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Abstract 
 
End-user programming has become the most common form of 
programming today. However, despite this growth, there has been 
little investigation into bringing the benefits of software visuali-
zation to end-user programmers. Evidence from the spreadsheet 
paradigm, probably the most widely used end-user environment, 
reveals that end users’ programs often contain faults. We would 
like to integrate software visualization into these end-user envi-
ronments to help end users deal with the reliability issues in their 
programs. Towards this end, we have devised several fault local-
ization visualization techniques for spreadsheets. This paper 
describes these techniques and reports the results of a formative 
study—using tests created by end users—to investigate how these 
fault localization techniques compare. Our results reveal some 
strengths and weaknesses of each technique, and provide insights 
into the cost-effectiveness of each technique for the interactive 
world of end-user spreadsheet development.  
 
CR Categories: D.2.5 [Software Engineering]: Testing and 
Debugging–debugging aids, testing tools. D.2.6 [Software 
Engineering]: Programming Environments–interactive 
environments. D.1.7 [Programming Techniques]: Visual 
Programming. H.4.1 [Information Systems Applications]: Office 
Automation–spreadsheets. 
 
Keywords: end-user software engineering, end-user 
programming, end-user software visualization, fault localization, 
spreadsheets  
 
1 Introduction 
 
End-user programming environments are becoming a widespread 
phenomenon. It is estimated that by the year 2005 there will be 
approximately 55 million end-user programmers in the U.S. 
alone, as compared to only 2.75 million professional programmer-
s [Boehm et al. 2000]. However, to date, there has been little 
investigation into bringing the benefits of software visualization 
to end-user programmers. 
 
Although end-user programming environments are quite diverse, 
including educational simulation builders, web authoring systems, 
multimedia authoring systems, e-mail filtering rules, CAD sys-
tems and more, in practice, probably the most widely used end-

user environment is the spreadsheet. Evidence from the spread-
sheet paradigm reveals that, despite the perceived simplicity of 
this kind of end-user programming, end-user programmers create 
a disturbing number of faults [Panko 1998]. Perhaps even more 
disturbing, spreadsheet developers often express unwarranted 
confidence in the reliability of their spreadsheets [Panko 1998]. 
 
To help solve the problem of pervasive faults in end-user pro-
gramming, we have been working on a vision we call “end-user 
software engineering,” prototyping our ideas in the spreadsheet 
paradigm because it is so widespread in practice. The concept of 
end-user software engineering is a holistic approach to the facets 
of software development in which end users engage. Its goal is to 
bring some of the gains from the software engineering community 
to end-user programming environments, without requiring train-
ing or even interest in traditional software engineering techniques. 
Much of our communications strategy with end-user programmers 
is done via incremental software visualization. 
 
As part of this vision, we have previously devised a testing meth-
odology known as “What You See Is What You Test” 
(WYSIWYT) [Rothermel et al. 1998]. The WYSIWYT method-
ology communicates the “testedness” of each spreadsheet cell via 
incremental, low-cost visualization devices such as border colors. 
It responds to the user’s actions and after each action relevant to 
testing, updates the visualization devices. The use of visualization 
devices that are low in cost is obviously required to maintain the 
immediate response expected by spreadsheet users.  
 
Given this explicit, visualization-based support for testing, it is 
natural to consider leveraging it to help users with fault localiza-
tion once one of their tests reveals a failure1. But what is the best 
way to proceed? There are many issues to consider in answering 
this question, and we will not try to enumerate them all, but two 
important issues are: 
 

Effectiveness: What techniques will do an effective job at 
visually isolating the faults, given whatever correct and in-
correct values (failures) an end user has been able to 
identify via testing? 
 
Cost: Can any such techniques be low enough in cost to 
maintain the incremental, immediate response expected in 
the spreadsheet paradigm? 

 
In this paper, we attempt to shed some light upon these questions. 
We compare a technique previously described in the literature 
[Reichwein et al. 1999], which we will refer to as the “Blocking 
Technique,” with two new techniques of ours, presented here. For 

                                                                 
1 Following standard terminology, in this paper we use the term 

“failure” to mean an incorrect output value given the inputs, and 
the term “fault” to mean the incorrect part of the program 
(formula) that caused the failure. 
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each, we describe their basic logic and the costs they add to the 
spreadsheet paradigm. We then describe the results of a formative 
empirical study of the techniques’ effectiveness at finding faults, 
in which the subjects were test suites created by end users.  
 
2 Related Work  
 
There has been a variety of software visualization work aimed at 
software engineering purposes. We focus here on the portion of it 
that is related to debugging. The FIELD environment [Reiss 
1998] was aimed primarily at program comprehension as a vehi-
cle for both debugging and instruction, and included visualiza-
tions of call graphs, heap behavior, I/O, class relationships, and so 
on. This work draws from and builds upon earlier work featuring 
visualizations of code, data structures, and execution sequences, 
such as PECAN [Reiss 1984], the Cornell Program Synthesizer 
[Teitelbaum and Reps 1981], and Gandalf [Notkin et al. 1985]. 
ZStep [Lieberman and Fry 1998] aims squarely at debugging, 
providing visualizations of the correspondences between static 
program code and dynamic program execution. Its navigable 
visualizations of execution history are representative of similar 
features found in some visual programming languages such as 
KidSim/Cocoa/Stagecast [Heger et al. 1998] and Forms/3 
[Atwood et al. 1996; Burnett et al. 2001]. An example of visuali-
zation work that is especially strong in low-level debugging such 
as memory leaks and performance tuning is PV [Kimelman et al. 
1998]. Low-level visualization work specifically aimed at per-
formance debugging in parallel programming is surveyed in 
[Heath et al. 1998]. Finally, Eick’s work focuses on high-level 
views of software, mostly with an eye to keeping the bugs under 
control during the maintenance phase [1998].  
 
The above techniques aim to help the programmer understand the 
program’s behavior so that he or she can debug it. In contrast to 
these, most fault localization visualization techniques have two 
phases. The first phase, the fault localization phase, finds ways to 
help the system to understand possible sources of bugs, in part by 
using information provided by the programmer in the process of 
testing. The second phase then communicates its new under-
standing back to the programmer in the form of visualizations. 
 
Many fault localization techniques build on the significant re-
search into slicing and dicing. Tip provides a survey of slicing 
techniques in [Tip 1995]. In general a program slice relative to 
variable V at program point P is the set of all statements in the 
program that affect the value of V at P. If the value of V is incor-
rect at point P in the program for a given test case, then, under 
certain assumptions, it can be guaranteed that the fault that caused 
the incorrect value is in the slice. These slices can be calculated 
using entirely static information, or can often be more precisely 
calculated using dynamic information. A dice is similar to a slice 
[Chen and Cheung 1997]. The difference is that it utilizes infor-
mation about correct values of V at other program points to fur-
ther reduce the set of statements that could be responsible for the 
incorrect value of V.  
 
Building upon this work, Agrawal et al. presented a technique for 
locating faults in traditional programming languages using execu-
tion traces from tests, and implemented this technique in the 
xSlice tool [Telcordia Technologies 1998]. This technique is 
based on displaying dices of the program relative to one failing 
test and a set of passing tests. Jones et al. developed a system 

similar to xSlice called Tarantula [2002]. Unlike xSlice, Tarantula 
utilizes information from all passing and failing tests when 
highlighting possible locations for faults. It colors the likelihood 
that a statement is faulty according to its ratio of failing tests to 
passing tests. 
 
Tarantula and xSlice both focus on helping professional pro-
grammers find faults in programs developed in traditional pro-
gramming languages. Our work differs in that we are trying to 
assist end users in finding faults in the spreadsheets they develop. 
Additionally, Tarantula and xSlice both report on the results of 
testing after running the entirety of a test suite and collecting in-
formation from all of the tests in the test suite. Our techniques 
incrementally update information about likely locations for faults 
as soon as the user applies tests to their spreadsheet.  
 
Pan and Spafford developed a family of heuristics appropriate for 
automated fault localization [1992]. They presented a total of 
twenty different heuristics that they felt would be useful. These 
heuristics are based on the program statements exercised by 
passing and failing tests. For example, one of their heuristics 
indicates all statements exercised by failing tests in the test suite 
(a set that is highlighted by all of our techniques). Our techniques 
directly relate to three of these heuristics, the set of all cells 
exercised by failed tests, cells that are exercised by a large 
number of failed tests, and cells that are exercised by failing tests 
and that are not exercised by passing tests. We combine these 
heuristics to determine the likelihood that a cell contains a fault. 
 
3 WYSIWYT: The Setting for Fault Localization  
 
The underlying assumption behind the WYSIWYT testing meth-
odology [Rothermel et al. 1998] is that, as a user incrementally 
develops a spreadsheet, he or she is also testing incrementally. 
Because the intended audience is end users, all communication 
about testing is done through software visualization devices. The 
incremental and interactive nature of spreadsheets requires these 
visualization devices to be incremental, as well as efficient 
enough to maintain immediate visual feedback. 
 
Figure 1 depicts a simple example of WYSIWYT in Forms/3 
[Burnett et al. 2001; Burnett and Gottfried 1998], a spreadsheet 
language that utilizes “free-floating” cells rather than a traditional 
spreadsheet grid. With WYSIWYT, all untested cells have red 
borders (light gray in this paper). For example, cell Net_Amount 
in Figure 1 has never been tested and its border is red (light gray). 
When a user notices that a cell’s value is correct, they can check 
it off (√) in the checkbox at the corner of the cells, such as the one 
in cell Withholdings. In response to this action, visualizations are 
updated at three granularities.  
 
At the granularity of cells, the checkmark appears, indicating that 
the cell’s current value is the result a successful test. The cell 
border colors of the checked-off cell and cells contributing to it 
move along a continuum from red (untested) to blue (tested; black 
in this paper). In the figure, cell Withholdings is half way along 
this continuum, but Overtime_Pay and Gross_Amount, which 
contribute to it, are completely blue (black). If the user elects to 
show a cell’s dataflow arrows, its incoming arrows follow the 
color scheme of its borders, as with cell Overtime_Pay.  
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The user has elected to show some cells’ dataflow arrows as well 
as some cells’ formulas, and this allows a finer granularity of 
visualization. The dataflow arrows connecting the formulas’ 
subexpressions follow the same color scheme at the granularity of 
subexpressions, which shows users the untested cell reference 
combinations that still need testing.  
 
Finally, there are two visualizations at the granularity of spread-
sheets. The first is the “testedness” indicator at the top right of the 
spreadsheet, showing that overall the spreadsheet is 61% tested. 
Second, the bird’s eye view at the right of Figure 1 shows the 
testedness of every spreadsheet currently loaded in memory.  
 
Although the user may not realize it, behind the scenes “tested-
ness” is computed using a dataflow test adequacy criterion [Laski 
and Korel 1993; Ntafos 1984; Rapps and Weyuker 1985]. A test 
adequacy criterion sets standards describing when software (in 
this case, a spreadsheet) has been adequately tested. Such a 
criterion is necessary in a testing methodology because we must, 
at some point, define when the user has done “enough” testing.2  
 
WYSIWYT’s adequacy criterion is du-adequacy. A definition is a 
point in the source code where a variable (cell) is assigned a 
value, and a use is a point where a variable’s value is used. A 
definition-use pair, or du-pair, is a tuple consisting of a definition 
of a variable and a use of that variable. A du-adequate test suite, 
which is based on the notion of an output-influencing all-defini-
tion-use-pairs-adequate test suite [Duesterwald et al. 1992], is a 
test suite that exercises each du-pair in such a manner that it par-
ticipates (dynamically) in the production of an output explicitly 
validated by the user. 
 
Thus in Figure 1, the Withholdings cell is only 50% tested be-
cause only one of the two du-pairs in that cell have been tested. 
Because the dataflow arrows are showing, exactly which du-pairs 
still need to be tested is explicitly shown. The user has hovered 
the mouse over one of the medium-gray arrows for an explana-
tion. (We consider explanations to be critical in an end-user envi-
ronment, because most end users will not have had prior training 
in software engineering practices.) The user’s next step could be 
to try an input that will allow them to test untested du-pairs. If 

                                                                 
2 Of course, an adequately tested spreadsheet cannot guarantee 

that the spreadsheet is fault-free.  

they have trouble conjuring up a suitable input, an automatic test 
generator will suggest some [Fisher et al. 2002]. 
 
The visual fault localization techniques we investigate in this 
paper were all prototyped in the context of WYSIWYT. However, 
the techniques do not require the entire WYSIWYT methodology. 
Rather, the minimum entry point to these techniques is any 
spreadsheet language that adds a checkbox allowing a user to 
check off a correct cell value. 
 
4 Three Fault Localization Visualization 

Techniques 
 
While incrementally developing a spreadsheet, a user can indicate 
his or her observation of a failure by marking a cell incorrect with 
an “X” instead of a checkmark. At this point, our fault localiza-
tion techniques highlight in varying shades of red the cells that 
might have contributed to the failure, with the goal that the most 
faulty cells will be colored dark red.  
 
How should these colors be computed? Computing exact fault 
likelihood values for a cell, of course, is not possible. Instead, we 
must combine heuristics with deductions that can be drawn from 
analyzing the source code (formulas) and/or from the user’s tests.  
 
Because these techniques are meant for highly interactive visual 
environments, we are interested in cost-effectiveness. In this sec-
tion, we describe three techniques, their information basis for 
making deductions, the properties each maintains in drawing fur-
ther inferences from these deductions, and how much each 
technique’s reasoning costs.  
 
The better the information, the higher the cost, but the higher the 
ability of the visualization to visually emphasize the faulty 
cells—at least, this was our starting premise in devising these 
techniques. We will test this premise in Section 6.  
 
4.1 The Test-Count Technique 
 
The technique we term the Test-Count Technique bases the fault 
likelihood of a cell on the number of successful tests (those which 
the user marked with a √) versus the number of failed tests (those 
which the user marked with an X) in which that cell has partici-
pated. This technique’s information basis is much the same as in 

  
Figure 1. WYSIWYT has been implemented in the research spreadsheet language Forms/3. (Left) A Forms/3 spreadsheet 

illustrating WYSIWYT’s low-cost visualization features. (Right) The bird’s eye view of all spreadsheets in memory. 
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Tarantula [Jones et al. 2002]; however it differs from Tarantula in 
that our algorithms are incremental and that our visualization 
aims at end-user programmers, not professional programmers.  
 
We will use producer-consumer terminology to keep dataflow 
relationships clear; that is, a producer of C contributes to C’s 
value, and a consumer of C uses C’s value. In slicing terms, pro-
ducers are all the cells in C’s backward slice, and consumers are 
all the cells in C’s forward slice. C is said to participate in a test 
(or to have a test) if the user has marked (with a √ or an X) C or 
any of C’s consumers.  
 
Expressed in these terms, our Test-Count Technique uses infor-
mation about successful and failed tests to maintain the following 
three properties:  
 
Property 1: If cell C or any of its consumers have a failed test, 
then C will have non-zero fault likelihood. 
 
This first property ensures that every cell that might have 
contributed to the computation of an incorrect value will be 
assigned some positive fault likelihood. 
 
Property 2: The fault likelihood of C is proportional to the 
number of C’s failed tests. 
 
This property is based on the assumption that the more incorrect 
calculations a cell contributes to, the more likely it is that the cell 
contains a fault. 
 
Property 3: The fault likelihood of C is inversely proportional to 
the number of C’s successful tests. 
 
The third property, in contrast to Property 2, assumes that the 
more correct calculations a cell contributes to, the less likely it is 
that the cell contains a fault. 
 
To implement these properties, let NumFailingTests(C) (NFT) be 
the number of C’s failed tests, and let NumSuccessfulTests(C) 
(NST) be the number of C’s successful tests.  
 
If a cell C has no failed tests, the fault likelihood of C is None. 
Otherwise, the fault likelihood of a cell C is calculated as follows: 

 
fault likelihood(C) = max(1, 2 * NFT – NST) 

 
This calculation is mapped to one of four possible fault likelihood 
ranges: a value of 1 or 2 maps to the fault likelihood Low, 3 or 4 
maps to Medium, 5-9 maps to High, while anything above 10 
maps to Very High.  
 
Consider the spreadsheet in Figure 2. Overtime_Pay has a fault: 
Wage should be multiplied by 1.5 times Overtime_Hrs. This 
spreadsheet’s user has indicated (with an X) his or her observa-
tion of a failure in both the Gross_Amount and Net_Amount cells, 
as these cells contain incorrect values for the given inputs. Fur-
thermore, the user has indicated (with a √) that the value con-
tained in Regular_Pay is correct. Using this information and the 
dataflow relationships, the Test-Count Technique has assigned an 
estimated fault likelihood, visually represented by varying shades 
of red (gray in this figure), to each non-input cell in the spread-
sheet. Specifically, the visualization shows the fault likelihood of 

Regular_Pay, Overtime_Pay, and Gross_Amount to be estimated 
at Medium while Withholdings and Net_Amount have been esti-
mated at Low. Finally, the user hovered the mouse over 
Overtime_Pay to see an explanation of its visualization. Figure 2 
is a simple example in order to clearly illustrate the differences in 
fault likelihood visualizations among our three techniques. 
 
This technique came about by leveraging algorithms and data 
structures that were written for another purpose—to support semi-
automated test re-use (regression testing) in the spreadsheet para-
digm [Fisher II et al. 2002]. The algorithms and data structures 
are detailed in that paper. Here, we summarize the information 
stored in those data structures. We then consider the costs of the 
Test-Count Technique under two settings: first, given the exis-
tence of the test re-use feature in the environment (as is the case 
in our prototype), and second, a “bare” spreadsheet language that 
has only checkboxes for recording faults. 
 
There are three basic interactions3 the user can perform that could 
affect these properties. Each interaction potentially triggers activ-
ity by the technique. The interactions are: users might change a 
constant cell’s value (analogous to running with a different input 
value), users might change a non-constant cell’s formula, or users 
might add another test by checking off or X’ing out a cell’s value.  
 
Under the first setting, the test re-use data structures already 
maintain the necessary information about previous tests. In this 
setting, changing a constant value to another constant value does 
not trigger any activity. This is because the WYSIWYT method-
ology does not define a new execution to be a new test; only a √ 
or an X mark by the user defines a set of values to be a test. 
Changing C’s non-constant formula incurs an additional time cost 
of O(1); the data structures are already reinitialized by the regres-
sion testing subsystem, but C and its consumers must be 
recolored. The added cost to recolor is only O(1) because these 
cells must already be visited to update their values and 
“testedness” border colorings. Finally, when the user enters a 

                                                                 
3 Variations on these interactions also trigger activity. For 

example, removing a test (undo’ing a checkmark) triggers 
action that reverses the changes made by placing the 
checkmark. However, we will usually ignore these variations, 
because they are obvious and do not add materially to this 
discussion. 

Figure 2. The hypothetical Paycheck spreadsheet with a fault 
in the Overtime_Pay cell. The Test-Count Technique is 
visually assisting the user’s effort to localize the fault 
contributing to the failures he or she has observed. 
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mark, the additional cost is O(1): the system needs to update the 
test counts and colorings of C and its producers, but these cells 
must already be visited given the testing subsystem to update the 
border colorings. Thus, given the presence of the regression 
testing subsystem reported in [Fisher II et al. 2002], the highest 
additional cost of this fault localization subsystem for any trigger 
is only O(1), showing the Test-Count Technique to be extremely 
reasonable in cost in this setting. 
 
Now consider the other setting, a bare spreadsheet language with 
only checkboxes for entering decisions about whether a test was 
successful or has failed. Because of the responsiveness require-
ments of spreadsheet languages, we have chosen to trade space to 
save time whenever possible, storing relationships between cells 
and tests in both directions. Given these data structures, the users’ 
interactions trigger the same algorithms as presented in [Fisher II 
et al. 2002] for test re-use purposes, plus the work just described 
for the setting in which those algorithms already existed. Thus, 
we simply add in the time complexities for the test re-use 
algorithms. As discussed in that work, after a user enters a mark 
in cell C, the affected information stored about tests is updated in 
O(up) time where u is the maximum number of uses of 
(references to) any cell in the spreadsheet, and p is the number of 
C’s producers. Changing cell C’s non-constant formula to a 
different formula requires all saved information about C’s tests 
and those of its consumers to be considered to be obsolete. For 
the same reason, C’s and its consumers’ fault likelihoods must all 
be reinitialized to zero. All of the related testing information can 
be updated in O(mc* max(u, cost of set operations)), where m is 
the number of marks (tests) that reach the modified cell, c is the 
maximum number of consumers affected by C’s tests, and u is 
still the maximum number of uses for any cell in the spreadsheet. 
Clearly, in this setting, the Test-Count Technique’s costs may be 
an issue to responsiveness.  
 
4.2  The Blocking Technique 
 
Similar to program dicing [Chen and Cheung 1997], the second 
technique, which we term the Blocking Technique, notices the 
dataflow relationships existing in the marks that “reach” C. It 
further notes if a mark is “blocked” from C by another mark in 
C’s forward slice. Finally, it includes a Very Low fault likelihood 
category, in addition to the five ranges utilized by the Test-Count 
Technique, to be used in certain “blocking” situations. 
 
This technique has been presented previously [Reichwein et al. 
1999], and was chronologically the first technique we developed. 
We have chosen to present our summary of it second because it 
can be easily explained in terms of its addition to the Test-Count 
Technique of two properties, which allow marks, at certain times, 
to block the effect of other marks. These two properties, which 
attempt to more accurately predict the source of incorrect values 
found by the user, are: 
 
Property 4: An X mark on C blocks the effects of any checkmarks 
on C’s consumers (forward slice) from propagating to C’s 
producers (backward slice). 
 
This property is specifically to enhance localization. Producers 
that contribute only to incorrect values are darker, even if those 
incorrect values contribute to correct values further downstream, 
preventing dilution of the cells’ colors that lead only to X marks. 

Property 5: A checkmark on C blocks the effects of any X marks 
on C’s consumers (forward slice) from propagating to C’s 
producers (backward slice), with the exception of the minimal 
fault likelihood property required by Property 1. 
 
Similar to Property 4, this property uses checkmarks to prune off 
C’s producers from the highlighted area if they contribute to only 
correct values, even if those values eventually contribute to incor-
rect values. 
 
To implement these properties, let NumBlockedFailedTests(C) 
(NBFT) be the number of C’s consumers that are marked incor-
rect but are blocked by a value marked correct along the data flow 
path from C to the value marked failed. Furthermore, let Num-
ReachableFailedTests(C) (NRFT) be the result of subtracting 
NBFT from the number of C’s consumers. Finally, let there be 
NumBlockedSuccessfulTests(C) (NBST) and NumReachableSuc-
cessfulTests(C) (NRST), with definitions similar to those above. 

 
If a cell C has no failed tests, the fault likelihood of C is None. If 
C has failed tests, but none reachable, then C’s fault likelihood is 
Very Low. Otherwise, we first assign fault likelihood ranges to 
NRFT and NRST using the same colorization scheme as the Test-
Count Technique. We then calculate cell C’s fault likelihood: 

 
fault likelihood(C) = max(1, NRFT – floor(NRST / 2)) 

 
Figure 3 demonstrates an example of the Blocking Technique. 
The spreadsheet and tests are the same as in Figure 2. However, 
the Blocking Technique has assigned Very Low fault likelihood 
to the Regular_Pay cell, because its strategic √ blocks most of the 
effects of the downstream X marks, whereas the Test-Count 
Technique estimated the cell’s fault likelihood as Medium. 
Furthermore, the fault likelihoods of Overtime_Pay and 
Gross_Amount are estimated as Low rather than Medium. 
 
Note that the mathematics behind the Blocking Technique differ 
from that of the Test-Count Technique. The essence of the differ-
ence is that the Blocking Technique mathematically emphasizes 
the impact of a blocking mark, whereas the Test-Count Technique 
mathematically emphasizes the difference between failing and 
successful tests. More precisely, the Blocking Technique first 
maps fault likelihood ranges to NRFT and NRST and then esti-
mates the fault likelihood of C using the equation provided ear-
lier. The Test-Count Technique, on the other hand, directly cal-
culates the fault likelihood of C, without mapping any range to 

Figure 3. The Paycheck spreadsheet with the Blocking 
Technique. 
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NFT and NST. Test-Count also multiplies failed tests by a factor 
of two, thus providing a second mathematical distinction between 
the two techniques. 
 
As in the Test-Count Technique, the only two interactions that 
trigger algorithms, including data structure updates, are (1) plac-
ing a √ or X mark, and (2) changing a non-constant formula. The 
Blocking Technique keeps track of which cells are reached by 
various marks, so that blocking can be computed given complex 
intertwined dataflow relationships. These data structures exist 
solely for the purpose of the fault localization visualization; thus 
this cost is incurred in any spreadsheet environment, whether 
“bare” or WYSIWYT, whether with or without test re-use. 
 
Let p be the number of cell C’s producers, i.e., cells in its back-
ward slice. Furthermore, let e be the number of edges in C’s 
backward slice, and let m be the total number of marks (tests) in 
the spreadsheet. The time complexity of placing or undoing a 
mark is O((p+e)m2), while adding or modifying C’s formula has 
time complexity O(p+em2).  
 
4.3  The Nearest Consumers Technique 
 
The techniques’ costs are incurred during the interactive activities 
of placing a mark and of updating the formula of a cell, and hence 
they could be too great to maintain the responsiveness required as 
spreadsheet size increases.  
 
To approximate all five properties, but at a low cost, we devel-
oped a third technique, which we term the Nearest Consumers 
Technique. It is a greedy technique that considers only its direct 
consumers (consumers connected with C directly by an edge). 
When a mark is placed on a cell C, the fault likelihood of that cell 
is calculated solely from the mark placed on the cell and the aver-
age fault likelihood of C’s direct consumers (if any). C’s produc-
ers are then updated using the same calculations. 
 
Let DC be the set of C’s direct consumers. Let x be the number of 
X marks in DC and y be the number of √ marks in DC. Let z = 1 
if any of the following are true: (1) x > 1 and y = 0; or (2) x > y 
and y > 0; or (3) x > y and C has an X mark. Otherwise, z = 0. The 
fault likelihood of C is then calculated as follows: 

 
fault likelihood(C) = average fault likelihood(DC) + z 

 
There are three exceptions to this calculation. First, if C is cur-
rently marked correct, it automatically has a fault likelihood of 
Very Low. Second, if C is marked incorrect and average fault 
likelihood(DC) < Medium, then C has a fault likelihood of Me-
dium. Finally, if an X is placed in C, the Nearest Consumers 
technique does not allow the fault likelihood of either C or any of 
C’s producers to drop below their previous value. Similarly, if a 
check is placed in C, the technique forbids the fault likelihood of 
either C or any of C’s producers to increase from their previous 
estimation. 
 
Figure 4 demonstrates the Nearest Consumers Technique on the 
same spreadsheet as in previous examples. In mimicking the 
blocking behavior of the Blocking Technique, the fault likelihood 
of the Regular_Pay cell has been estimated as Very Low. How-
ever, this technique has assigned High fault likelihood to 
Overtime_Pay and Gross_Amount, whereas the previous tech-

niques gave these cells either Low or Medium fault likelihood. In 
addition, the fault likelihood of the Withholdings and 
Net_Amount is now Medium, as opposed to Low. 
 
The technique’s advantages are that it does not require the main-
tenance of any data structures; it stores only the cell’s previous 
fault likelihood. Given this information, marking cell C requires 
only a look at C’s direct consumers, followed by a single, O(p+d) 
breadth-first traversal up C’s backward slice, where d is the num-
ber of direct consumers connected to the p producers. Editing C’s 
formula requires the same breadth-first traversal, and therefore 
the same cost. These costs are independent of whether the 
environment is “bare” or includes WYSIWYT. 
 
5 Experiment 
 
Which of the above techniques intended for end-user program-
mers in interactive environments should we continue to pursue, 
and in what ways should we consider adjusting them? Answering 
this kind of question while development is still in progress is the 
purpose of a formative study, so named because it helps to inform 
the design. In the formative experiment we describe here, our goal 
was to gain insights into two attributes of effectiveness—ability 
to visually localize the faulty cells, and robustness—given test 
suites created by end users. 
 
One possible experiment aimed at these questions might have 
been to create hypothetical test suites to simulate a user’s actions 
in some collection of spreadsheets. We could have then run each 
hypothetical test suite under each technique to compare effective-
ness.  However, to tie our study more closely to its ultimate users, 
we instead elected to use as test suites the testing actions end 
users actually performed in an earlier experiment. These test 
suites were the subjects of our experiment. 
 
In the previous study that generated our current study’s test suite 
subjects, end-user participants recruited from a computer literacy 
course were instructed to test and identify errors in two Forms/3 
spreadsheets: Change and Grades. Change calculates the opti-
mized number of dollars, quarters, dimes, nickels, and pennies 
that are returned when a jar of pennies is cashed at a bank, and 
Grades computes a letter grade (A, B, C, D, F) based on four quiz 
scores and an extra credit score. Each of the two spreadsheets 
contained three seeded faults. A difference with implications for 
fault localization is that Change involves a narrow dataflow chain 

Figure 4. The Paycheck spreadsheet with the Nearest 
Consumers Technique. 



129 

leading to a single output, whereas Grades has several relatively 
independent dataflow paths.  
 
In the previous study, no fault localization technique was present. 
Also, the participants were not allowed to change any formulas; 
they could only change the values of the input cells and commu-
nicate testing decisions using √ and X marks. These restrictions 
were important for control and measurement purposes of the cur-
rent experiment, because it meant all spreadsheets contained the 
same faults throughout. Eventually it will be important, however, 
to run interactive experiments with end users actually present to 
take into consideration how the techniques influence the testing 
decisions users make.  
 
During the course of this previous study, we recorded the testing 
actions of each participant into an electronic transcript. For the 
current study, we ran these recorded testing actions through a tool 
that replays testing actions to extract the test values the users ac-
tually entered and checked off or X’d out. These test suites ob-
tained from the electronic transcripts were the test-suite subjects 
of our current experiment. 
 
6 Results 
 
6.1  Effectiveness Comparisons 
 
The effectiveness of a fault localization visualization technique 
rests on its ability to correctly and visually differentiate the cor-
rect cells in a spreadsheet from those cells that contain faults. The 
better job a technique does in visually distinguishing a spread-
sheet’s faulty cells from its correct cells, the more effective the 
technique. Thus, we will measure effectiveness by measuring the 
visual separation between the faulty cells and the correct cells of 
each spreadsheet, which is the result of subtracting the average 
fault likelihood of the faulty cells from the average fault likeli-
hood of the correct cells. Subtraction is used instead of calculat-
ing a ratio because the color choices form an ordinal, not a ratio, 
scale. 
 
We measured visual separation at two points in time: at the end of 
testing after all information has been gathered, and very early, 
just after the first failure is observed (regardless of whether 
successes have occurred). The reason for measuring visual 
separation at the end of testing is obvious. The reason for 
measuring after the first failure (X mark) is because it is at this 
point that a technique would first give a user visual feedback. 
This initial visual feedback may be flawed because the technique 
has very little information upon which to base its estimations; 
however, this initial feedback is important because it may influ-
ence the subsequent actions of the user. 
 
As a statistical vehicle to shed light on effectiveness, we state the 
following (null) hypotheses: 
 
H1: At the point the first failure is recorded, there is no 
significant difference in effectiveness among the three fault 
localization visualization techniques. 
 
H2: By the time all tests have been completed, there is no 
significant difference in effectiveness among the three fault 
localization visualization techniques. 
 

The mean visual separations are presented in Table 1, with stan-
dard deviations parenthesized. In the table, ~ denotes marginal 
significance in a technique’s difference from the other techniques 
(.10 level of significance), * denotes a difference significant at the 
.05 level, and ** at the .01 level. The box plots in Figure 5 add to 
the table’s information, showing the span of the 25th to the 75th 
percentile (interior of the box), the median (line inside the box), 
the tails of the distribution (vertical lines) and outliers (circles). 
 
A negative visual separation is in the correct direction (faulty 
cells darker than correct cells); given the correct direction, the 
larger the absolute value of this separation, the greater the visual 
difference. Hence, being close to the bottom of the Visual 
Separation axes in the box plots is best. From now on, we will 
simply refer to larger differences in the correct direction as 
“better.” 
 
We used the Friedman test to statistically analyze the results per-
taining to each research question. This test is an alternative to the 
repeated measures ANOVA, when the assumption of normality or 
equality is not met. 
 
For the first X mark placed in the Change spreadsheet, statistical 
analysis using the Friedman test showed the Blocking Technique 
to have a better visual separation than the other two experimental 
techniques, with marginal significance (df=2, p=0.0561). In the 
Grades spreadsheet, the Nearest Consumers Technique had a sig-
nificantly better visual separation (df=2, p=0.0028) than the other 
two techniques. We therefore reject H1. 
 
Note that the First-X results for the Change spreadsheet had most 
of its separations in the wrong direction—the correct cells tended 
to be colored darker than the faulty ones—but this did not happen 
in the Grades spreadsheet. Recall that the Change spreadsheet’s 
cells lined up in a single dataflow chain feeding into the final 
answer, whereas the Grades spreadsheet had multiple dataflow 
chains. This may suggest that the techniques are all at a disad-
vantage in providing reasonable early feedback given a single 
dataflow chain. The question of whether certain dataflow patterns 
are especially resistant to early feedback about faulty cells is an 
interesting one, but it requires further experimentation with addi-
tional spreadsheets.  
 
By the last test, the Test-Count Technique showed the benefits of 
the information that it builds up over time. More tests did not help 
the Blocking and Nearest Consumer Techniques as much. In fact, 
by the last test, the Nearest Consumers Technique had signifi-
cantly worse separations than the Test-Count Technique in both 
spreadsheets (Change: df=2, p=0.0268; Grades: df=2, p=0.0109), 
and was not significantly different from the Blocking Technique. 
Given these differences, H2 must also be rejected. 
 
We caution that the standard deviations in the data are quite large. 
These large standard deviations may not be surprising, however, 

Table 1. Mean visual separations, all subjects. 
First X Last Test  

TC B NC TC B NC 
Change 
(n=44) 

.212 
(.798) 

-.008~
(.612) 

.201 
(1.213) 

-.466* 
(.812) 

-.227 
(.593) 

-.152 
(.868) 

Grades 
(n=43) 

-.016 
(.879) 

-.093 
(.738) 

-.190** 
(1.213) 

-.151* 
(.756) 

-.031 
(.597) 

.081 
(.874) 
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given the variations in human behavior during interactive testing. 
Still, we must be cautious about generalizing from these data.  
 
The large standard deviations suggest another view of the effec-
tiveness of our visualizations: for how many subjects did the visu-
alization succeed and fail? That is, how often was the darkest 
cell—colored dark to draw the user’s attention—truly faulty? At 
the left of Table 2 is the percent of test suites (subjects) in which 
the darkest cell at the end of all testing was indeed faulty. The 
right side shows the percent of subjects in which a correct cell 
was erroneously colored darker than the faulty ones. (Ties, in 
which the darkest correct cell and faulty cell are the same color, 
are omitted from this table.) The low false identification rates 
may be particularly important to end users, who may be relying 
on the visualizations for guidance in finding the faults. 
 
6.2  Robustness 
 
End users engaging in interactive testing are likely to make some 
mistakes. (Professional programmers would also make mistakes if 
testing interactively, but in professional software development 
testing is often treated as more of an asset, with test suites care-
fully maintained and run in batch.) For example, a user might 
pronounce a test successful when in fact it reveals a failure. A 
fault localization visualization technique may not be useful, 
regardless of its effectiveness, if it cannot withstand mistakes.  

 
To consider this issue, of the 44 subjects for the Change spread-
sheet, we isolated 29 that contained either a wrong X or a wrong 
√ mark. Similarly, 21 of the 43 subjects for the Grades 
spreadsheet contained an erroneous mark. We refer to subjects 
with no erroneous marks as “perfect,” and refer to the others as 
“imperfect.” Given this information, we form the following (null) 
hypotheses to investigate robustness. 
 
H3: At the point the first failure is recorded, there is no 
significant difference in effectiveness among the three fault 
localization visualization techniques for “perfect” subjects. 
 
H4: By the time all tests have been completed, there is no 
significant difference in effectiveness among the three fault 
localization visualization techniques for “perfect” subjects. 
 
H5: By the time all tests have been completed, there is no 
significant difference in effectiveness among the three fault 
localization visualization techniques for “imperfect” subjects. 
 
Table 3 contains the data for the perfect subjects. Recall that all 
four of the situations compared in Section 6.1 showed at least 
borderline significant differences among the techniques. In con-

 

 

 
Figure 5. The box plots for the Change and Grades spreadsheets when all subjects are considered. Of particular interest are the 

large variances in the data for the Nearest Consumers Technique, and the small variances for the Blocking Technique. 

Table 2. Is the darkest cell faulty at the end of testing?  
True Identifications False Identifications  
TC B NC TC B NC 

Change 18.18% 13.64% 31.82% 11.36% 13.64% 9.09%
Grades 44.19% 51.16% 39.53% 6.98% 11.63% 16.28%

Table 3. Mean visual separations, “perfect” subjects.  
First X Last Test  

TC B NC TC B NC 
Change 
(n=15) 

.089 
(.877) 

-.078 
(.678) 

.078 
(1.367) 

-.667 
(.893) 

-.389 
(.760) 

-.456 
(.856) 

Grades 
(n=9) 

-.296  
(.735) 

-.333 
(.493) 

-.722 * 
(.833) 

-.037 
(.740) 

0 
(.577) 

.148 
(.626) 
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trast to this, when restricted to only the perfect subjects, the dif-
ferences were only significant for the first test of Grades. (First X 
Change: df=2, p=.6592; last test Change: df=2, p=.3618; first X 
Grades: df=2, p=.0169; last test Grades: df=2, p=.2359). Although 
this may be due simply to the smaller sample sizes involved, 
another possibility is that the errors included in the full sample 
were part of what distinguished the techniques from one another. 
We reject H3, but not H4. 
 
Comparing data on the imperfect subjects in isolation is a way to 
investigate this possibility. We cannot do a “First X” comparison 
for these subjects, since the sample necessarily includes both 
subjects with a correct first X followed by other errors, and sub-
jects with an incorrect first X. However, the data for the last test 
are shown in Table 4.  
 
In the “last test” data for the Change spreadsheet, the Test-Count 
Technique was best, at a marginal significance level (df=2, 
p=.0697). For the Grades spreadsheet “last test” data, the Test-
Count Technique was significantly better than the Nearest Con-
sumer Technique (df=2, p=.0433). Thus, H5 is rejected. 
 
6.3  Cost-Effectiveness Implications 
 
Whenever the Friedman tests revealed a significant difference by 
the last test, Test-Count was always the most effective. It was also 
fairly reliable, reporting a reasonably low number of false identi-
fications, although it did not distinguish itself in true identifica-
tions. Further, it seems to be the most robust, maintaining the best 
visual separations even in the presence of errors. These positive 
attributes are despite the fact that it is not as expensive as the 
Blocking Technique. However, it was the least effective of the 
three techniques at providing early feedback. 
 
The Blocking Technique is the most expensive. Despite this, we 
had expected its effectiveness to be commensurately high, pro-
ducing a good cost-effectiveness ratio. The previous section’s 
statistics, however, do not lead to this conclusion by the end of a 
test suite.  
 
The Blocking Technique did show two important advantages, 
however. First, it was always better than Test-Count for the early 
feedback. Second, it was much more consistent than the other two 
techniques, showing smaller spans and smaller variances than the 
other two in most cases. These facts suggest that if effectiveness 
were the only goal, a possibility might be to start with the Block-
ing Technique for early feedback, and switch to the Test-Count 
Technique in the long run.  
 
We devised the Nearest Consumers Technique with the hope that 
it would approach the performance of the other two with less cost. 
Instead, we learned that the Nearest Consumers Technique was 
less consistent than the other two techniques, both in the compari-

sons with the others’ data, and in the large variances within its 
results. Further, in some cases it performed quite badly by the last 
test. However, it sometimes performed quite well, especially in 
the “First X” comparisons. This may say that, despite the fact that 
it is less consistent than the Blocking Technique, it may still be 
viable to use during the early feedback period, and its lower 
expense may make it the most cost-effective choice for this pur-
pose.  
 
7 Conclusions and Future Work 
 
We have devised three visual fault localization techniques for 
end-user programmers. Two of the techniques are new in this 
paper. All three techniques draw from traditional approaches to 
fault localization, but their incremental algorithms and visualiza-
tion strategies are unique to the requirements of end-user pro-
gramming. In particular, all three techniques seamlessly integrate 
incremental visualizations into the spreadsheet environment. 
 
These techniques are still evolving, and thus we conducted an 
empirical, formative study to direct our efforts toward which 
one(s) to pursue and in what ways. Some of the more surprising 
results were: 
 
• Robustness: The ability to withstand user errors was quite 

different among the three techniques. Test-Count was the most 
robust in the presence of mistakes. We believe this resilience is 
tied to Test-Count’s accumulation of historical information. 

• Consistency: Consistency of results on different spreadsheets 
and with different test suites was a way in which the techniques 
differentiated themselves. Blocking had the least variation. 

• Early feedback: The correctness of feedback at the time of the 
first X may be critical in encouraging end users to continue 
testing, marking cells accordingly. Test-Count was not 
effective at this point. Interestingly, the low-cost Nearest 
Consumers Technique often did extremely well here. 

 
Taking the findings of this study into account, we are considering 
a number of refinements to our techniques. The robustness of the 
Nearest Consumers Technique may be improved by incorporating 
simple counters to record the number of correct and incorrect 
marks placed on a cell. Furthermore, we plan to manipulate the 
mathematics of our techniques as an independent variable to learn 
the extent to which it impacts the performance of the techniques. 
 
The ties with the end-user programmers themselves are our next 
research focus. For example, the incremental reward that users 
receive after each mark could have a critical impact on their de-
bugging strategies. Their ability to understand and predict the 
incremental changes in our visualizations also need to be investi-
gated. We are currently planning empirical work to investigate 
these and similar issues. 
 
Other software visualization research is concerned with human 
factors, but the extent to which our approach depends on these 
factors is magnified, since our audience consists of end users 
untrained in fault localization. Supporting this particular audi-
ence—which necessitates the highly interactive, incremental 
approaches presented in this paper—is the essential difference 
between our work and other software visualization research. 
 
 

Table 4. Mean visual separations, “imperfect” subjects.  
First X Last Test  

TC B NC TC B NC 
Change 
(n=29) 

-.362 ~ 
(.763) 

-.144 
(.479) 

.006  
(.847) 

Grades 
(n=34) 

Not applicable 
-.181 * 
(.768) 

-.039 
(.610) 

.064  
(.936) 
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