the
game editor is intended for a military strategy game as
opposed to a football scenario game. Though this allows
one to make a specific scenario with football-like
qualities, it does not advance our goal of allowing the
football coaches to create animated scenarios using
notation within the football domain.

3. Design process

We based our design approach on the Natural
Programming design process for programming systems
Fig. 2. An example of formations as drawn on a whiteboard during

classroom instruction.

Fig. 3. A portion of the paper prototype: the offensive player formation editing s

player by dragging it from the toolbox, around the field, or off the field.
[7,8]. The Natural Programming design process applies the
principles of user-centered design [26] to the design
of programming languages for the purpose of treating
usability as a first-class design objective to avoid sub-
ordinating usability in favor of historical convention,
designer preference, or theoretical elegance. The steps of
the Natural Programming design process are as follows:
(1) identify the target audience, (2) understand the
target audience’s language, techniques, and thinking for
problem solving, (3) design the new system, and (4)
evaluate the system.

From the outset, we decided to pursue a content
authoring tool for football coaches, so our target audience
has always been clear. We sought to understand the target
audience through observing classroom instruction, inter-
viewing the coaches, analyzing the static football play
notation and familiarizing ourselves with the strategies
used in football. (See Fig. 2 for an example of the coaches’
notation.) In contrast, Pane used empirical studies to further
understand the domain when designing HANDS [8].

We performed steps three and four twice: first with a
paper prototype and then with a working implementation.
We were highly motivated to find design problems early in
the design process. Our goal was to look for usability
problems at a high level before committing the design into
source code, so we applied a cognitive dimensions analysis
[27] on our paper prototype using the CDs Questionnaire
[28]. A portion of the early prototype can be seen in Fig. 3.
Our analysis is detailed in Dagit et al. [29].

Our rapid prototype evaluation process is similar to
Cloyd’s process [30]. Cloyd uses a paper prototype and a
cognitive walkthrough [31] to look for task-related
usability issues early in the design process. In a similar
vein, we use cognitive dimensions to look for structural
issues with the interface early in the design process.
creen for the Interactive Football Playbook. The user would manipulate a



ARTICLE IN PRESS

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–2920
After evaluating a paper prototype, we designed and
programmed a working prototype of the Interactive
Football Playbook (IFP). This was our second iteration of
step three (‘‘design the new system’’) of Pane’s four step
process [8]. Due to the scale of our implementation,
we were not able to implement all features that we
determined would aid the usability of the IFP, but we were
able to incorporate many design considerations brought to
light by our cognitive dimensions evaluation. Our im-
plementation of the IFP is detailed in the next sections and
our evaluation of the implemented version (step four) is
detailed in Section 7.
4. Visual language environment

A major design goal of the IFP is that it should enable
coaches to create animated content by programming
simulations using familiar notation. The notation within
the IFP is drawn from notation coaches already use in
their playbooks. This notation is augmented by additional
information to allow coaches to control the animated
player behavior over time. Language additions include
more player actions (‘‘avoid’’, ‘‘cover’’, ‘‘pursue’’), para-
meters for those actions (duration, distance, etc.) and
notation for sequencing player actions. We will refer to
synthetic animated agents as players. Since play notation
is declarative in nature (‘‘the wide receiver runs here’’ or
the ‘‘defensive tackle blocks him’’), we chose to imple-
ment a constraint-based, visual programming system. The
coach associates rules (constraints) with players and
spatial locations and those rules are unified over time to
modify the states of the players.

The player motion that results from the rules and
interaction with other players makes up the player’s
‘‘performance’’. The set of rules associated with a player
defines its ‘‘behavior’’. Our goal is to enable football
Fig. 4. The formation editor. A player is being drag
coaches to program player behaviors in such a way that
they can achieve a desired performance.

Defining player behavior in the IFP is not simply
scripting out players performances, but declaring what
the user would like the player to do. This will cause the
performances of players to respond as the players interact
with each other, whereas with a script of animation
commands, the players will not be affected by other
players. Using a simple animation script approach creates
a more rigid system where the coach is responsible for
changing other players’ behavior in response to the
changes to one player. With constraints, the intent is
expressed while allowing the unconstrained details of the
actual performance to change in response to how the
players interact with one another.

During our interviews with the coaches and our
classroom observations, we discovered that coaches
often use the same arrangement of players on the field
in a number of different instances, but what a player is
expected to do depends on a number of variables such as
the opposing team’s formation or the strategy for the
current play. We decided to allow the coaches to define
these ‘‘formations’’ once and then reuse them in a number
of different ‘‘scenarios’’ where each scenario expresses the
different desired variations. This design decision led to
the creation of a ‘‘formation editor’’ and ‘‘scenario editor’’.

The formation editor allows the user to physically
layout and name an arrangement of players (Fig. 4).
A formation consists of players and their initial layout
with respect to each other and the field. The players are
dragged onto, around, and off of the field using direct
manipulation. Grid lines and field markings may be
displayed to assist the user in properly placing the players.
Players snap to a grid to assist the user in aligning the
players. Multiple formations can be edited simultaneously
and switched between using tabs at the left of the
window.
ged onto the field from the icons on the left.



ARTICLE IN PRESS

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–29 21
After using the formation editor to define an offensive
and defensive formation, the user may combine them into
a scenario. Then, using the scenario editor (Fig. 5), the user
may associate rules with players and spatial locations and
execute the scenario to see the resulting animation. To
associate a rule with a player, a rule is selected from the
Fig. 5. The scenario editor. Rules are associated with the players as well a

Fig. 6. A fragment of a scenario. At the top left are the rules as specified by the
list of rules on the left. A mouse dragging gesture is used
to designate the starting and ending targets for the rule.

After laying out the players and specifying at least one
rule for one player, users may run the resulting simulation
producing animated motion. The user presses a play
button to start the simulation. The simulation executes
s spatial locations. The possible rule types are displayed on the left.

user and the resulting animation is seen from left to right, top to bottom.



ARTICLE IN PRESS

Table 1
Visual representations of the rules

Avoid Pursue

Block Route

Cover

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–2922
and the players animate around the 2D playing field
according to the defined rules. The user may pause or un-
pause the simulation, step it forward one time step, or
stop and reset it. When stopped, the user may assign more
rules to the players. See Fig. 6 for an example of the
animated motion.

5. Language definition

The Interactive Football Playbook language consists of
players (virtual agents) and rules (operations on those
agents) and produces state changes in the players over
time (player performance). An animation engine takes the
state changes and visualizes them in real time to create
the final animation. Each rule instance is associated with a
player, so there are no ‘‘global’’ imperative rules that are
applied via pattern matching (like the graphical rewrite
rules in Agentsheets). Players are not limited to a single
associated rule (like in COACH), but multiple rules may be
combined and sequenced (‘‘chained’’) to produce complex
behavior for a player. Additionally, some rules react to the
state of another player and therefore allow a player to
respond to the behavior of other players.

During execution, each rule instance associated with a
player produces a force vector for the player that ‘‘pushes’’
the player in the direction of the vector. Rules are unified
by combining these force vectors into a single movement
vector for the player. (The details of our implementation
are in Section 6.) We use the vector-based approach to
facilitate parallel execution of rules (Section 5.3) and rule
bending (Section 5.4).

5.1. Players

A player is the fundamental primitive of the language.
Every player has the following attributes: side (offense or
defense), position (such as quarterback (QB), defensive
end, etc.), location on the field, and maximum velocity.
During animation, the player’s velocity vector is also
stored as a property so that it can be used in rule
calculations.

Offensive players are depicted with circles and defen-
sive players are depicted with squares. The position of the
player is displayed on the player’s icon using a common
abbreviation for that position’s name. For example, in
Fig. 6, there is offensive player labeled ‘‘WR’’ for wide
receiver and defensive player labeled ‘‘CB’’ for cornerback.
The player’s location on the field is represented spatially
as part of a formation like in a standard play diagram
(Fig. 4). The user is responsible for creating these
formations. To aid the user, we have pre-loaded several
standard formations (well known layouts of players on
the field) into the IFP.

5.2. Rules

Presently, the language supports a minimal set of rules,
but they are sufficient to generate a large number of plays:
‘‘run a route’’, ‘‘block’’, ‘‘cover’’, ‘‘avoid’’, and ‘‘pursue’’.
A rule instance is associated with a player and may have a
number of parameters to tailor the effect of the rule. Rules
have pure pictographic representations (Table 1), so the
user-modifiable parameters of the rule are set through
direct manipulation.

5.2.1. Proactive rules

Proactive rules instruct a player to act, independent of
the state of other players in the scenario. Our language
currently only has one proactive rule, however, we will
discuss more possibilities in Section 7.

Route: Follow a path on the field.
Parameter: Drawn path.
The path is drawn freehand on the field. The open-

endedness of the representation creates a very flexible
notion of a route since the shape and interpretation of the
shape are left up to the user. For example, the entire
category of routes in COACH may be expressed using our
one route primitive, and new kinds of routes can be
created by the coaches as needed without modification of
the IFP. Multiple routes can be chained together to form a
piecewise route. Other rules may be chained to the end of
the route to set up a player’s location on the field before
dispatching the player to perform another behavior such
as pursuit or blocking. (Rule sequencing is discussed in
detail in Section 5.3.)

5.2.2. Reactive rules

Reactive rules instruct a player to act in response to
another player. This target player is an implied parameter
for any reactive rule, so it is not listed in the parameters
below.

Block: Impede an opponent’s progress across a direc-
tional boundary.

Parameters: Boundary angle, duration of the block.
The blocking player will mirror the movement of the

blocked player with respect to the blocking boundary and
will push the blocked player to prevent the player from
crossing the boundary. The angle of the boundary is
shown by the perpendicular line at the end of the blocking
rule. (See the running back (‘‘RB’’) in Fig. 5.) The angle is
fixed based on the initial orientation of the starting point
of the rule and the initial location of the opponent. If a
player is instructed to block and then do something else,
the duration of the block is 0.5 s, otherwise, the player will
block for the remainder of the scenario.

Cover: Maintain a position relative to another player.
Parameter: Target distance to maintain.
Rather than parametrize this rule with an inside or

outside bias, it could be combined with a leverage rule to



ARTICLE IN PRESS

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–29 23
more precisely specify the bias of the covering player. (See
discussion in Section 7.) Currently, the covering player
stays on the closest side (right or left) of the covered
player. This rule is generally applied to defensive players
whose job is to cover offensive receivers.

Avoid: Change direction to avoid contact with another
player.

Parameter: Minimum distance.
This rule can be used to specify that a player is to get

around another player without having to specify a specific
route that avoids the other player. This rule is generally
applied to wide receivers and often to defensive linemen.

Pursue: Run after another player.
Parameters: none.
Our current implementation uses a ‘‘reckless’’ pur-

suit–no consideration is given to staying in a particular
formation while pursuing. (See discussion in Section 7.) In
football, this rule is generally given to defensive linemen
whose main goal is to catch and tackle the offensive player
with the ball.
5.3. Sequencing and parallel execution

Our notation allows the user to specify rules which
execute consecutively or simultaneously—essentially re-
Fig. 7. Two examples of chaining.

Fig. 8. Examples of parallel execution: (A) the CB is instructed to pursue the WR

and (B) the WR is instructed to run a part of a route and then continue the rou
presenting parallel and sequential ‘‘and’’ without the
confusion that stems from the use of the English word
‘‘and’’. Pane et al. documented English speakers’ incon-
sistent use of ‘‘and’’, ‘‘or’’ and ‘‘not’’, noted the confusion
that stems from using those words in an end-user query
language, and developed a solution for expressing logical
‘‘and’’, ‘‘or’’ and ‘‘not’’ to mitigate confusion [32]. We
extend this work by contributing a notation for sequential
and parallel ‘‘and’’ in a visual environment.

Rules may be sequenced through what we term
‘‘chaining’’ as seen in Fig. 7. In the first case, the ‘‘RB’’ is
instructed to run a short route and then block the
linebacker (‘‘LB’’). In the second case, the LB is instructed
to run around the tight end (‘‘TE’’) and then pursue the
‘‘QB’’. Our representation for chaining is equivalent to how
programmers use ‘‘and’’ in a textual programming
language with short-circuit evaluation:

(task_x() AND task_y()) OR ...

In this example, task_xð Þ is performed and upon
returning a successful status indication of True,
task_y() is performed. If task_x() is not completed,
task_y() is not performed. Likewise, in Fig. 7, the RB will
not start pursuing the QB until the RB has completed the
route.

Though any rule may terminate a sequence, only the
‘‘route’’ and ‘‘block’’ rules may be used in the middle of a
sequence. This is indicated by the open square at the end
of the rule (see Table 1) to which the chained rule is
attached (see Fig. 7). In the current model, we have not
found a need for chaining rules onto the end of either the
‘‘cover’’, ‘‘avoid’’ or ‘‘pursue’’ rules since these behaviors
are intended to apply for the duration of the play once
they are invoked.

Rules to be executed in parallel are specified by placing
both rules at the same point in the chain of rules for a
player. In Fig. 8A, the wide receiver (‘‘WR’’) is instructed
to avoid a corner back (‘‘CB’’) while running a route. In
Fig. 8B, the WR runs part of the route and is then
instructed to avoid the LB while running the second leg of
the route. As described in Section 6, the performance of a
player is determined by the forces applied to the player
while the WR is instructed to avoid the CB while running the given route

te while avoiding the LB.



ARTICLE IN PRESS

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–2924
due to the rules associated with the player. Not all
combinations make sense. For example, running a route
and trying to block a player at the same time is unlikely,
however, the decision about what is desirable behavior is
left to the user.

Our approach leads to semantics in which the physical
representation of the rules correlate to the intent of the
rule—an example of ‘‘closeness of mapping’’ [27]. When
the user draws a freehand path for a route, that resulting
‘‘line’’ not only means the player should run a route, but
the player should run the route that passes through
specific locations on the path. Consequently, the player’s
location on field determines the point in the execution
chain—so in a sense, the player is a physical instruction
pointer that activates sets of rules when the player
physically arrives at them. This is similar to trigger-
oriented programming that is present in video games
where the player’s physical interaction with the environ-
ment will activate code associated with special locations
and actions.

An implication of this approach is that the user does
not directly control timing. Unlike keyframe animation
where the user may specify at which time the animated
object is at a particular coordinate, the time a player
arrives at a desired point in the field is determined by the
simulation. An advantage to this approach is that the user
can work at the level of rules and characters without being
burdened with specifying timing details. A disadvantage is
that indirect control over timing sometimes requires the
user to iteratively change parameters to work out the
desired timing appropriate for the scenario being con-
structed. We hope to include new parameters in the future
that would allow users to more directly control timing
when needed, such as speed and rule duration.

5.4. Rule bending

Early in our design, it became clear that if our
implementation searched for an optimal unification of
all the rules in effect on all players, the players would
appear to be able to predict the future. Rules like ‘‘block’’
and ‘‘avoid’’ act on the state of other players, so if a LB is
instructed to ‘‘block’’ a TE, the position of the LB is
determined, in part, by the position of the tight end. If the
unification process searched for an optimal solution,
the behavior of the LB would not be fully determined by
the current moment, but could be influenced by a future
behavior that would better satisfy the unification. The
behavior of the LB would be acting on knowledge of the
future—not realistic human behavior. So, we started using
an approach with a limited lookahead so players would
not act as if they could predict the future. Our approach is
a simulation-based approach which examines the current
state and applies a set of rules to produce the next state.
Unfortunately, our limited lookahead (a greedy algorithm)
quickly lead to situations where some of the rules
affecting a player could not be simultaneously satisfied,
and play execution would come to a grinding halt. We
ultimately took the approach of using soft constraints to
allow the unsatisfiable rules to be bent to allow execution
to move forward.
The intent of our soft-constraints approach to rule
unification is to allow the user to specify what the player
is to do without being concerned with guaranteeing the
player does exactly what is specified. The alternate approach
would be for the user to be required to add rules to mitigate
dead-ends at each point where the simulation encounters
them. These ad hoc corrections would have no semantic
value in expressing the users intent, but would be necessary
scaffolding to keep the scenario moving forward. Further-
more, the need for scaffolding rules leads to a rule explosion
which, in the language of cognitive dimensions [27],
increases viscosity. Having incidental rules diminishes
semantic value and visibility for key rules while increasing
accidental complexity.

Repenning noticed the effects of rule explosion with
graphical rewrite rules (GRRs) and developed the notion of
‘‘rule bending’’ within the Agentsheets system to address
the problem [4]. Agentsheets uses GRRs to allow end users
to program by example. Given a particular situation, the
user physically manipulates the agents in the situation
to demonstrate the next state, and a rule is inferred from
the user’s changes. The GRR approach forced the user to
demonstrate all possible situations an agent would en-
counter for the agent’s behavior to be well defined.

Repenning created two higher-order constructs, con-
nectivity and symmetry, to allow the user to declare new
sets of rules by ‘‘bending’’ previously defined GRRs. For
example, the user could define a ‘‘road’’ agent and bend
the road in all directions the road should be able to be laid
out. The road segment had an underlying connectivity
representation which defined how this segment related to
segments in adjacent cells, so when the road was bent, the
connection to adjacent cells would also be bent. A ‘‘car’’
agent could then be demonstrated to move from one road
segment to another and the inferred rules would act in
accordance to the declared symmetric cases and the
associated connectivity of those cases. Semantically,
moving from one segment changed from ‘‘the car moves
one cell to the right’’ to ‘‘the car moves along a connection
from one road segment to another despite the specific
direction the road is oriented’’. The demonstrated rule was
‘‘bent’’ to apply to many different circumstances than just
the circumstance the user demonstrated.

In the IFP, we bend the rules by allowing the scenario
to move forward even if some of the rules are not
satisfied—the IFP is bending the rules because the IFP is
not doing exactly what the user told the IFP to do. If the
user does not like details of the resulting animation, the
user can add more rules to fine tune the performance.
What is important is that the user is not forced to write
unwanted rules up-front just to get the scenario to run.
With rule bending, we avoid premature commitment and
unnecessary rule explosion. We implement our rule
bending by using vector-based unification as described
in Section 6.
6. From rules to execution

Fig. 9 depicts an overview of the Interactive Football
Playbook’s execution model. The model consists of an



ARTICLE IN PRESS

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–29 25
animation engine, a unification engine, a structured
representation of the rules, a structured representation
of the scene, and a view of the scene. The unification
engine examines the rules and sends a vector for each
player to the animation engine. The animation engine
enforces physical constraints and then updates the scene.
The view is then rendered from the contents of the scene.

6.1. Unification

Execution is performed by unifying the rules and
sending the results to the animation engine, as depicted in
Fig. 9. The animation engine operates on a single vector
per player (the player’s heading), so at each point in time,
the rules must be resolved to one vector. The system
examines the parameters of the rules as well as the state
of any relevant players and then generates a 2D floating
point vector representing the direction and magnitude the
player should move in response to the rule. A solution
to satisfy each rule is independently calculated, and a
player’s movement vector is the sum of all the solution
vectors for the rules associated with that player. Clamping
is applied when necessary to constrain the vector
magnitudes to maximum velocities.

An example of the vector summation can be seen in
Fig. 10. The rules input by the user are shown in gray. The
LB is directed to run a short route up the field and then
pursue the QB, and the QB is directed to follow the given
Fig. 10. An example of the summation of vectors for the QB. The scenario as con

rules). The current locations of the players are shown in black and represent the

shown for the QB. Each gray vector is the result of one rule. The black vector i

Fig. 9. Execution model of a scenario.
route while avoiding the LB. The gray vector pointing to
the left was generated by the route rule to keep the QB on
the user defined path. The gray vector pointing down to
the right was generated by the avoid rule to keep the QB
from being too close to the LB. The black vector is the
result of adding the two vectors together and it produces
motion that is not strictly along the path, nor strictly away
from the LB, but something in-between. Fig. 11 shows a
more complete sample of the animation shown in Fig. 10.

Numerically speaking, for a set of n rules associated
with a player, each rule produces a 2D vector, Vn, where

Vn ¼ ðx; yÞ

and ðx; yÞ are the 2D components of the vector. These
vectors are scaled and summed to produce the final
resulting vector, V, where

V ¼
Xn

i¼1

ðsnVnÞ

and sn is a scalar that will reduce the magnitude of the
vector only when the vector magnitude is greater than the
maximum velocity of the player. The value for sn is
computed as follows:

sn ¼ min 1;
Mn

jVnj

� �

where Mn is the maximum velocity for player n. Likewise,
the combined vector V is scaled in the same fashion if its
magnitude exceeds the maximum velocity of the player.

6.2. Animation

The animation engine is responsible for taking the
unified direction for each player, enforcing physical
constraints (such as collision), and then updating the
scene. After receiving a movement vector for each player,
the animation engine translates all the players and
performs a pairwise search to find collisions between
players. The locations of collided players are adjusted
structed by the user is shown in gray (both the original positions and the

execution of the scenario at the current point in time. Three vectors are

s the combined result of the gray vectors.



ARTICLE IN PRESS

Fig. 11. Approximate resultant vectors for each player over time. The user specified rules are seen in gray. Play proceeds left to right, top to bottom.

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–2926
using a 2D collision response. The response is weighted by
the magnitude of the collision component of each player
involved. For example, if two players collide, the player
with the weaker force in the collision will be pushed in
the direction opposite the force of the collision.

We use an approach similar to that used in Pickering’s
COACH [21,22]. Like Pickering, we use vectors to deter-
mine the intended direction of the player and a collision
response to prevent players from moving on top of each
other. Unlike Pickering, we allow more than one rule to be
associated with a player and the total effect for the player
is determined by the sum of the vectors.

7. Informal evaluation

We developed our working prototype until it had
sufficient features that we were able to construct scenarios
in which the players behaved in a way that looked
reasonable. (See Fig. 12 for an example.) When we were
satisfied with our prototype, we conducted demonstrations
and a series of interviews with the football coaches at
Oregon State University for an initial evaluation of the
prototype. This was our second iteration of step four
(‘‘evaluate the system’’) of the Natural Programming design
process [7]. The feedback we received from the coaches
during our interviews is detailed in the following sections.

7.1. User feedback

The coaches’ initial reaction was excitement. The
coaches quickly recruited other coaches to come see
the demo and comment on the tool. When asked about
the performance of the players in response to the rules,
they said that it looked good—for example the blocking
delay ‘‘felt about right’’ (about two counts). Interestingly,
they seemed more concerned with what could be
expressed with the language than the animation of the
players. They seemed to think the current animation was
satisfactory.

7.2. Identified language needs

After creating and viewing several scenarios, the coaches
began to identify and articulate what types of things they
would like to be able to do that were not possible with our
current language. We identified several new rules and
desired parametrizations of the existing rules.

Leverage: This rule would allow the coach to specify a
desired horizontal (width of the field) relative position
of a player with respect to an opponent. This rule could
be combined, for example, with the cover rule to further
specify on which side to cover the offensive player.

Reckless: This rule would be given to a defensive
lineman who is to pursue the football without any regard
to leverage. In other words, this is a default pursuit
behavior. A more controlled pursuit would be obtained by
combining ‘‘pursue’’ with the ‘‘leverage’’ rule. Although
the default behavior of our pursue rule is essentially
‘‘reckless’’, we must provide interface elements to distin-
guish between reckless pursuit and pursuit with leverage
constraints.

Wait: This rule would specify that a player is to remain
in its general start position. It would be parametrized by a
time or a condition. For example, wait for a count of 2 or
wait until a lineman is within two yards.

Throw: This rule would allow the coach to designate
when the ball is thrown and to which offensive player it is
directed.

Handoff: Similar to ‘‘throw’’, this rule would designate
when the ball should be handed off and to which offensive
player it should be handed—typically a RB.



ARTICLE IN PRESS

Fig. 12. A comparison with professionally created content. The top image is a snapshot of a football play sequence from Madden 2006 [33]. The middle

and bottom are snapshots of the execution and notation within the IFP. The author of the play intended to create a play similar to the Madden play.

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–29 27
Zone: This rule would involve the specification of areas
of the field that must be covered by a defensive player as
opposed to covering particular offensive players (man-to-
man coverage). Although this rule would be designed
around an area as opposed to a particular player, the
coaches expressed several ways in which a defender must
maintain the zone while also covering players within and
near that zone. This rule is clearly complex and will
require more discussion with the coaching staff.

Annotation: The coaches would like to annotate players
and plays with supporting textual information (a second-
ary notation). For example, the coach might want to label
a particular defensive position with the actual name and
tendencies of a player from an opposing team.

After our most recent interview, the coaches requested
an installation of the IFP software. The coaches felt the
tool had so much potential that they offered to help us
build up a more complete playbook. We will continue to
follow up with the coaches to collect feedback as they
continue to use the IFP.

8. Discussion and conclusion

We used the Natural Programming design process to
create a visual programming language for American
football coaches to author strategy-oriented, simulation-
driven scenarios for illustrating football player behavior.
The clear focus on the end user, football coaches, helped
shaped the language we designed and led us to design
opportunities that, in our opinion, we would have
otherwise missed. For example, to support coaches’
adoption and comprehension of the language, we adopted
constructs similar to the coaches’ playbook notation.
Starting with a pre-existing notation constrained our
notational choices but allowed us to explore spatially
oriented notation that is much different than the layout
agnostic notation of box and line VPLs.

Defining our notation in a spatial way allowed us to
work within a domain (location on the field) that was
natural for applying rule bending in a novel way through
vector unification. Since we consider deviations in player’s
locations on the field to not be as significant to the user as
forward progress in the simulation, we were able to bend
the rules with soft constraints. Ultimately, this benefits
the end user since not having hard constraints, forcing the
player to be at exact ðx; yÞ locations, reduces the fragility of
the system.

Furthermore, the Natural Programming design process
led us to a notation that has a close mapping between the
rule and the effect the rule will have on the location of the



ARTICLE IN PRESS

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–2928
player on the field. For example, from the user’s
perspective, the route rule is not manipulating an
abstraction, an ðx; yÞ coordinate, in order to move the
player through the playing field, but rather the drawn
path of the route rule is where the player will move.

The IFP’s language could benefit from some improve-
ment and further development. The interviews with the
football coaches identified the rule modifications listed in
Section 7.2. In addition to these modifications, the
discussions identified a need for specifying conditional
behavior and more user editable parameters of the current
rule set. Conditionals and parametrization play important
roles in expressiveness. For example, the receiver may run
one route if the corresponding defender is authored
to have inside leverage and run another route if the
corresponding defender is authored to take outside
leverage. Or, one player can be authored to overpower or
outrun another if players are parametrized by strength
and speed. Currently, not all of the parameters identified
in Section 5.2 can be modified directly by the user in the
IFP’s editing environment. Determining the visual editing
mechanism for these is part of our ongoing development.

Our current implementation avoided conditional rules
since we are focusing on basic authoring for a perfor-
mance rather than reusable, abstract behavior. With a
more expressive language, coaches could write program
fragments that could be applied in more than one scenario
so coaches would not be required to start from scratch for
each scenario. Future research is needed to determine
how to make the language more expressive while
minimizing the additional cognitive load by introducing
new abstractions.

The current IFP notation can lead to a fair amount of
visual noise with no means for filtering. We plan to
explore visualization techniques to help the coaches wade
through the visual clutter to understand why a player’s
performance is evolving as it is. To do so, coaches should
be provided with tools for filtering the view, obtaining
rapid feedback of the effect of changes, and understanding
the sequence of events that caused a particular perfor-
mance. Our goal is to allow coaches to focus on authoring
content, not on debugging the constraints. An example of
such tools for supporting authoring can be seen in the
work of Ko and Myers [34].

Allowing end users to create significant programs at a
high level remains a challenging goal for visual language
researchers. By focusing on the end user and working
within the constraints imposed by the needs of the end
user, we were able to find notation, that through rule
bending, is able to express a variety of American football
scenarios at a strategy level and can be executed to
produce an animation of the scenario. Through continued
interaction with the coaches, we hope to develop a richer
language for specifying player behavior, a more supportive
user interface, and visualization tools to aid the coaches in
understanding and refining player behavior.

References

[1] Opendx hhttp://www.opendx.org/i, Last accessed: September 20,

2006.
[2] A. Repenning, Agentsheets: a tool for building domain-oriented
dynamic, visual environments, Ph.D. Thesis, University of Colorado
at Boulder, January 3, 1993).

[3] Agentsheets Project hhttp://agentsheets.com/i. Last accessed:
September 20, 2006.

[4] A. Repenning, Bending the rules: steps toward semantically
enriched graphical rewrite rules, in: VL ’95: Proceedings of the
11th International IEEE Symposium on Visual Languages, Washington,
DC, USA, 1995, p. 226.

[5] A. Repenning, C. Perrone, Programming by example: programming
by analogous examples, Communications of the ACM 43 (3) (2000)
90–97.

[6] J.F. Pane, B.A. Myers, Improving user performance on boolean
queries, in: CHI ’00: CHI ’00 Extended Abstracts on Human Factors
in Computing Systems, ACM Press, The Hague, The Netherlands,
2000, pp. 269–270.

[7] B.A. Myers, J.F. Pane, A. Ko, Natural programming languages and
environments, Communications of the ACM 47 (9) (2004) 47–52.

[8] J.F. Pane, A programming system for children that is designed for
usability, Ph.D. Thesis, Carnegie Mellon University, Computer
Science Department, Pittsburgh, PA, CMU-CS-02-127, May 3, 2002.

[9] C. Neumann, End-user programming of 3D virtual agents, in: IEEE
Symposium on Visual Languages and Human Centric Computing,
2004, pp. 285–286.

[10] C. Neumann, Assisting end-users in understanding and program-
ming simulations, in: IEEE Symposium on Visual Languages and
Human Centric Computing, 2005, pp. 339–340.

[11] R. Metoyer, L. Xu, M. Srinivasan, A tangible interface for high-level
direction of multiple animated characters, in: Proceedings of
Graphics Interface, 2003.

[12] R.A. Metoyer, J.K. Hodgins, Reactive pedestrian path following from
examples, in: Proceedings of the 16th International Conference on
Computer Animation and Social Agents, IEEE Computer Society,
Washington, DC, USA, 2003, p. 149.

[13] R.A. Metoyer, J.K. Hodgins, Animating athletic motion planning by
example, in: Proceedings of Graphics Interface, 2000, pp. 61–68.

[14] Coach’s Office hhttp://coachsoffice.com/i, Last accessed: September
20, 2006.

[15] S. Li, Rock ‘em, sock ‘em robocode! hhttp://www-128.ibm.com/
developerworks/java/library/j-robocode/i, January 2002.

[16] S. Cooper, W. Dann, R. Pausch, Alice: a 3-D tool for introductory
programming concepts, in: Proceedings of the Fifth Annual CCSC
Northeastern Conference on The Journal of Computing in Small
Colleges. Consortium for Computing Sciences in Colleges, 2000,
pp. 107–116.

[17] J. Pane, B. Myers, L. Miller, Using HCI techniques to design a more
usable programming system, in: Proceedings of IEEE Symposia
on Human Centric Computing Languages and Environments, 2002,
pp. 198–206.

[18] A. Witkin, M. Kass, Spacetime constraints, in: SIGGRAPH ’88:
Proceedings of the 15th Annual Conference on Computer Graphics
and Interactive Techniques, ACM Press, New York, NY, USA, 1988,
pp. 159–168.

[19] B.A. Myers, R.C. Miller, R. McDaniel, A. Ferrency, Easily adding
animations to interfaces using constraints, in: UIST ’96: Proceedings
of the Ninth Annual ACM Symposium on User Interface Software
and Technology, ACM Press, New York, NY, USA, 1996, pp. 119–128.

[20] S. Casner, Building Customized Diagramming Languages, Plenum,
New York, 1990, pp. 71–95.

[21] J.M. Pickering, COACH, Master’s Thesis, Brown University, May 1999.
[22] J.M. Pickering, D. Bhuphaibool, J.J. LaViola Jr., N.S. Pollard, The

coach’s playbook, Technical Report CS-99-08, Department of
Computer Science, Brown University, May 1999.

[23] C.W. Reynolds, Flocks, herds and schools: A distributed behavioral
model, in: SIGGRAPH ’87: Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive Techniques,
ACM Press, New York, NY, USA, 1987, pp. 25–34.

[24] D. Helbing, P. Molnar, Social force model for pedestrian dynamics,
Physical Review 51 (5) (1995) 4282–4286.

[25] M.S. El-Nasr, B.K. Smith, Learning through game modding, Compu-
ters in Entertainment (CIE) 4 (1) (2006) 7.

[26] D.A. Norman, S.W. Draper (Eds.), User Centered System Design:
New Perspectives on Human–Computer Interaction, Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1986.

[27] T.R.G. Green, M. Petre, Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework, Journal of
Visual Languages & Computing 7 (2) (1996) 131–174.

[28] A. Blackwell, T. Green, A cognitive dimensions questionnaire
optimised for users, in: A. Blackwell, E. Bilotta (Eds.), Proceedings

http://www.opendx.org/
http://agentsheets.com/
http://coachsoffice.com/
http://www-128.ibm.com/developerworks/java/library/j-robocode/
http://www-128.ibm.com/developerworks/java/library/j-robocode/


ARTICLE IN PRESS

C. Neumann et al. / Journal of Visual Languages and Computing 20 (2009) 16–29 29
of the PPIG 12, 2000, pp. 137–152 hhttp://www.cl.cam.ac.uk/afb21/
CognitiveDimensions/CDquestionnaire.pdfi.

[29] J. Dagit, J. Lawrance, C. Neumann, M. Burnett, R. Metoyer, S. Adams,
Using cognitive dimensions: advice from the trenches, Journal of
Visual Languages & Computing 17 (4) (2006) 302–327.

[30] M.H. Cloyd, Designing user-centered web applications in web time,
IEEE Software 18 (1) (2001) 62–69.

[31] C. Wharton, J. Rieman, C. Lewis, P. Polson, The cognitive walk-
through method: a practitioner’s guide, Usability Inspection
Methods (1994) 105–140.
[32] J.F. Pane, B.A. Myers, Tabular and textual methods for selecting
objects from a group, in: VL ’00: Proceedings of the 2000 IEEE
International Symposium on Visual Languages (VL’00), IEEE
Computer Society, Washington, DC, USA, 2000, p. 157.

[33] Electronic Arts hhttp://www.easports.com/i, Last accessed: Septem-
ber 20, 2006.

[34] A.J. Ko, B.A. Myers, Designing the whyline: a debugging interface for
asking questions about program behavior, in: CHI ’04: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ACM Press, New York, NY, USA, 2004, pp. 151–158.

http://www.cl.cam.ac.uk/afb21/CognitiveDimensions/CDquestionnaire.pdf
http://www.cl.cam.ac.uk/afb21/CognitiveDimensions/CDquestionnaire.pdf
http://www.easports.com/

	End-user strategy programming
	Introduction
	Literature review
	Design process
	Visual language environment
	Language definition
	Players
	Rules
	Proactive rules
	Reactive rules

	Sequencing and parallel execution
	Rule bending

	From rules to execution
	Unification
	Animation

	Informal evaluation
	User feedback
	Identified language needs

	Discussion and conclusion
	References


