Journal of Visunal Languages and Computing (1997) 8, 563—599

D

Representation Design Benchmarks: A Design-Time Aid
for VPL Navigable Static Representations

SHERRY YANG*, MARGARET M. BURNETT*T,
Ervon DeKovent anp Mosuf: Zroor*

*Department of Computer Science, Oregon State University, Corvallis, OR 97331-3202 U.S. A.
ang(@cs.orst.edn, burnet{@cs.orst.edn
 Hewlett-Packard Labs, P.O. Box 10490, Palo Alts, CA 94303-0969 U.S. A.
dekoven@bpl.bp.com, loof@hpl.hp.com

Received 18 Augnst 1995, revised 10 March 1997, accepted 8 April 1997

A weakness of many interactive visual programming languages (VPLs) is their static
representations. Lack of an adequate static representation places a heavy cognitive
burden on a VPL’s programmers, because they must remember potentially long
dynamic sequences of screen displays in order to understand a previously written
program. However, although this problem is widely acknowledged, research on how to
design better static representations for interactive VPLs is still in its infancy.
Building upon the cognitive dimensions developed for programming languages by
cognitive psychologists Green and others, we have developed a set of concrete
benchmarks for VPL designers to use when designing new static representations. These
benchmarks provide design-time information that can be used to improve a VPL’s
static representation.
© 1997 Academic Press Limited

1. Introduction

Many visual programming languages (VPLs) are highly interactive. In such languages,
the process of creating a program is often incremental, with many opportunities for
interactive visual feedback along the way. We can place an object on the screen and
experiment with its effects on other objects, peer into the components of an object by
clicking on it, and watch its dynamic behavior simply by observing the changes that
occur on the screen as a snippet of the program executes. Such dynamic visual feedback
integrates support for rapid program construction with continuous debugging, a feature
that provides many advantages.

But after the program has been so constructed, the maintenance phase begins.
Someone—probably someone different from the original programmer—must under-
stand the previously written program to be able to modify it. Understanding a previously
written program involves tasks that are not as common in creating a new program,
because the maintenance process does not provide the contextual information that is

" This work was supported in part by Hewlett-Packard and by the National Science Foundation under
grant CCR-9308649 and an NSF Young Investigator Award.

1045-926X/97/050563+ 37 $25.00/0/v1970047 © 1997 Academic Press Limited

564 SHERRY YANG E7 AL.

inherent in the creation process. For example, the maintenance programmer will need to
learn the overall structure of the program, will need to search for and identify the
relevant section of the program without necessarily having seen it before, and will be
trying to figure out what other pieces of the program exist that might be affected by the
changes.

Although dynamic mechanisms can be very helpful during program creation and
debugging, tasks such as those listed in the previous paragraph beg for a static view of
the program—one that allows the programmer to study the logic and relationships
within the program without the heavy cognitive burden of remembering fine-grained
dynamic sequences of visual activity to obtain the needed information. Unfortunately,
however, lack of adequate static representations has long been a weakness of interactive
VPLs. Numerous research descriptions, taxonomies and analyses have counted static
representation as an important, largely unsolved, issue for many VPLs [1-3].

In this paper, we desctibe representation design benchmarks, a flexible set of measurement
procedures for VPL designers to use when designing new static representations for their
languages. The benchmarks focus exclusively on the static representation part of a VPL,
and provide a designer with a yardstick for measuring how well a particular design fulfills
design goals related to the static representation’s usefulness to programmers. The
benchmarks are currently being used at Oregon State University and at Hewlett-Packard
Laboratories to design new static representations for the languages Forms/3 [4] and
ICBE [5, 6].

The representation design benchmarks are a concrete application of several of the
cognitive dimensions for programming systems by researchers from the field of cognitive
psychology [7, 8]. The cognitive dimensions provide a foundation that is approptiate to
the cognitive issues of representing programs, and provide an increment in formality
over previous ad hoc methods. We based our measures on the particular cognitive
dimensions that could be applied to VPL static representations, and added three kinds
of refinements: we provided concrete ways of measuring several of the cognitive
dimensions a# design time, directly focusing them on the static representation part of a VPL.

2. Related work

Cognitive dimensions (CDs) [7, 8] are a set of terms describing the structure of
a programming language’s components as they relate to cognitive issues in program-
ming. The CDs, which are listed in Appendix A, provide a framework for assessing the
cognitive attributes of a programming system and for understanding the cognitive
benefits and costs of various features in a language or its environment. The dimensions
are intended to be used as high-level discussion tools to examine various aspects of
languages and environments, and were devised to be usable by language designers and
other non-psychologists.

CDs have been used by several researchers to evaluate the cognitive aspects of VPLs,
and to make broad comparisons of cognitive aspects of different VPLs. For example,
Green and Petre used CDs to contrast cognitive aspects of the commercial VPLs
Prograph [9] and LabVIEW [10] (see Appendix A for an excerpt). Modugno used CDs
to evaluate Pursuit, a research programming-by-demonstration VPL [11] and Yazdani
and Ford used CDs to evaluate PrologSpace, a general-purpose visual programming

REPRESENTATION DESIGN BENCHMARKS 565

system [12]. Hendry also used CDs to evaluate cognitive aspects of a modification to
spreadsheet formula languages [13].

CDs are one of the two design-time evaluation approaches that have been applied
to VPLs [14]. The other is the programming walkthrough [15, 16]. Programming
walkthroughs are conducted by a team that includes both the language’s designer and an
HCI expert (and may include others as well), and is intended for evaluation of a language
with respect to its suitability for writing new programs. Because of this emphasis, the
evaluation is done on a suite of sample programming problems in the context of the
language, as opposed to the language itself.

In the realm of software metrics, Glinert introduced a framework for formulating
software metrics to compare visual computing environments [17]. The attractiveness to
users of a visual computing environment is measured by attributes such as speed of
performance, debugging facilities and support for animation and multiple views. This
framework does not deal with the cognitive issues of program representation; it deals
only with the features that make an environment appealing to users.

The cognitive evaluative techniques that are not specific to VPL evaluation, such as
those directed toward graphically oriented software systems in general, are not of much
help in evaluating a VPL’s static representation. The main reason is that these techniques
focus on the uset’s interactions of a proposed (or implemented) user interface, not on
the presence of information that is useful to programmers in a representation. GOMS,
pattern analysis, heuristic evaluation and layout appropriateness are a few such methods.
For example, GOMS [18] is a detailed methodology for giving quantitative time
predictions for the user to perform activities defined as a detailed sequence of simple
tasks such as ‘delete a word’. Maximal repeating pattern analysis [19] detects patterns in
a user’s actions in a working application, with the intention of optimizing the user
interface to the most commonly performed actions. Heuristic evaluation (HE) [20, 21] is
a general evaluative technique that rates a user interface through a set of nine usability
principles, such as ‘use simple and natural dialogue’, ‘speak the user’s language’, and
‘minimize user memory load’. Layout appropriateness [22] is a metric aimed at assisting
designers in organizing widgets in user interfaces based on the frequency of different
sequences of actions users perform. The most important difference between these
evaluative techniques for graphically oriented software and representation design bench-
marks is that the former focus on a system’s support for fine-grained user interactions,
whereas the latter measure a representation’s ability to present useful information about
a program to programmers.

3. Terminology and Overview

The problem to which we intend representation design benchmarks to contribute is the
design of better VPL static representations. To focus directly on this problem, we
measure a VPL’s static representation in isolation from the rest of the VPL. We believe
that measuring only the static representation of a VPL—even if the rest of the VPL is
highly interactive and dynamic—is necessary if we are to get a clear view of the strengths
and weaknesses of that static representation. To do this, we must first be precise about
exactly what is to be measured by the benchmarks, namely the VPL’s navigable static
representation, which we define next.

566 SHERRY YANG E7 AL.

3.1. Navigable Static Representations

Informally, a VPL’s static representation is the appearance of a visual program ‘at rest’
such as on a screen snapshot. More formally, we will use the term static representation to
mean the set of every item of information about a program that can be displayed
simultaneously on an infinitely large piece of paper or screen.

Although the paper supply expands flexibly to accommodate the size of the program
being printed, a computer’s display screen does not. Thus, to account for the accessibil-
ity of static representations when viewed on a display screen, we must also consider
a VPL’s set of dynamic navigational devices (menus, scrollbars, etc.) that map a static
representation on the infinitely large screen to a finite physical screen. We will term this
set of such devices that take a static representation as input and map it to a subset of that
static representation as output the wavigational instrumentation. Finally, we define a lan-
guage’s navigable static representation as the tuple (5, NI), where § is the VPL’s static
representation and NI is the VPL’s navigational instrumentation.

For the remainder of this paper, the term ‘representation” when used alone should
be read as an abbreviation of the more cumbersome phrase ‘navigable static
representation’.

3.1.1. Applying the Definition: An Example

For example, consider a programming-by-demonstration VPL that displays a static story
board of the modifications that were demonstrated on the objects in the program. Also
suppose a static dataflow view of the program may be placed on the screen via
a pull-down menu selection, and removed similarly. Let us consider whether the
dataflow view is part of the VPL’s navigable static representation.

Following the definition of navigable static representations, this view is in the
navigable static representation if and only if it is in .§ or NI. Static views do not fit the
definition of dynamic navigation devices, so the static dataflow view is not in NI. A key
point in determining whether it (or any visible item of information) is in § lies in the
word ‘simultaneously’ in the definition of static representations.

In order to achieve simultaneousness, the on-screen lifetime of the item of informa-
tion must not be curtailed unless the programmer chooses to remove it. Returning to
our example, if the programmer cannot have the dataflow view on display at the same
time the other items of Sare displayed (on the infinite screen), then that view is not in S.
In other words, if adding the availability of a dataflow view decreases the story board
view’s availability, as would be the case if both are accessed by a browser tool allowing
only one view at a time, then neither view is an element of 5. However, if both views can
be displayed simultaneously and permanently, such as by multiple dynamic browser
tools that operate independently of one another, then both views are elements of §'and
therefore of the VPL’s navigable static representation.

3.1.2. Implications of the Definition

As this example demonstrates, there are elements of VPLs that are neither in § nor in
NI. Examples include animations, sound annotations and alternative views that cannot
remain indefinitely on the screen. Elements of a VPL that are not in S or NI are not

REPRESENTATION DESIGN BENCHMARKS 567

measured by the benchmarks. This is not to say that such elements are not valuable, but
only that they are outside the scope of the benchmarks, which were devised to help the
designer focus exclusively on just one portion of the VPL—the navigable static
representation.

Also note that the definition of a navigable static representation does not distinguish
between language-related versus environment-related aspects of a VPL. Thus, classify-
ing an item of information as language-related or environment-related does not help
determine whether it is in the navigable static representation. This is because representa-
tion design benchmarks focus on the availability and quality of information provided to
the programmer, not on which piece of the VPL is doing the providing,.

3.2. From Cognitive Dimensions to Representation Design Benchmarks

We selected CDs as the foundation for our approach because they were the most
conducive to our goal of providing high-level, design-time measures for a VPL designer
to use in designing the language’s navigable static representation. From this foundation,
we derived a set of benchmarks to obtain quantitative measurements of navigable static
representations as follows.

We started by selecting the CDs that could be applied to considering (1) the
characteristics (denoted ;) or (2) the presence (denoted) of the elements of a static
representation S. For example, the Closeness of Mapping CD pertains to characteristics
of static representation elements (§;), because it considers the characteristic of how
a programming language’s constructs compare to the entities in a particular domain. On
the other hand, the Progressive Evaluation CD refers to the presence of a program’s
answers in a programming environment; since these answers could also be shown
on a static view, this CD can be applied as a possible element (§,) of the static
representation.

We then narrowed the selected dimensions to focus them solely on navigable static
representations. In the above example, the Progressive Evaluation CD relates to the
dynamic display of answers, so it was narrowed to focus solely on inclusion of answers
in the navigable static representation.

For this narrowed set of CDs, we devised quantitative . and §, measures. In addition,
for each S, benchmark for 5, we devised a corresponding coarse-grained effort measure
of the number of steps the navigational instrumentation NI requires for the programmer
to display that element of information, i.e., to map S from the infinite screen to a finite
screen in such a way that the element is visible.

Finally, we conducted an empirical study to learn more about the suitability of the
benchmarks as a design aid. The benchmarks are summarized in Table 1. Sections 4 and
5 discuss the relationships of each of the benchmarks with their corresponding CDs and
how to apply them, and Section 6 describes the empirical study.

3.3. Use of the Representation Design Benchmarks:
Why, When, Who and How

The purpose of the representation design benchmarks is to provide a set of design-time
measures that VPL designers can use to measure and improve their design ideas for
navigable static representations in their languages. We wanted a design-time approach

SHERRY YANG E7 AL.

568

'S921A9P N JO
sfresop pue ‘swerdord o o suonsod pauTess-ouly IO JO S[rEIdp
‘siresop uonerado ‘s[reldp vrep :Aeme pajoemsqe 9q ued JEY) S[IE}
-9P JO $92JN0S FUIMO[[O] I} JO FIQWNU I = SIDINOSL)Y/ IIYM

{/890IN0SO) Y JUDIPEIS UONIENSQY X IOV
suoneloU £7BpPU0I3s $$200¢ 01 sdals JO JOqUUNU ISBI-ISTOM I, X ZNS
'suoneiouue [eoryderd onels
PUE ‘SJUSWIWIOD PUE SUONLIOUUE [ENIX9) 1oedwWr oNULWas ou Ppm
$90149p JnoAe[‘Surueu [euondo :D[E[TEAE 9E JeU) SIIIAIP [EUON
230U AFEPU0d9S FUIMO[[O] S} JO FOQUINT) = SIITAIPN]S IoUM SOJTADP JNUEWIS-UOU
{/SDTAIPNIS UONPIOU ATEPU0IIG X INS
"9p0d 92IN0S I
pIm symsar oy Aedsip 01 parmbar sdais jo roquunu osed-1sF0m YT, X oq
ON]/S9X ¢9PO2d 22IN0S o130[wesdord
wersord oy i Aeonels pakerdsip simnsor 29s 01 o[qrssod 11 sy PIa sInsax jo Aedsi(q X IR
A1e3oudd Jo suoneiuasordorsTiu JO $92IN0S JO JoqUINU YT, x 1
SISt 180
wexdord o [[e oxew 03 parmbazr sdais jo Joquunu 9sed-1sIOM YT, X 71
ON/$2X ¢ pamnd
-WO0d ST JUIWD Uk MO Moys Appdxe uoneiussardor oy soo(q o101 wexdoxd Jo AIqrsTA X 1
amionns weisord oy jo
Kerdsip oyp 01 93eS1arU 01 pasmboar sdois Jo Joquunu osed-1sI0M YT, X 7Sd
ON[/SOX ¢ 39139301 11 A[[edr3o] weissd
-oxd o jo swred ayp moy moys Appidxs uonelussardar oy so0(T argonns wesdord jo Amiqisip X 1Sd
vonewIoyur Louopuadop Jo
Kerdsip oup 01 93eS1arU 01 pasmbor sdois Jo Joquunu osed-1sI0M Y], X za
(woishs ur saUDd
-puadop jo sa01nog),/(pardrdop Aprordxo soruapuadop JO $921M0Q) sopuopuadop Jo AMIqIsTA X 1a
uoneIuasardox owrey
uvoneindwon) oy o 10adsy IN do ¢ ppduetepleats)

amseowr [N Surpuodsaizod v sey amsvow I your ¢ Jo sywowdp [eRUstod Jo souasaid oy

JO sainseows sajouap m,% §" JO S1U2WI9T9 JO SOMSII9IdEIEYD 9] JO SaInseal $3]j0Uap u,% ‘SyFewIyduaq Qmﬂwwﬂu GOﬁNuQwaHQDM Yyl Jo %MNEESW ‘T 9Iqe],

569

REPRESENTATION DESIGN BENCHMARKS

¢ punoi3yoeq asmborord

$,90Ud[pNe PopuAIUT o Wl {wsiueydow uopisodwod /uoperado
,0lqoy o oy ool {Iuowop uwopeiuasardory oy $90(,
‘wyoy [eroUad o jo suopsanb o3 ‘suopsonb paziwoir jo roquinu
ot = suonsonbgQy pue ‘SToMSUE SO, JO FOqUUNT o) = S, SIAQY d7oYM
suonsonbgy/ /s soAQy

93028 [HYS 9y Jurureaqo uaym 1uasard
u2032s [ea1s4yd oY) VO SUONDIISINUL INULWIS-UOU JO JOqUINU YT,

“u2030s [earsdyd € uo
paderdsip oq ued Je SIuOWR wWerdord JO JOqUINU WNWIXEW O[T,

“UONBWIOJUI PaJe[aF JO
Kerdsip oyp 01 21€81aRU 01 parmbor sdois jo Foquunu dsed-3sIOM AU,

ON/SOX ¢ 9P1s Aq oprs uopewsojur paje[as [fe Aedsip o1 o[qrssod 11 s|

S[re31ap a9yl Aeme 3oensqe o1 wm—wuw JO Joquinu 9sed-1SIOM YT,

punoIsyoeq s,00udIpNe
oyads € 01 $SaUISON)

91¥IS9 [BaF UI2JIS JO 98

UonEWIOJul
P21 JO ANIqISSO20Y

¢SV TSV ISV
RS

1H09S

an|

AR

(492

570 SHERRY YANG E7 AL.

instead of an approach to be used later in the lifecycle, because problems uncovered at
design time are easier to correct than those uncovered after a prototype has been built.
The quality of the problem discovery process can also be greater if done at design time.
For example, Winograd points out that in studying usability, a user is more likely to
provide substantive suggestions for a rough design than a polished prototype [23]. This
observation was borne out in our experiences, a point upon which we will elaborate later
in this paper.

Using the benchmarks is a three-step process. First, the designer determines
whether the aspect of the representation measured by a benchmark applies to
their VPL and if so, identifies the aspect of their language’s representation that
corresponds to the element or characteristic to be measured by the benchmark. (For
example, a designer of a VPL intended for only tiny applications would probably omit
the scalability benchmarks.) Second, the designer computes the measurements. Thitd,
the designer interprets this computation, i.e. he or she maps the measurement to
a subjective rating scale. We have provided a sample of such a mapping in Appendix B.
Since such a mapping necessarily reflects the goals and value judgments of a particular
language’s designers, we would expect different designers to use mappings that are
different than the sample.

4. The Benchmarks in Detail

In discussing the benchmarks, we will show how they can be applied to the emerging
designs of navigable static representations for Forms/3 [4] and ICBE [6]. Forms/3 is
a declarative, form-based VPL that aims to achieve the power of traditional program-
ming languages while maintaining the simplicity of the spreadsheet model. ICBE is
a set-oriented dataflow VPL with a strong emphasis on interoperations between
systems—such as database, spreadsheets, and graphics—aimed at end-user profes-
sionals.

4.1. The Understandability Benchmarks

This section describes benchmarks for elements that relate to understandability of
a program’s representation. Forms/3 will be used to provide examples of how designers
can use the benchmarks in this section. Programs in Forms/3 are defined via cells and
formulas on forms. Each cell has a formula, which defines its value. Figure 1 and its
detailed caption demonstrate the basic ideas of Forms/3. (A complete description of the
language is given by Burnett and Ambler [4]).

Because representation design benchmarks are intended to help in the process of
design, the Forms/3 benchmark examples are presented from the perspective of
Forms/3 designers during the design of an improved navigable static representation. We
will designate the representation used in the current implementation of Forms/3 as
Design 1 and the new design that we are creating with the help of the representation
design benchmarks as Design 2. All the Design 1 figures are screen shots from the
current implementation and all the figures of Design 2 as it emerges through use of the
benchmarks are, of course, hand-constructed sketches.

REPRESENTATION DESIGN BENCHMARKS 571

tem:Minute <= 15) then System:Minute
B oa (i€ (swte- Minute <= 45) then (30 - System:Ninuf
Sys inuts 0!

inutey if (System:Kinuts (e 30) then (System:Ninuts - 1S)
cloe (45 - System:Minute

hourvithFraction o)

3710

raction B

Color Table

6

Figure 1. This Forms/3 program maintains a running analog clock (1) such as those commonly found
ticking away on graphical workstations. The program requires only 11 new cells (which are on the form
entitled ‘clock’), some of which access built-in cells representing the internal clock and graphics support. To
program the face (2), the programmer fills out a built-in circle specification form (8) and refers to it in the
face formula. The pin (6) is specified the same way. The clock can be viewed as a local coordinate system
with the pin at the origin, divided into four quadrants. Thus, the minute hand (7) is simply a line drawn from
(0, 0) to the x- and y-positions (4) in the appropriate quadrant for the internal clock’s time in minutes (5).
The hour hand is calculated similarly. The clock’s formula (3) was generated by using direct manipulation to
demonstrate the arrangement of the face (2), hands (7) and pin (6) and taking a snapshot; the face, hands
and pin cells were later moved apart for clarity (see color plate 1)

4.1.1. Visibility of Dependencies

We will say there is a dependency between P1 and P2 to describe the fact that changing
some portion P1 of a program changes the values stored in or output reported by some
other portion P2. P1 and P2 can be of arbitrary granularity, from individual variables to
large sections of a program. Dependencies are the essence of common program-
ming/maintenance questions such as ‘What will be affected if P1 is changed?’ and
“What changes will affect P2?” Green and Petre noted hidden dependencies as a severe
source of difficulty in understanding programs in their discussion of the Hidden
Dependencies CD [8§].

Benchmarks D1 and D2 are based upon this CD. D1 is an §, benchmark that
measures whether the dependencies are explicitly depicted in the representation and D2

572 SHERRY YANG E7 AL.

120

|if (N <2 thenl |
Ans else (N * Factl:Ans)

Figure 2. Forms/3 Design 1 screen snapshot: Program to compute the factorial function with selected

formulas shown. Instances (gray shaded) inherit their model’s cells and formulas unless the programmer

explicitly provides a different formula for a cell on an instance, in which case the cell background is shown
in white, such as for Factl’s IV

is an NI benchmark that measures how easily this information can be accessed via the
supporting elements of NL

To compute benchmark D1, first the designer identifies the dependencies in the VPL
using the definition at the beginning of this section, subdividing them into groups based
on the sources of the dependencies. For example, a standard dataflow language might
have only one source of dependencies, namely the data’s flow, while a spreadsheet might
have two sources, a cell’s formula dependencies and macro-based effects on a cell.
Second, the designer multiplies the number of sources found by two to account for the
fact that every bidirectional source of dependency is actually two, unidirectional
dependency sources: one direction tells what will be affected by a portion of a program
P1, and the other tells what other portions P1 affects. For example, in a digraph of such
dependency information, one direction tells what nodes are reachable from P1, and the
other tells what nodes have paths to P1. Finally, the designer divides the number of
these unidirectional dependency sources that are explicitly represented by the total
number of unidirectional dependency sources in the VPL.

Like all §, benchmarks, D1 is measured under the assumption of an infinite screen
size. Bach §, benchmark’s accompanying NI benchmark then measures the cost of
mapping the elements from the infinite screen to a finite screen. For dependencies, the
NI benchmark is D2, which is simply a count of the number of steps needed to navigate
to the dependency information.

Detailed Example: Using the Dependencies Benchmarks as a Design Aid in Forms/ 3. Figure 2
shows how Design 1 representation scheme represents a recursive solution to the
factorial function. The cells’ formulas are shown in a text box at the bottom of the cell.

REPRESENTATION DESIGN BENCHMARKS 573

The prototypical formula ‘5’ has been specified for cell IV on form Fact so that the
programmer can receive concrete feedback. The solution involves two forms: one form
that computes the factorial of the desired /Vand another, similar form that computes the
factorial of NV — 1. The form Fact is termed the mode/ and Factl, which was copied from
Fact and then modified, is an znsfance of Fact.

The benchmarks were performed on Forms/3’s representation Design 1 and Design
2 by members of the Forms/3 design team. There are two bidirectional sources of
dependencies in the Forms/3 language itself: dependencies due to formulas and
dependencies due to copying a model form. For example, in the program in Figure 2, the
formula for N—1 on Fact defines a formula-based dependency between cell IV and cell
N—1 on Fact. Factl’s N—1 cell is dependent on Fact’s IN—1 by virtue of the fact that
Factl was copied from the model form Fact. (Since later changes to the model Fact
automatically propagate to the instances—except for formulas that the programmer has
explicitly changed on the instance—this is an important dependency in Forms/3.)
Multiplying these two bidirectional sources by two gives four unidirectional sources of
dependencies.

In Design 1, one direction of copy-based dependencies is shown in the name of
copied forms, which include the name of the model. This allows the programmer to
answer the quest ion ‘changes on what (model) form will change form Fact1?’ directly
from the name ‘Factl’. But the other direction is not shown; to answer the question ‘if
I change form Fact, what copies are there that will be changed?’, the programmer must
manually search for forms whose names start with ‘Fact’.

Regarding formula-based dependencies, Design 1 explicitly depicts only about half of
one direction: the direct dependencies only. For example, cell Ans at the upper right of
Figure 2 explicitly shows what cells directly affect the result of cell .4ns, but does not
explicitly show the indirect effects of Fact’s N—1 on Factl’s Axus; to find out, the
programmer would have to search through the program. It does not show the other
direction at all. For example, it does not explicitly show what cells are affected by the
result of Axus; once again, the programmer would have to search through the program to
find out. The Forms/3 design team was somewhat startled to see from this benchmark
that, despite their popularity, such spreadsheet-like formula displays are a rather
impoverished depiction of formula-based dependency information—even when all the
formulas are displayed together on the screen.

Dividing the total of the numerators by four (the number of unidirectional sources of
dependencies) gives 1.5/4 =0.375 for benchmark D1. D2 measures steps to navigate to
that information or to bring it all onto the physical display screen. To add a cell’s
formula to the display, a programmer pulls down a cell’s formula tab and selects it. This
is one step per cell, or a total of # steps to add all the cells’ formulas to the display, where
#n is the number of cells in the program.

Mapping these measurements to a subjective rating scale is done by individual
designers according to the design goals of their language. The Forms/3 designers used
the rating scale in Appendix B. They interpreted both D1 and D2 to be roughly ‘fair’
according to the scale.

For Design 2, the Forms/3 design team devised improvements to increase the
sources of dependencies shown (reflected by D1) and reduce the number of steps
needed to do so (reflected by D2). In Design 2, dependencies can be shown explicitly by
dataflow lines superimposed on forms and cells, as shown in Figure 3. The programmer

574 SHERRY YANG ET AL.

120

ans P (< 2) thenl
else (N *+ Factl:Ans

[Tvpos ol Daaiow]
Cell-Cell
[0 Model-cop

[Show Daaiow Tar]
@Highlightefi

[] show Hidden
Forms

Figure 3. The design changes represented by Forms/3’s Design 2 (shown via hand-drawn additions to the

current implementation). Dataflow lines are superimposed on the cells. The rightmost window is the control

panel. The programmer can select more than one cell at a time, but in this example, only cell N—1 was
selected. There is also an option on the control panel to show all the dependencies

can tailor the amount of information included in the display via the control panel. With
this design, D1 results in 4/4=1.0 when all possible information is displayed. D2 is the
number of steps to include the desired dataflow lines in the representation, including the
steps needed to interact with the control panel. It takes one step per cell to include the
desired dataflow lines if done cell-by-cell, or optionally the programmer can include the
lines for all cells in one step and then deselect cells one by one if desired. Thus, no more
than 7 /2 steps are required to include the dataflow lines for all desired cells, plus one to
two steps to interact with the control panel. This is roughly half the number of steps that
were needed by Design 1. (The steps required to also display the formulas for each cell
are not considered for Design 2 because dataflow lines alone are sufficient to show the
dependencies. However, formulas are needed to understand the program logic, as will
be discussed in the visibility of program logic section.)

Thus, representation Design 2 makes all the dependencies visible, but there is
a cost—Design 2 occupies more real estate and may add clutter. This is the first of many
such occurrences of this problem: if a designer adds features to the representation in
order to solve deficiencies exposed by one benchmark, he or she may generate new
problems that will be reflected in other benchmarks. Since this is characteristic of the
process of design, it is not surprising that it is present in the benchmarks. In particular,
many of these trade-offs are reflected in the scalability benchmarks, which will be
discussed in Section 4.2.

4.1.2. Visibility of Program Structure

We will use the term program structure to mean the relationships among all the modules of
a program, where a module is a collection of program elements, and the boundaries of

REPRESENTATION DESIGN BENCHMARKS 575

a module are determined in a language-specific manner. For example, in some languages
a module is a procedure, function or macro; in others it is a class or a method; and in
others it is a form or a storyboard. Examples of relationships among them include
caller/callee relationships, inheritance relationships and dataflow relationships.

From the programmer’s standpoint, a depiction of program structure answers
questions such as ‘What modules are there in this program?’ and ‘How do these
modules logically fit together?” Example depictions of program structure include call
graphs, inheritance trees and diagrams showing the flow of data among program
modules.

The benchmarks in this group are related to the Role Expressiveness CD. The Role
Expressiveness CD describes how easily a programmer can discern the purpose of
a particular piece of a program. Some of the devices that have been empirically shown to
help communicate role expressiveness ate use of commenting and other secondary
notations, meaningful identifiers and well-structured modules. The benchmarks in this
section consider the representation of the structural role of a portion of a program, and
the benchmarks in the section on secondary notation consider some other kinds of role
information. Benchmark PS1 shows the presence or absence of program structure
information in § and benchmark PS2 measures the number of steps required for
a programmer to navigate to this information.

Returning to the Forms/3 example, in Forms/3 a module is a form, and Design
1 does not explicitly show how the forms relate to one another. Nor does the dataflow
wiring added in the previous section explicitly show program structure, because it is too
fine-grained—the programmer still must search the diagram manually, looking for
sources and sinks, to detect the overall structure.

The Forms/3 design team decided to add an optional view of the hierarchical
dataflow between forms (Figure 4). This representation is based on the form collapsed
multi-graph, a variant of dataflow graphs that is useful for describing the relationships
among related forms [24]. The design team elected to use this vehicle to depict not only
program structure but also optional fine-grained details in the context of program
structure as follows. The default is for all forms except those containing sources and/or
sinks to be represented as collapsed icons, but the programmer can override this to
display details of the collapsed icons as well. The sources and sinks are the beginning and
the end of the dataflow path, which are circled in the figure. With this addition, Design
2’s PS1 benchmark is ‘yes’, and benchmark PS2 is 1 (it requires one step to add the
program view to the physical screen via a button on the main control panel).

4.1.3. Visibility of Program Logic

If the fine-grained logic of a program is included in a static representation, we will say
the program logic is wisible. If the visibility of the program logic is complete, the
representation includes a precise description of every computation in the program. This
benchmark group is one of the two benchmark groups derived from the Visibility and
Side-by-Side Ability CD, and measures visibility. (The other group of benchmarks based
on this CD focuses on side-by-side ability, and will be presented in the scalability
section.) Textual languages traditionally provide complete visibility of fine-grained
program logic in the (static) source code listing, but some VPLs have no static view of
this information. Without such a view, a programmet’s efforts to obtain this information

576 SHERRY YANG E7 AL.

else (N * Factl:Ans)

Figure 4. Forms/3 Design 2’s program structure view of the factorial function. The source and sink of the
dataflow are circled. Those forms that do not contain sources or sinks are shown as collapsed icons

through dynamic means can add considerably to the amount of work required to
program in the language. For example, one study of spreadsheet users found that
experienced users spent 42% of their time moving the cursor around, most of which was
to inspect cell formulas [25].

Benchmark L1 measures whether § provides visibility of the fine-grained program
logic and benchmark 1.2 measures the number of steps to navigate to it. Benchmark 1.3
is an 5. benchmark focusing on a problem of completeness of visibility common in
many VPLs that use concrete examples, namely accuracy in statically depicting the
generality of a program’s logic. For example, in a by-demonstration VPL, a programmer
might create a box expansion routine by demonstrating the desired logic on one
particular box. If the static representation § consists solely of before, during and after
pictures of that one particular box, it does not provide general enough information to
tell what the ‘after’ picture would be if a different-sized box were the input.

In Forms/3, the program logic is entirely specified by the cell formulas. However,
unlike spreadsheets, as many formulas as desired can be displayed on the screen
simultaneously with the cell values. In Design 1, a programmer can pull down a formula
tab and select the displayed formula to cause it to remain permanently on display; thus
L1 ="yes’. It takes one step per cell to include a formula, for a total of 7 steps to include
all the formulas for benchmark L.2.

REPRESENTATION DESIGN BENCHMARKS 577

if (N < 2) then 1
else (N * Factlans PWhere
Fact®N = this form's N-1

Figure 5. Forms/3 Design 2: The factorial function with legend. The bold and underlined form name Fact1

indicates that the concrete form name is just an example of a more general relationship. Clicking on this

name causes a legend to be attached to the formula display explaining the generalized relationship between
this form and the form represented by Factl

The Forms/3 design team decided to reduce the number of steps reflected by 1.2,
because for large programs, making # cells’ formulas visible would be burdensome.
Design 2 adds a ‘show all’ and a ‘hide all’ option to the NI to reduce the number of steps.
Since it takes one step to toggle the options on the control panel, this allows all formulas
to be displayed in only 1 step, and allows any subset of the program to be displayed in no
more than /2 steps. This change reduced the number of steps by half.

To compute L3, the designer counts the sources of misrepresentations of generality.
Forms/3’s Design 1 contains one such source of misrepresentation, namely the use of
concrete examples to identity form instances. For example, the formula of cell Ans on
form Fact appears as ‘if (V< 2) then 1 else (/N* Factl:Ans)’, which seems to refer to
the particular instance Factl (which computes 4 factorial); however, in actuality the
formula refers to a generic instance of Fact whose computations are defined relative to
the value of the /N—1 cell on the referring form. In Design 2, the Forms/3 design team
added a legend to provide complete information about the general relationship, as
shown in Figure 5. Programmers can include or exclude such legends from the
representation as desired.

4.1.4. Display of Results with Program Logic

This group of benchmarks measures whether it is possible and feasible to see a pro-
gram’s partial results displayed with the program source code. The benchmarks in this
group are derived from the Progressive Evaluation CD. The idea behind the original
CD, which related to the dynamics of interactive programming environments, was that
the ability to display fine-grained results (values of each variable, etc.) at frequent
intervals allows fine-grained testing while the program is being developed, which has
been shown to be important in debugging (see Green and Petre [8] for a discussion).
Our projection of this notion to navigable static representations is to consider whether
such results are included in . Including these results in a navigable static representation

578 SHERRY YANG E7 AL.

would allow the programmer to study a static display of this test data integrated with the
static display of the accompanying program logic.

Benchmark R1 measures whether or not it is possible to see the results displayed
statically with the program source code and benchmark R2 measures the number of
steps required to do so. In Forms/3’s Design 1, each partial program result (cell value) is
automatically displayed for each cell next to its formula (or by itself if the programmer
has not chosen to leave the formula on display). Thus R1 = ‘yes’ and, since no action is
needed to navigate to these partial results, R2=0. The Forms/3 design team considered
these Design 1 scores to be excellent, and made no changes in Design 2.

4.1.5. Secondary Notation: non-semantic devices

A VPL’s secondary notation is its collection of optional non-semantic devices that
a programmer can include in a program. Since it is a collection of non-semantic devices,
changing an instance of secondary notation, such as a textual comment, does not change
a program’s behavior. The benchmarks in this group are derived from the Secondary
Notations CD, and are also related to the Role Expressiveness CD discussed previously.
Petre argues that secondatry notation is crucial to the comprehensibility of graphical
notations [26]. For example, the use of secondary notations such as labeling, white space
and clustering allows clarifications and emphases of important information such as
structure and relationships.

This group of benchmarks focuses on the subset of a VPL’s secondary notational
devices that are static. Benchmark SN1 simply measures the presence of such notational
devices, and benchmark SN2 measures the number of steps required to navigate to
instances of them. We identified four non-semantic notational devices that might be
included in a VPL’s navigable static representation: (1) optional naming or labeling, i.e.
the non-required ability to attach a name or label to a portion of the program; (2) layout
of a program in ways that have no semantic impact; (3) textual annotations and
comments; and (4) static graphical means of documenting a program, such as the ability
to circle a particular portion of the program and draw an arrow pointing to it.
(Time-based annotations such as animations and sound are by definition not part of
a navigable static representation.) To compute benchmark SN1, the designer divides the
number of secondary notational devices available in the representation by four, the total
number of secondary notational devices listed above®.

Forms/3’s Design 1 includes all of these notational devices. Textual annotations and
graphical annotations can be anywhere on a form. Layout is also entirely flexible, which
allows non-semantic spatial grouping of related cells, etc. Cell names are optional but are
often provided by programmers, because use of meaningful names provides additional
non-semantic information. Thus SN1=4/4=1.0. The number of steps required to
navigate to the secondary notations, SN2, is zero because these secondary notations are
always automatically visible.

A Four is simply the number we were able to identify. Obviously, this is a case where experience in
practice may turn up additional kinds of secondary notations, in which case the divisor should be increased.
An alternative benchmark would have been to eliminate such a divisor by using a raw count instead of
a ratio, but our experiences indicated that this benchmark was more useful in alerting designers about
opportunities for improvements if it computed a ratio.

REPRESENTATION DESIGN BENCHMARKS 579

4.2. Scalability Benchmarks

In Burnett et al. [3], a VPL’s navigable static representation is counted as an important
aspect in the language’s overall scalability. By measuring the factors pertinent to the
representation’s ability to display large programs, the benchmarks in this section reflect
both the scalability of the representation itself and its influence on the VPL’s scalability
as a whole.

4.2.1. Abstraction Gradient

In the Abstraction Gradient CD, the term abstraction gradient was used to mean a VPL’s
amount of support for abstraction. When applied to VPL representations, to support
abstraction means to provide the ability to exclude selected collections of details from
the representation, replacing such a collection by a more abstract (less detailed)
depiction of that collection of details. Abstraction is a well-known device for scalability
in programming languages, because it usually reduces the number of logical details
a programmer must understand in order to understand a particular aspect of a program.
In addition to this benefit, support for abstraction in a navigable static representation
generally allows a larger fraction of a program to fit on the physical screen, since
replacing a collection of details by an abstract depiction almost always saves space. Thus,
there are both cognitive and spatial ways that a representation’s abstraction gradient is
tied to its scalability.

Benchmark AG1 measures the sources of details that can be abstracted away from
a representation and benchmark AG2 measures the number of steps required to do so.
As with the secondary notations benchmark SN1, AG1 is a ratio instead of a raw count,
to bring out opportunities for improvement. For the denominator, we identified four
sources of detail in a VPL that might be abstracted away in a representation: data,
operations, other fine-grained portions of the program and details of navigational
instrumentation devices (control panels, etc.)®. Thus, to calculate the benchmark AG1,
the designer divides the sources of detail that can be abstracted away in S by four.

Forms/3’s strong emphasis on abstraction was reflected in the Design 1 benchmark
scores for this group. In Design 1, forms can be collapsed into a name or into an icon.
Data structures can also be collapsed into graphical images. Cells can be made hidden,
which excludes them from the representation. Control panels that are part of the NI can
be collapsed into icons. Thus, the AG1 score is 4/4=1.0, reflecting the fact that in
Forms/3’s Design 1 there is no source of detail that cannot be abstracted away. This
score is also true of the Design 2 features that have been described in this paper.
Turning to AG2, the number of steps required to collapse a form or a control panel is 1.
The amount of detail shown for data structures and for hidden cells is automatically
controlled without any programmer interaction through automatic maintenance of the
information-hiding constraints of Forms/3 (0 steps). The programmer may override this
automatic behavior when desired at a cost of 1 step per form (#/¢ steps per program,
where ¢ is a constant representing the average number of cells on a form).

b Unlike SN1, the coverage of this list is complete. Recall that the definition of a navigable static
representation is the tuple (S, NI). The first two elements in the list cover two particular portions of § and
the third covers anything else in S. The fourth element in the list covers NI

580 SHERRY YANG E7 AL.

4.2.2. Accessibility of Related Information

From a problem-solving point of view, any two pieces of information in a program are
related if the programmer thinks they are. Based on the Visibility and Side-by-Side-
Ability CD, the benchmarks in this group measure a programmer’s ability to display
desired items side by side. Green and Petre argued that viewing related information side
by side is essential, because the absence of side-by-side viewing amounts to a psycho-
logical claim that every problem is solved independently of all other problems [8].
Benchmark RI1 measures whether it is possible to include all related information in
S and benchmark RI2 measures the number of steps to navigate to it.

In Forms/3’s Design 1, it is possible to view related cells side by side (RI1="‘yes’).
A cell can be dragged around on a form as needed; most of the navigational effort arises
in moving the needed forms near each other on the screen. One way is by double-
clicking on the form’s icon if it is visible, but this can involve manually moving things
around to look for the icon. A less ad hoc way is by scrolling to the form’s name in the
control panel’s list of forms and clicking the ‘display’ button, which brings the selected
form into a visible portion of the screen. Thus, counting the time to scroll through the
list, RI2 can approach the square of the number of forms in the program, or (#/ of
where # is the number of cells in the program and ¢ is the average number of cells per
form.

At first, it appeared that the dataflow lines that had been added to Design 2 might
altogether eliminate the need for programmers to do this searching. However, it soon
became apparent that dataflow lines do not eliminate the need to search if the lines are
long. The Forms/3 design team decided to make changes in both §'and NI for Design
2 to reduce the number of steps to search. The change in S'is to include the va/ue of all
referenced cells in a formula, as in Figure 6, so that if the programmer is merely
interested in how the values contribute to the new answer no searching at all is required.
The change in NI is that if the related cell is on a different form, clicking on the cell
reference in the formula will automatically bring the form up on the representation. This
navigation mechanism reduces the worst-case score of RI2 to one step per form, for
a maximum of #/¢ steps.

4.2.3. Use of Screen Real Estate

Screen real estate denotes the size of a physical display screen, and connotes the fact that
screen space is a limited and valuable resource. The benchmarks in this group are S;
benchmarks derived from the Diffuseness/Terseness CD, and have two purposes. First,

120

Ans JIf (] < 2) then 1

N
Else (B -« 2)
N Factl ans

Figure 6. Forms/3 Design 2: The values are displayed with the cells reference in the formula. This
eliminates the need for a programmer to search for these cells to find out their current values contributing to
the value of Ans

REPRESENTATION DESIGN BENCHMARKS 581

P

1
\ em\Ryed-b/

Figure 7. Non-semantic intersection examples that might be found in a VPL. (Left): Line crossings.
(Middle): Unrelated boxes overlapping, seeming to imply a logical grouping. (Right): A line’s label overlaps
an unrelated line

they provide measures of how much information a representation’s design can present
on a physical screen without obscuring the logic of the program. Second, they bring
important trade-offs to the fore, providing a critical counterbalance to the other
benchmarks by accounting for the screen real estate space costs of the design decisions.

As in other aspects of computer science, designing VPL representations involve
time/space trade-offs. However, for representation design, ‘time’ is the programmer’s
time to locate the needed information on the screen (or navigate to it if it is off the
screen) or to reconstruct it from memory if it cannot be displayed simultaneously with
other needed information. ‘Space’ is physical screen space. The tension between time
and space in this context is that, if the information is already on the screen, the
programmer’s time to locate it is reduced but more screen space is spent; on the other
hand, if the information is not displayed, less space is spent but the programmer must
expend more time to locate or reconstruct the information.

Time versus space is not the only trade-off to be considered in representation
design—there are also trade-offs between space versus quality of presentation. Purchase
and others pointed out the problem with representation of graphs with line crossings
[27]. One way quality of presentation deteriorates is if so much information is placed on
the screen, it will not fit unless there are non-semantic intersections. A non-semantic
intersection is a spatial connection or overlapping of screen items, in which the
intersection has no effect on the program’s behavior; see Figure 7.

Since the benchmarks in this group relate to physical screen space, the designer
should perform these benchmarks on a physical screen representative of those upon
which the language is expected to be run. For example, a language intended for low-end
Macintosh computers should be measured on the screen size most commonly in-
cluded/purchased with such systems. Benchmark SRE1 is the maximum number of
program elements that can be laid out on such a physical screen. (The term ‘program
element’ is defined by the designer in a manner specific to the VPL being measured.) In
performing the benchmark, the designer may assume any layout strategy, as long as it is
one that the VPL’s programmers might use. This benchmark allows the designer to
quantitatively compare how alternative design ideas increase or decrease screen space
utilization. Benchmark SRE2 is the number of non-semantic intersections that can be
counted on the layout chosen in performing benchmark SREI1, thereby providing
a measure of whether such a layout makes non-semantic intersections likely.

Returning to the Forms/3 example, the program elements are the cells. In performing
SRE1T and SRE2 for Design 1, the Forms/3 design team decided to measure Forms/3 in
a layout strategy in which SRE2 would be minimized, measuring the maximum number

582 SHERRY YANG E7 AL.

of cells that would fit on the screen in the absence of any non-semantic intersections.
Approximating with an average cell size and formula length, the maximum number of
cells that fit on the physical screen of a Unix-based graphical workstation or X-terminal
with no non-semantic intersections is 36 when all formulas (and values) are shown. This
is approximately 54% of the amount of source code that would be shown in a full-
length window (66 lines) for a textual language. However, the Forms/3 display also
includes all the intermediate values and final outputs, which in the textual language
would require adding a debugger window and a window to show the execution’s final
results. This score points out that a strength of this cell-based representation is that it is
a reasonably compact way to combine a presentation of source code, intermediate
results and final outputs, while still avoiding non-semantic intersections.

The space and non-semantic intersection costs of the design features in Design 2 are
compared with Design 1 individually and in combination in Table 2. Not surprisingly,
Design 1 allows more program elements to fit on the screen with fewer intersections
than Design 2, because Design 1 contains less information than Design 2. This is an
example of the trade-offs these benchmarks help bring out. The Forms/3 design team
decided that the space and intersection costs of Design 2 were acceptable because the
navigational instrumentation portion of Design 2 allows the programmer to be the judge
of these trade-offs, including or excluding from the screen as many of the Design 2
features as desired.

5. Benchmarks for Audience-Specific VPLs

Many VPLs are special-purpose languages designed to make limited kinds of program-
ming accessible to a particular audience. The target audience is composed of people who
do not want to use conventional programming languages for those kinds of program-
ming. We will use the term audience-specific 17PLs to describe such VPLs.

Examples of audience-specific VPLs range from coarse-grained VPLs for scientists
and engineers to use in visualizing their data, to embedded VPLs for end-users to use in
automating repetitive editing tasks. Although the benchmarks in the previous sections
apply to these VPLs, because the task at hand is indeed programming, a new issue not
covered by the benchmarks described so far arises: whether the audience-specific VPL’s
representation is well suited to its particular audience.

The benchmarks in this section focus on this issue. They were derived from the
Closeness of Mapping CD. This CD considers the question of whether programming in
a given language is similar to the way its audience might solve the same problem by hand
in the ‘real world’. This question has implications regarding how well the audience can
use the language. For example, Nardi points to a number of empirical studies indicating
that people consistently perform better at solving problems couched in familiar terms
[28]. In the realm of representation design, the issue narrows to whether the appearance of
a VPL’s elements is similar to the appearance of the corresponding elements in the
audience’s experience and background.

These benchmarks are unlike the benchmarks presented thus far in two ways. The
first difference is that they compare representation elements with the prerequisite
background expected of the VPL’s particular audience, and thus make sense only
for audience-specific VPLs. The second difference is that all the benchmarks in this

583

REPRESENTATION DESIGN BENCHMARKS

7T “Fmay 0/ 0f Aprewrxorddy

~

0 6T Fom23 o (7 Aprewrxorddy

poferdsip puo3ay | sey [[90 yoeo JI g

0 :puaSol 3od Jomoy | Arewnrxorddy

003 $nOTASXd 91 UT SOUT| MO[EIEp

OU) JO MDA PIUTEIS-ISFEOD JJOW © OFe SIUL ST,
0=<2<q) »

“so7 snoradxd ayy ur

SUOTDISINUT € I} JO 19s32dNS © 9Fe SUONDISINUT ISAY T,

62 FoM33 0/, Aprewrxoxddy

<7< 4 9¢ 28uerpd oN
o=y » 9¢ :98ueyd ON
0 9¢

(sormedy V) 7 USISo([
SE[QWIO] UI SUODI [[92 4 | USISI(]

SPUSI + [USISI(T

MO1A
amgonns werdord 4 | uSiso(T

(S[[e2 [re 303 st asonbas 1)

SOUI] MOeIEP 4+ [USISo(T

(s[/@2 pa109as

JO IPqUNU [[ewWs € JO¥ ST 1sanbax J1)
SOUI] MOeIEP 4 | USISo(T

SUIMOUS Se[NWIIO] [[e ‘] TSISI(T 95ty

(suonoosiorur=srun) Zi S (s[P2 = sarun) TS

suondo udrsa(y

391p0 yord Y sdigsuone[os IPY) Ul UBY) JOUIO SI[EIFEA 9SO} JO SON[EA dY) UO Punoq
3oddn ou st oxotp ySrens A[Fessaoou J0U 93¢ SAUT U} 20Ul ‘werdord yoed ur sopuIpUadop [ENIdE O3 PIM ATEA SIN[eA FOY) PUE ‘STUISSOID SUl
30 s1oqunu Juasa3dor s put ¢ v So[qerFEA O], 'SyFEWYIUIq 9soy3 Sururograd ur g yS poziwndo 1ey) sinoLe] pasn wedl ugrsop ¢ /SWI0,] 9 ‘TS
PUE [HYS U29M19(SJJO-9PEII XM I U\ “MOF IST[Y} UT JOYIAZ03 g USIsa(J JO [[e A[[eUl pue ‘M0F Puod3s 9y} UT JunIels g USISI(] JO 9rmIedJ
renprarpur yoes £q pajuowo[ddns | ulso(q ‘mox doy oy3 ur | USISO(] SMOUS I[qEI SIYT, 'SOFMILIJ ¢ USISI(] ¢/SWIO,] OU} JO SISO 91EISD [EF I} JO
vospredwoo sip ur Juaredde owoo9q $1500 99eds 91ISI-[BIF JIOUI SNSIIA WD JOWWEIS0Id oY) 9ALS 01 PIPPE SOINIEIJ U2IMII] SJJO-OPEL], T d[qeL,

584 SHERRY YANG E7 AL.

section are performed the same way—by answering the following question: Does the
{representation element) look like the {object/operation/composition mechanism)
in the intended audience’s prerequisite background?

5.1. How to Apply the Audience-Specific Benchmarks

The audience-specific benchmarks AS1, AS2 and AS3 are . benchmarks for the objects,
operations, and spatial composition mechanisms, respectively. Computing them is
a matter of answering the question from the previous paragraph for each element of the
representation.

To do this, the designer must first identify what is in the intended audience’s
prerequisite background; that is, what prerequisites this audience is expected to have
fulfilled. The prerequisites include whatever prior computer experience (if any) is
expected as well as other kinds of knowledge that might be expected. For example, the
intended audience of a macro-building VPL for graphical editing might be expected to
know not only about editing graphics on a computer, but also about everyday objects
and phenomena such as telephones, the flow of water through pipes and gravity.

The next step is to identify the objects and operations that are depicted in the
representation, along with the ways these objects and operations can be spatially
composed. (It is not of critical importance whether a particular element is classified as an
object, as an operation or as a composition mechanism, since all are measured the same
way; the division into the three groups is simply a way to help organize the identification
process.) Finally, for each object, operation and composition mechanism identified, the
designer notes whether its appearance looks like the corresponding item from the
audience’s prerequisite background.

Thus, to compute AS1, the designer asks, for each object in the representation, ‘Does
the {trepresentation element) look like the {object) in the intended audience’s prerequi-
site background?” and divides the total number of ‘yes” answers by the total number of
objects. AS2 and AS3 are computed the same way: AS2 for the operations and AS3 for
the spatial composition of objects and operations.

5.2. Detailed Example: Using the Audience-Specific Benchmarks
as a Design Aid in ICBE

For concrete examples of applying the audience-specific benchmarks, we will turn to the
audience-specific language ICBE (Interpretation and Customization By Example).
ICBE is a high-level, set-oriented dataflow® VPL for users who are comfortable with
computers but have no formal training in programming. Its goal is to allow such users to
create custom applications by combining GUI objects, built-in capabilities such as
database querying, plug-in objects such as virtual fax machines and telephones and
interoperations between other applications such as spreadsheets and graphics packages.
Programming in ICBE is a matter of simply connecting these objects using dataflow and
control-flow lines. See Figure 8 for an example. ICBE is a generalization of the kind of

©The term ‘set-oriented dataflow’ is meant to describe the fact that sets, rather than atomic values, flow
along dataflow paths.

REPRESENTATION DESIGN BENCHMARKS 585

Subject: Our conve|sation today

ltwas nice talking 10 you again, Enclosed belowis a
summary of our conpersation. Please give me a cal if you
have any questions|

Sincerely,

Tom

11

Figure 8. A salesperson is creating a program for a contact management application in ICBE. To make
a call, the salesperson will highlight a customer (2) in the “To Call’ list and press the ‘Retrieve’ button (3).
This will close the gate (1) and thereby complete the circuit, allowing the highlighted list entry to flow into
the table (10). This completes the selection criterion for the query, which results in retrieval of the
customer’s picture (9), profile (4), and contact data (7). If the salesperson pushes the ‘Call’ button (5), the
customer’s phone number will be dialed automatically by the Telephone plug-in object (8). If the
salesperson integrates a word processing document into the system (11), it can be faxed to the customer by
pushing the Fax’ button (6) (see color plate 2)

declarative by-example programming used in QBE and OBE [29, 30]; a more complete
description of ICBE can be found in Zloof and Krishnamurthy and Krishnamurthy and
Zloof [5, 6].

5.2.1. ICBE’s Intended Audience

To apply the audience-specific benchmarks to ICBE, the first step is to identify the
intended audience in a precise enough fashion that the intended audience’s prerequisite
background becomes clear. ICBE is intended to be used by ‘power users” users who are
already competent in general office applications, such as spreadsheets, HyperCard-like
systems and email. (However, there is no assumption that ICBE users can use the most
advanced capabilities of these systems; for example, ICBE users are not assumed to be
able to create spreadsheet macros, program textually in HyperTalk or write shell scripts

586 SHERRY YANG E7 AL.

(a) (b) (©) (d)

ATB GiD
1 1124
21208
3 5 1§15 i1.2%
4 10 i¢54 119%
5 : $85 13.0%
6 a4 1800 146%
7 865 $200 8,
8
9
10

Figure 9. (a) Some ICBE user interface primitives. (b) A grid represents a spreadsheet, which is an example
of an interoperation object. (c) Television and telephone plug-in objects. (d) Arrows represent ports: the red
(pointed) arrows are dataflow ports and the blue (rounded) arrows are control flow ports

or .BAT files.) Examples of such users might include salespeople, administrators and
accountants.

5.2.2. Benchmark AS1: The Objects

The objects in ICBE are user interface primitives, interoperation objects, external
plug-in objects and flow ports. Examples of each are shown in Figure 9. The user
interface primitives include objects such as text fields, buttons and lists. Interoperation
objects include such external applications as spreadsheets, databases and business
graphics packages, and are represented by grids, tables and graphs. External plug-in
objects, which appear as icons, are vendor-supplied objects that can be added to the
system to expand its capabilities. Instances of the fourth kind of object, flow ports, are
shown as arrows, and are attached to the other three kinds of objects to specify the
direction (incoming or outgoing) of the dataflow and control flow.

To perform the AS1 benchmark, the ICBE design team answered the following
questions (one for each object):

ObQ1: Do the user interface primitives look like the user interface objects in the
intended audience’s prerequisite background?

ObQ2: Do the representations of the interoperation objects (such as grids, tables and
graphs) look like the spreadsheets, databases and graphics packages in the
intended audience’s prerequisite background?

ObQ3: Do the plug-in objects’ icons look like the corresponding objects in the
intended audience’s prerequisite background?

ObQ4: Do the arrows look like incoming and outgoing information ports in the
intended audience’s prerequisite background?

The ICBE design team answered ‘yes’ for ObQ1, ObQ2 and ObQ3. The ‘yes’
answers to ObQ1 and ObQ2 are because the ICBE user interface primitives and
interoperation objects look like user interface objects and miniaturized windows from
common office packages, which are expected as part of these power users’ prerequisite

REPRESENTATION DESIGN BENCHMARKS 587

@) (b) © (d) ()

Budget
[1
> 1609560

Figure 10. Some ICBE operations. (a) Dataflow. (b) Event-based control flow, initiated by pressing the

Retrieve button. Control flow for transfer of control is also shown via these blue lines. (c) An open gate

interrupts dataflow. (d) A trigger causes the change button to be ‘pushed’ automatically. (¢) A query slider is
a data selection operator

backgrounds. ObQ3’s ‘yes’ is actually ‘potentially yes’, since the answer depends on the
external vendors’ icon design skills.

The ICBE design team answered ‘no’ for ObQ4. Although arrows are common
indicators of directionality, there is nothing in ICBE users’ prerequisite backgrounds to
suggest that arrows would look like information exchange ports to ICBE’s power users.
(However, this representation might look like information exchange ports to a different
audience, such as professional programmers, because it is commonly seen in CASE
tools and component-building software aimed at professional programmers.) Addition-
ally, the two styles of arrows, pointed and rounded, do not look particularly like data
directionality as versus control directionality.

The total AS1 score is thus 3/4=10.75; that is, 3/4 of the objects in the representation
look like objects from the intended audience’s prerequisite background. This high score
reflects the emphasis placed by the ICBE designers on gearing their language directly to
this audience. The ICBE designers rated this score well, but they also decided as a result
of the benchmark to study their potential audience’s ability to understand the two
different kinds of portts, to see if a different representation is needed for them.

5.2.3. Benchmark AS2: The Operations

The six operations in ICBE are dataflow, event-based control flow, transfer of control
(call or goto constructs), interruption of dataflow, event triggers and selection over a list
or a database. See Figure 10. Dataflow (shown via red lines) is the directed flow of data
through the objects in the system. Event-based control flow (shown via blue lines)
allows the occurrences of events, such as button clicks or key presses, to generate
program activity. The call and goto constructs transfer control to another part of the
program, and as a variant of control flow are also shown via blue lines. Dataflow can be
interrupted if there is an open gate in the path. Triggers in ICBE, depicted with gun
icons, are used to generate events internally, usually because a particular data condition
has arisen. (For instance, a trigger can be attached to a database of customer accounts to
monitor delinquent customer accounts. When such a customer is encountered, a trigger
can cause a warning dialog to appear.) Query sliders and decision tables allow specifica-
tion of the data-selection criteria over a list or a database.

The AS2 benchmark for these six operations requires answering the following six
questions:

OpQ1: Does the (red) line look like a conduit for the flow of data in the intended
audience’s prerequisite background?

588 SHERRY YANG E7 AL.

OpQ2: Does the (blue) line look like a conduit for event-based control in the intended
audience’s prerequisite background?

OpQ3: Does the (blue) line look like a conduit for the transfer of control in the
intended audience’s prerequisite background?

OpQ4: Do the open gates look like a way to interrupt dataflow in the intended
audience’s prerequisite background?

OpQ5: Does the gun trigger look like a mechanism for triggering events in the intended
audience’s prerequisite background?

OpQ06: Do the decision tables and query sliders look like mechanisms for data selection
over a database or a list in the intended audience’s prerequisite background?

The ICBE designers answered ‘yes’ for OpQ1, because the red lines, which are
connected to the arrow objects discussed eatlier, look similar to widely understood
conduits for directed flow such as water pipes or map representations of one-way
streets. They also answered ‘yes’ for OpQ2, because the blue lines look and behave the
same way as electrical wiresd, Regarding OpQ3, the designers noted that using the same
blue line to indicate transfer of control overloads this device in the representation.
However, this does not impact AS2’s score; rather it would be reflected in the score for
Benchmark L1 (Visibility of Program Logic). For AS2’s OpQ3, while lines for transfer-
ring control may be familiar to professional programmers and others who have seen
flowcharts, they do not resemble anything from prerequisite backgrounds of ICBE’s
intended audience, and earned a ‘no’ answer. Interrupting potential flow by opening
a gate to disconnect the lines looks like a mechanism that would interrupt the flow of
water ot traffic, and earned a ‘yes’ for OpQ4. The ICBE designers gave questions OpQ5
and OpQ6 ‘no’s because, although both of these devices might be familiar to program-
mers or engineers, they do not necessarily look like devices ICBE’s intended audience
has seen before. Adding up the numerators and dividing by 6 gives an AS2 score of
3/6=0.50.

5.2.4. Benchmark AS3: Spatial Composition

The spatial composition of elements of a language’s representation is the way they are
arranged and connected on the screen. Especially for programs simulating some physical
environment, this aspect of a representation can have a strong influence on how closely
the representation matches the way the problem appears in the audience’s prerequisite
background. In ICBE’s representation, there are four ways objects and/or operations
can be spatially composed: by their layout, by their connections with lines, by their
placement into containers as a grouping mechanism and by nesting containers within
other containers as a constrained grouping mechanism. Figure 8 shows one example of
layout with several examples of line connections and Figure 11 shows a container nested
within another container.

To measure whether the spatial composition mechanisms in the representation mimic
the way the objects and operations fit together in the intended audience’s prerequisite

d However, the designers noted that denoting the difference between water/data lines and electrical/control
lines by using the colors red and blue does not map to any generally accepted convention.

REPRESENTATION DESIGN BENCHMARKS 589

r~(fulif-Level

item:

Figure 11. ICBE containers. The blue inner container combines a supplier list, list of possible quantities

and textual labels for each. The outer container in turn combines the inner container with an item list and

textual label. The nesting implies a constrained relationship; for example, if the value ‘monitor’ were

‘keyboard’ instead, the contents of the nested container would reflect the supplier and quantity of the
keyboard order

background, the ICBE designers answered the following questions:

SQ1: Does the layout of the objects and operations look like the way these objects and
operations are laid out in the intended audience’s prerequisite background ?

SQ2: Do the lines connecting the objects and operations look like the way these objects
and operations are connected in the intended audience’s prerequisite back-
ground?

SQ3: Does the container look like a way of grouping objects in the intended audience’s
prerequisite background?

SQ4: Does the nested container look like a way groupings are nested in the intended
audience’s prerequisite background?

ICBE designers answered ‘yes’ for the first three questions and ‘no’ for the fourth.
The SQ1 ‘yes’ is somewhat qualified, because it depends on how the user chooses to lay
out a program. ICBE’s problem domain is not restricted to a particular kind of
simulation, and thus there is no automatic layout mimicking a particular physical
environment; however, because ICBE allows complete flexibility in laying out objects
and operations on the screen, the user can match a physical layout if desired. The
answers to SQ2 and SQ3 are more obvious: Lines are well-known ways of connecting
objects and even operations, in many office, project-management and organization chart
applications, and as such, are part of these power users’ prerequisite backgrounds.
Putting objects into containers (jars, shopping bags, etc.) is a grouping mechanism from
everyday life. The ICBE designers’ ‘no’ answer for SQ4 was a bordetline case. Nested
containers do indeed look like the way groupings are nested in everyday life, but the
constraining aspect of nesting a container does not exist in these everyday-life nestings.
Thus their character is sufficiently different from ICBE nested containers that the
designers decided on a ‘no’ answer. The AS3 score is therefore 3/4 =0.75; that is, three
of the four spatial composition mechanisms look like corresponding mechanisms in the
audience’s prerequisite background.

590 SHERRY YANG E7 AL.

5.2.5. Outcomes of the Benchmarks for ICBE

The ICBE designers found that using the representation design benchmarks—both the
audience-specific benchmarks described in this section and the rest of the benchmarks
described in Section 4—identified previously unnoticed issues in the representation. For
example, the AS1 audience-specific benchmark pointed to a possible need for a new
port representation. Also, audience-specific benchmarks AS2 and AS3 pointed out the
fact that some of the representation elements, while they are very likely familiar to
programmers ot engineers, are not necessatily familiar to the intended audience for
ICBE. For the representation elements with ‘no’ answers, the next logical step is
audience testing to determine whether the lack of familiarity to this audience of these
particular elements will affect ICBE’s long-term usability; that is, whether or not these
particular representation elements can be learned easily by ICBE’s intended audience
after seeing the language in action.

6. An Empirical Study of VPL Designers

In considering the usefulness of the representation design benchmarks to designers, the
following question arises: Does using the representation design benchmarks in the
design process actually produce better representations? Unfortunately, empirically
arriving at the answer to this question is probably not feasible. Such a study would
require evaluating many VPLs with dual implementations, one implementation of each
VPL corresponding to a design created without the use of the benchmarks and the other
corresponding to the design created with the use of the benchmarks. The two imple-
mentations of each language would have to be empirically compared for their usefulness
to programmers. The primary difficulty with such a study would be finding several
different VPL design teams willing to expend the effort to design and implement dual
versions of their representations.

However, useful insights can be gained about this question by considering two related
questions that are more tractable for objective analysis:

(1) How usable are the representation design benchmarks by VPL designers?
(2) Does using the representation design benchmarks in the design process uncover
problems and issues that would otherwise be overlooked?

To learn more about the answers to these two questions, we conducted a small
empirical study with two goals. The first goal (Goal 1) was to uncover problems VPL
designers might have in using the benchmarks. The second goal (Goal 2) was to learn
whether VPL designers other than ourselves could use the benchmarks, and whether
their doing so would be useful in uncovering problems in their designs of navigable
static representations. The hypothesis to be tested for this second goal was that the
subjects would be able to use the benchmarks and would find at least one problem and
make at least one change, addition or deletion to their representation designs as a direct
result of using the representation design benchmarks. The study was very helpful
regarding Goal 1, and the Goal 2 results were favorable about the usefulness of the
benchmarks to VPL designers.

REPRESENTATION DESIGN BENCHMARKS 591

6.1. The Subjects

The subjects for the study needed to be VPL designers who were in the midst of
designing a VPL representation. Such subjects would normally be hard to find, but we
timed the study so that we could recruit the five Computer Science graduate students
who were in the process of designing VPLs (and navigable static representations for
them) for a graduate course taught by one of the authors (Burnett). Recent studies of
usability testing show that five test participants are sufficient to uncover approximately
80% of the usability problems [31]. (Virzi also reports that additional subjects are less
and less likely to reveal new information.) Thus, this was a reasonable number of
subjects for addressing our first goal, finding the usability problems that the Forms/3
and ICBE design teams had missed. We would have liked a larger number of subjects
for our second goal, learning whether the benchmarks were useful to VPL designers.
However, this sample size is fairly typical of studies relating to non-traditional program-
ming languages, due to the difficulties in finding suitable subjects for them®.

6.2. The Procedure

The subjects were already in the process of designing a small VPL. To test our Goal 2
hypothesis, we chose a within-subject experimental design with a before-benchmarks
design task and a during-benchmarks design task. These tasks also provided information
we needed to achieve our first goal, finding usability problems.

6.2.1. Before Using the Benchmarks

The subjects’ before-benchmarks task was to submit a design of all viewable aspects of
their VPLs. This task served two purposes: it provided the baseline data about the
designs created without the benchmarks, and it served as a training function to help
them understand what a navigable static representation was.

Because one purpose of this training task was for the collection of baseline data, it
was important to make sure that the subjects’ reporting of their designs was complete,
L.e., that they would not omit important information through misunderstandings about
what was part of the navigable static representation. We avoided this potential problem
by having them include everything viewable in this task. The training purpose was
accomplished by having the subjects classify the elements of the design in three
categories: the static representation S, the navigational instrumentation NI and dynamic
representations used in the VPL not in NI or S, such as animations, balloon help, etc.
They then received feedback about the correctness of their classifications. To give them
an incentive to do their best at devising a good representation without the use of the
benchmarks, the task was set up as a graded project. The subjects were given one week
to perform the task.

The students had been gradually prepared for this task during the term. Throughout
the course, they had been reading papers about VPLs, writing programs in a variety of

€See, for example, the study of the VPL LabView (5 subjects) [32], the study of the VPL ChemTrains
(6 subjects) [15], and the study of a generic Petri-net language (12 subjects) [33].

592 SHERRY YANG E7 AL.

VPLs and discussing the research problems associated with VPLs, including static
representation. Just before they were asked to perform the task, we defined what
a navigable static representation was and motivated its importance, but we did not
introduce the benchmarks.

6.2.2. During Use of the Benchmarfks

After the first task was completed, the subjects were given a lecture on representation
design benchmarks. They were then asked to perform the second task, which was to
measure the navigable static representation part of their VPL’s design using the
benchmarks, being allowed to make any modifications they thought necessary. The
purposes of this task were to find usability problems with using the individual bench-
marks (Goal 1) and to test our hypothesis about whether they would be able to use the
benchmarks and in doing so would find any problems and make any changes to their
designs as a result of using the benchmarks (Goal 2).

The subjects were instructed to measure their designs as follows. They were to start
with their representation design as of the end of the previous task. They were then to
measutre it using the benchmarks. If the outcome of any benchmark pointed out
problems to them, they were permitted to change the design to solve the problem, and
then re-measure. (During the same period, the students were designing their term-
project VPLs.) The subjects turned in the results of the during-benchmarks task two
weeks after the assignment was made. For purposes of motivation, it too was a graded
assignment, where the grade was based on the quality of their designs.

Grading this task raised the question of what set of grading criteria would define
whether they had designed a ‘good’ representation. We decided to follow the sample
mapping from measurements to ratings shown in Appendix B. This meant that the
grades would be determined by whether a design’s benchmarks mapped into mostly
‘good’ ratings. To avoid prejudicing the results by forcing design changes via these
grading criteria, only ratings for those benchmarks that were deemed important by the subject for
that particular 1VPL were included in the grading criteria. Any benchmark could be
eliminated if the subject explained why it was not an important measure, given their
language’s goals.

The subjects turned in their completed representation design and the rating informa-
tion. When they turned in this information, they were given time in class to list any
problems they had using the benchmarks and to annotate their design pointing out
which, if any, changes they made as a result of using the representation design
benchmarks, as distinguished from changes they made for other reasons.

6.3. Results and Discussion: Goal 1

All of the subjects were able to complete the before-benchmarks training task, but they
all had trouble categorizing the viewable elements correctly into the three categories
(static, navigational aids and dynamic). We clarified the definition of navigable static
representations to partially address this problem. In addition, however, we are inclined
to infer from this evidence that isolating the navigable static representation from the rest
of the VPL is an academic exercise that does not come naturally for interactive VPLs,
and is one that might be omitted in the absence of the benchmarks. The poor track

REPRESENTATION DESIGN BENCHMARKS 593

record of static representations for interactive VPLs lends some support to this
conjecture. Since we believe that this isolation is important if the designer is to obtain
a clear understanding of the representation’s strengths and weaknesses, we view this as
one advantage of using the benchmarks.

All of the subjects also completed the during-benchmarks task, and reported the
problems they had in understanding how to obtain some of the measurements. The
subjects were successful with the NI benchmarks, but had some difficulties with the
Sp and S benchmarks. (At the time of the study, the benchmarks measuring NI and the
benchmarks measuring § were not explicitly separated.) Also, the screen real estate
benchmarks were based upon a test suite at that time, and none of the subjects were able
to perform these benchmarks with any accuracy. The subjects also suggested that the
benchmarks as a whole better reflect the trade-offs between adding new features to the
representation versus the space and navigational effort required by these additional
features.

As a result of the usability issues the subjects found in the during-benchmarks task,
we made the following changes, all of which are incorporated in the benchmarks as
described in this paper. First, an explicit separation was made between the NI bench-
marks versus the benchmarks measuring aspects of S (5, and 5). We also revised the
screen real estate benchmarks to measure characteristics of the representation itself
rather than characteristics of test programs, and to include a measure of general space
characteristics (SRE1). Finally, we added several new NI benchmarks throughout the
benchmark groups to be sure the trade-offs between adding features and navigational
effort imposed by those additional features were well represented.

6.4. Results and Discussion: Goal 2

All of the subjects reported that the representation design benchmarks were useful to
them. Their subjective reports were that the benchmarks helped them to think through
their desigh more precisely, thereby focusing on problems that they had overlooked
prior to using the benchmarks. The Goal 2 hypothesis was verified—all the subjects
were able to complete the during-benchmarks task, and all the subjects found problems
and made additions and/or changes to their designs as a direct result of using the
benchmarks. Since they had previously been given incentives and time to make the best
design they could (without the benchmarks), we expected that these changes made in the
during-benchmarks task were as a direct result of the benchmarks. This fact was verified
by their annotations on their design documents, which identified the changes resulting
from using the benchmarks. The problems they found with their designs and the
changes they made are summarized in Table 3.

7. Beyond Design Time?

We have discussed the usefulness of the benchmarks as a design time aid and
have shown how they can be used to evaluate a single design and to compare
several alternative design ideas. Since the notion of using benchmarks as a design
aid is somewhat unusual, a question that naturally arises is whether representa-
tion design benchmarks can be used in a more conventional way, such as in

594 SHERRY YANG E7 AL.

objective evaluations and comparisons of the representation schemes of different
post-implementation VPLs.

Although we have not experimented with them for such purposes, we suspect that
certain features of the representation design benchmarks, which are needed for useful-
ness as a design-time aid, are not compatible with the features needed for objective
comparisons. Recall that using the benchmarks is a tailorable process, including not only
the objective step of obtaining the actual measurements, but also subjective steps such
as selecting benchmarks applicable to the particular language’s goals and interpreting the
implications of the resulting scores in light of the language’s goals. Even the objective
step has tailorability, because designers must determine exactly which features of their
particular VPLs pertain to each individual benchmark in order to calculate the measure-
ments. These kinds of flexibility are necessary to be useful to a designer for tasks such as
evaluating design ideas with respect to the designer’s goals, but they may introduce too
much subjectivity to allow truly objective compatisons among different languages.

Another observation relevant to this issue is timing. When the designers we observed
used representation design benchmarks to evaluate their representation schemes after
implementation, they tended to be more interested in justifying past work (and
manipulating the tailorable aspects to accomplish this) than in finding ways to improve
the design. This is not surprising, because after the design is completed, a conflict of
interest arises—if a designer considers a design finished, there are powerful disincentives
to find anything wrong with it. This observation runs in the same vein as Winograd’s

Table 3. Problems found and corrections made that resulted from using the representation
design benchmarks, as reported by the subjects

Benchmark group Problems found and changes made by the subjects

Dependencies One subject found that only half of the dependencies were
explicitly visible in her representation. This was fixed in her final
design.

Program logic Two subjects made changes in the representation of program

logic: One subject improved the representation to make all the
program logic visible. Another subject found and corrected a
misrepresentation of generality in his representation.

Display of results with One subject reduced number of steps required to display the
program logic results with program logic.
Secondary notation Two subjects made changes to the secondary notational devices

available: One subject was surprised to see that her original design
omitted comments; she changed her design to allow textual
comments. Another subject added more devices for secondary
notation.

Abstraction gradient Two subjects added more powerful navigational devices in order
to reduce the number of steps required to navigate among the
levels of abstraction they supported.

Accessibility of related One subject added navigational aids to reduce the number of
information steps to access related information.
Use of screen real estate One subject reduced the number of on-screen windows to reduce

non-semantic intersections.

REPRESENTATION DESIGN BENCHMARKS 595

observation mentioned earlier, that uncovering substantive problems is more likely to
occur early in the design stages than later in the lifecycle. Winograd’s observation
pertained to users, and our experience was that it also pertained to the designers
themselves. From this we surmise that, even if it is possible to use the representation
design benchmarks for non-design-oriented purposes (by a language’s designers or by
others), the amount of useful information obtainable from the benchmarks is still likely
to be greatest during the design stage.

8. Conclusions

VPL researchers are continually making advances in devising new ways to create
programs—ifrom the kinds of programs that professional programmers create to the
kinds of component interweaving and macro-building that end-users do. To provide
these advances, many VPLs make innovative use of the capabilities of today’s graphical
workstations, including graphics, color, and animation. But most of the design advances
have been related to VPLs’ dynamic aspects, and as a result, the static representations of
many VPLs have been their Achilles heel. Unfortunately, this deficiency can seriously
handicap VPLs’ suitability for certain tasks that arise in programming, such as working
with and understanding a program written by someone else.

Representation design benchmarks are the first approach devised specifically to help
VPL designers address this deficiency. Extending the work on cognitive dimensions for
programming systems, the benchmarks allow a designer to see how a navigable static
representation design’s features impact the accessibility and usefulness of the informa-
tion available about a program. Representation design benchmarks have been used both
by experienced VPL designers in designing navigable static representations for the
interactive VPLs Forms/3 at Oregon State University and ICBE at Hewlett-Packard
Laboratories, and by student subjects in a small empirical study. Indications from these
uses ate that the benchmarks make a measurable difference in helping VPL de signers
discover problems with their designs.

The key characteristics of representation design benchmarks are that they provide
a concrete way for VPL designers to apply HCI principles on cognitive aspects of
programming, they are a set of measurement procedures rather than a set of guidelines,
and they focus directly and exclusively on VPLs’ navigable static representations.
Through these characteristics, they provide a practical means to measure a VPL’s
navigable static representation in isolation from the other, more dynamic aspects of the
VPL, helping the designer obtain a clear view of a proposed navigable static representa-
tion’s strengths and weaknesses. In this way, representation design benchmarks can help
VPL designers combine the flexibility and responsiveness that can be supported by
a VPL’s dynamic aspects, with the easy access to large amounts of program information
that ensues from a well-designed navigable static representation.

Acknowledgments

We would like to thank Judith Hays and Eric Wilcox for assistance with this paper,
and John Atwood, Baljinder Ghotra, Herkimer Gottfried, Shikha Gottfried, Dianne

596 SHERRY YANG E7 AL.

Hackborn, Luca Tallini, Rebecca Walpole, and the members of the Forms/3 and the
ICBE design teams for their help in the research that led to this paper. We especially
thank Thomas Green for his helpful comments.

Appendix A: Cognitive Dimensions

Table Al lists the dimensions, along with a thumb-nail description of each, and
Figure A1 shows an example of using CDs to contrast the VPLs prograph and labview.
The relation of each dimension to a number of empirical studies and psychological
principles is given in [8], but the authors also carefully point out the gaps in this body of
underlying evidence. In their words, “The framework of cognitive dimensions consists
of a small number of terms which have been chosen to be easy for non-specialists to
comprehend, while yet capturing a significant amount of the psychology and HCI of

programming’.

Table Al. The Cognitive Dimensions (extracted from Green and Petre [8])

Abstraction gradient

Closeness of mapping

Consistency
Diffuseness

Error-proneness

Hard mental operations
Hidden dependencies
Premature commitment
Progtressive evaluation
Role-expressiveness
Secondary notation

Viscosity
Visibility

What are the minimum and maximum levels of abstraction?
Can fragments be encapsulated?

What ‘programming games’ need to be learned?

When some of the language has been learnt, how much of the
rest can be inferred?

How many symbols or graphic entities are required to express
a meaning?
Does the design of the notation induce ‘careless mistakes’?

Are there places where the user needs to resort to fingers or
penciled annotation to keep track of what’s happening?

Is every dependency overtly indicated in both directions? Is
the indication perceptual or only symbolic?

Do programmers have to make decisions before they have the
information they need?

Can a partially complete program be executed to obtain feed-
back on ‘How am I doing’?

Can the reader see how each component of a program relates
to the whole?

Can programmers use layout, color, or other cues to convey
extra meaning, above and beyond the ’official’ semantics of
the language?

How much effort is required to perform a single change?
Is every part of the code simultaneously visible (assuming
a large enough display), or is it at least possible to compare any

two parts side-by-side at will? If the code is dispersed, is it at
least possible to know in what order to read it?

REPRESENTATION DESIGN BENCHMARKS 597

“Application: In contrast to text languages, the box-and-line representation of data flow does really well
at alocal level the lines making the local data dependencies clearly visible. Both LabVIEW and Prograph
therefore do well in avoiding the problem. LabVIEW uses virtually no variables at all, whereas Prograph
has persistents which can act as global variables. These are different positions in the ‘design space’. The
Prograph position is presumably that if no globals at all are allowed, the program will get cluttered with
too many lines.

But although local dependencies are made visible, long-range data dependencies are a different issue.
Prograph has an extraordinarily large number of long-range hidden dependencies, created by the
combination of a deep nesting with the lack of an overview of the nesting structure. Although the
programmer can quickly navigate down the call graph by clicking on method icons to open their window,
then clicking on the icons found there, etc., there is no way to proceed up the call graph in the same way.
In general, to discover which method calls a given method, and thereby to determine its preconditions,
can require an extensive search. To alleviate the difficulty, a searching tool is provided; it would be
interesting to know how successful the tool is with expert users”.

Figure Al. CDs are geared toward high-level discussion of the cognitive aspects of VPLs. In this example,
the Hidden Dependencies dimension is being used to evaluate Prograph and LabVIEW (extracted from
Green and Petre [8])

Appendix B: Sample Interpretation of Benchmark Results

Each designer interprets the benchmark results according to their particular design
goals. A useful way to go about this is to devise a table of interpretation schemes such as
Table B1, to use with the results. With such a table, tracking the improvements that
come from different design alternatives is straightforward.

Table B1. One designer’s mapping from benchmark results to subjective ratings. Not all
benchmarks were rated by this designer, because some simply provide data points for compari-
son with other data points and have no natural mapping to subjective ratings

Benchmark S8 NI Aspect of the Example rating scale
representation
D1 X Visibility of) Poor Fair Good
dependencies Ratio = YT
00 05 1.0
D2 X Poor Fair Good
steps =
>n n 0
PS2 X Visibility of program Poor Fair Good
structure # steps = e 0
L2 X Visibility of program Poor Fair Good
logic #steps = >n n 0
L3 x 4 Poor Good
t =
steps o5 0
R2 x Display of results with Poor Fair Good
program logic # steps = > o b

598

SHERRY YANG E7 AL.

Table B1l. Continued

Benchmark S5 NI Aspect of the Example rating scale
representation
SN1 x Secondary notation: . Poor Fair Good
non-semantic devices Ratio= 00 05 10
SN2 X Poor Fair Good
steps =
>n n 0
AGI1 X Abstraction gradient i Poor Fair Good
Ratlo = R —
0.0 0.5 1.0
AG2 X Poor Fair Good
steps =
>n n 0
RIi2 X Accessibility of
related information Poor Fair Good
steps =
>n n 0

10.

11.

12.

13.

14.

References

. B. Myers (1990) Taxonomies of visual programming and program visualization. Journal of

Visual Langnages and Computing 1, 97-123.

. A. Cypher, D. Kosbie & D. Maulsby (1993) Characterizing PBD systems. In: Wazxh What

I Do: Programming by Demonstration (A. Cypher, ed.). MIT Press, Cambridge, MA.

. M. Burnett, M. Baker, C. Bohus, P. Catlson, S. Yang & P. van Zee (1995) Scaling up visual

programming languages. /EEE Computer 28, 45-54.

M. Burnett & A. Ambler (1994) Interactive visual data abstraction in a declarative visual
programming language. Journal of Visnal Languages and Computing 5, 29—60.

M. Zloof & R. Krishnamurthy (1994) IC by example: empowering the uninitiated to
construct database applications. Technical Report, Hewlett-Packard Laboratories.

R. Krishnamurthy & M. Zloof (1995) RBE: Rendering by ex ample. In: Eleventh International
Conference on Data FEngineering, Taipei, Taiwan, pp. 288-297.

T. Green (1991) Describing information artifacts with cognitive dimensions and structure
maps. In: People and Computers VI (D. Diaper & N. Hammond, eds). Cambridge University
Press, Cambridge.

. T.R. G. Green and M. Petre (1996) Usability analysis of visual programming environments:

a ‘cognitive dimensions’ framework. Journal of Visual Languages and Compnting 7, 131-174.

P. T. Cox, F. R. Giles & T. Pietrzykowski (1989) Prograph: a step towards liberating
programming from textual conditioning. In: 7989 [EEE Workshop on Visnal Languages,
Rome, Italy, pp. 150-156.

J. Kodosky, J. MacCrisken & G. Rymar (1991) Visual programming using structured data
flow. In: 71991 IEEE Workshop on Visual Langnages, Kobe, Japan, pp. 34-39.

F. Modugno, T. Green B. Myers (1994) Visual programming in a visual domain: a case study
of cognitive dimensions. In: Pegple and Computers IX (G. Cockton, S. Draper & G. Weir, eds).
Cambridge University Press, Cambridge, UK.

M. Yazdani & L. Ford (1996) Reducing the cognitive requirements of visual programming,.
In: 71996 IEEE Symposium on Visual Langnages, Boulder, CO, pp. 255-262.

D. Hendry (1995) Display-based problems in spreadsheets: a critical incident and a design
remedy. In: 7995 IEEE Symposium on Visual Langnages, Darmstadt, Germany, pp 284-290.
M. Bell (1994) Evaluation of visual programming languages and environments. Technical
Report, CTI Centre for Chemistry, University of Liverpool.

REPRESENTATION DESIGN BENCHMARKS 599

15.

16.

17.
18.
19.
20.
21.
22.
23.
24.

25.
26.
27.
28.

29.
30.

31.

32.

33.

B. Bell, J. Rieman & C. Lewis (1991) Usability testing of a graphical programming system:
things we missed in a programming walkthrough. In: ACM SIGCHI 1991. ACM Press, New
Otleans, pp. 7-12.

B. Bell, W. Citrin, C. Lewis, J. Rieman, R. Weaver, N. Wilde & B. Zorn (1994) Using the
programming walkthrough to aid in programming language design. Soffware Practice and
Experience 24, 1-25.

E. Glinert (1989) Towards a software metrics for visual programming. International Journal of
Man—Machine Studies 30, 425—445.

S. Card, T. Moran & A. Newell (1983) The Psychology of Human—Computer Interaction. Erlbaum,
Hillsdale, NJ.

A. Siochi & D. Hix (1991) A study of computer-supported user interface evaluation using
maximal repeating pattern analysis. In: ACM SIGCHT 1991, New Orleans, LA, pp. 301-305.

J. Nielsen & R. Molich (1990) Heuristic evaluation of user interfaces. In: ACM SIGCHI
1990, Seattle, Washington, pp. 249— 256.

J. Nielsen (1992) Finding usability problems through heuristic evaluation. In: ACM SIGCHTI
1992, pp. 373-380.

A. Sears (1993) Layout appropriateness: a metric for evaluating user interface widget layout.
IEEE Transactions on Software Engineering 19, pp. 707-719.

T. Winograd (1995) From programming environments to environments for designing,.
Commmunications of the ACM 38, 65-74.

S. Yang & M. Burnett (1994) From concrete forms to generalized abstractions through
perspective-oriented analysis of logical relationships. In: 7994 [EEE Symposium on Visual
Langnages, St. Louis, MO, pp. 6—-14.

P. Brown & J. Gould (1987) An experimental study of people creating spreadsheets. .ACM
Transactions on Office Information Systems 5, 258-272.

M. Petre (1995) Why looking isn’t always seeing: readership skills and graphical program-
ming. Communications of the ACM 38, 33—44.

H. C. Purchase, R. F. & Cohen M. James (1995) Validating Graph Drawing Aesthetics. In:
Lecture Notes in Computer Science (F. Brandenburg, ed.). Springer, Berlin, 1995 .

B. Nardi (1993) A Small Matter of Programming: Perspectives on End User Computing. MIT Press,
Cambridge, MA.

M. Zloof (1977) Query by example: a data base language. /BM Systems Journal 16, 324-343.

M. Zloof (1981) QBE/OBE: a language for office and business automation. Computer 14,

13-22.

R. Virzi (1992) Refining the test phase of usability evaluation: How many subjects is enough?
Human Factors 34, 457—468.

T. Green, M. Petre & R. Bellamy (1991) Comprehensibility of visual and textual programs:
a test of superlativism against the ‘match—mismatch’ conjecture. In: Ewmpirical Studies of
Programmers: Fourth Workshop (J. Koenemann-Belliveau, T. Moher & S. Robertson, eds).
Ablex Publishing, Norwood, NJ.

T. Moher, D. Mak, B. Blumenthal & L. Leventhal (1993) Comparing the comprehensibility
of textual and graphical programs: the case of Petri Nets. In: Proc. Empirical Studies of
Programmers: Fifth Workshop. Palo Alto, CA, Ablex Publishing, Norwood, NJ.

	TABLES
	Table 1
	Table 2
	Table 3
	Table A1
	Table B1

	FIGURES
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure A1

	1. Introduction
	2. Related work
	3. Terminology and Overview
	3.1. Navigable Static Representations
	3.1.1. Applying the Definition: An Example
	3.1.2. Implications of the Definition

	3.2. From Cognitive Dimensions to Representation Design Benchmarks
	3.3. Use of the Representation Design Benchmarks: Why, When, Who and How

	4. The Benchmarks in Detail
	4.1. The Understandability Benchmarks
	4.1.1. Visibility of Dependencies
	4.1.2. Visibility of Program Structure
	4.1.3. Visibility of Program Logic
	4.1.4. Display of Results with Program Logic
	4.1.5. Secondary Notation: non-semantic devices

	4.2. Scalability Benchmarks
	4.2.1. Abstraction Gradient
	4.2.2. Accessibility of Related Information
	4.2.3. Use of Screen Real Estate

	5. Benchmarks for Audience-Specific VPLs
	5.1. How to Apply the Audience-Specific Benchmarks
	5.2. Detailed Example: Using the Audience-Specific Benchmarks as a Design Aid in ICBE
	5.2.1. ICBE’s Intended Audience
	5.2.2. Benchmark AS1: The Objects
	5.2.3. Benchmark AS2: The Operations
	5.2.4. Benchmark AS3: Spatial Composition
	5.2.5. Outcomes of the Benchmarks for ICBE

	6. An Empirical Study of VPL Designers
	6.1. The Subjects
	6.2. The Procedure
	6.2.1. Before Using the Benchmarks
	6.2.2. During Use of the Benchmarks

	6.3. Results and Discussion: Goal 1
	6.4. Results and Discussion: Goal 2

	7. Beyond Design Time?
	8. Conclusions
	Acknowledgments
	Appendix A: Cognitive Dimensions
	Appendix B: Sample Interpretation of Benchmark Results
	References

