
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.

SOFTVIS 2008, Herrsching am Ammersee, Germany, September 16–17, 2008.
© 2008 ACM 978-1-60558-112-5/08/0009 $5.00

Software Visualization for End-User Programmers:
Trial Period Obstacles

Neeraja Subrahmaniyan1,2, Margaret Burnett1, and Christopher Bogart1
1Oregon State University

School of EECS

Corvallis, Oregon 97331

2Microsoft
One Microsoft Way

Redmond, WA 98052

{subrahmn, burnett, bogart}@eecs.oregonstate.edu

ABSTRACT

Software visualization for end-user programmers is a relatively
unexplored opportunity area. There are advances in software visu-
alization research pertinent to this, but the adoption stage has been
entirely ignored. In this paper, we focus on a popular facilitator of
adoption decisions: the free trial period. We conducted a case

study of an end-user programmer (an accountant) in this situation,
as she tried out a commercial spreadsheet visualization tool to
make an adoption decision. The results have implications for both
theory and design, revealing open questions, design opportunities,
and strengths and weaknesses of theoretical foundations.

Keywords: Software visualization, spreadsheets, end-user soft-
ware engineering, software adoption

CR Keywords: D.2.5 [Software Engineering]: Testing and De-

bugging; H.1.2 [Information Systems]: User/Machine Systems—
Human factors

1. INTRODUCTION

Software visualization research has made a number of gains in the
technology of how to produce visualizations that reveal insights
into software behavior, interrelationships, or faultiness (e.g., [11],
[12], [22], [30]). To date, these gains have primarily been targeted
at professional programmers and at computer science education,
but there is also a relatively new opportunity area: to bring the
same kinds of benefits of software visualization to end-user pro-

grammers, who also must grapple with software development
problems.

End users create software whenever they write, for example,
spreadsheet formulas. Research shows that there are about 3 mil-
lion professional programmers in the United States—but over 12
million more say they do programming at work, and over 50 mil-
lion use spreadsheets and databases [28]. Figure 1 shows the
breakouts. Thus, the number of end-user programmers in the U.S.

alone probably falls somewhere between 12 million and 50 million
people—several times the number of professional programmers.

 There are a few studies that focus on whether and how software

visualization communications with end users can be effective [3],
[13], [14], [24], but these are all in controlled laboratory settings,
and none of them investigate the adoption decision. In fact, little
is known about obstacles to adoption of software visualization for

real-world work, either for professional developers or for end-user
programmers. Some factors are obviously external to the software,
such as a company’s marketing practices, but some tie to the soft-
ware visualization tool itself. Our focus in this paper is on the
latter—obstacles that could be ameliorated by changes within the
software visualization tool.

One way by which people decide whether to adopt software is to
try it out on their own work. Knowledge of potential obstacles

within a software visualization tool that affect the user’s decision
during the trial period is therefore critical to software visualization
researchers and developers who seek to have their technology
adopted.

In this paper, we present a case study of the experiences of an end-
user programmer—an accountant, with years of experience creat-
ing and debugging spreadsheets—whose department wanted to
evaluate a beta version of a spreadsheet visualization tool. The
product they were considering was RedRover Software’s “Audit”

product [25], which provides visualizations for debugging Excel
spreadsheets.

Figure 1: US users in 2006 and those who do forms of pro-

gramming [28].

135

The accountant attended a training session on how to use the tool,
and then was given her own copy, which she installed. When her
everyday work involved a length of time working with a complex
spreadsheet to update and debug it, we came and watched. Our
purpose was to identify and understand obstacles to acceptance of

a software visualization tool for end users.

This case study has ties to several theories about what kinds of
obstacles could potentially arise: the Technology Acceptance
Model, Minimalist Learning Theory, and Attention Investment, as
well as formative empirical work on learning barriers and on end-
user debuggers’ information gaps. These theories have much in
common, but they are based on different assumptions, and do not
always predict the same things. One goal of this paper is to shed

light on how and whether these theory-based predictions play out
in a real-world situation for an end-user software visualization
tool.

The contributions of this paper are therefore (1) the identification
of obstacles faced by an end-user programmer giving a serious,
real-world tryout to a software visualization tool, (2) an enumera-
tion of ways the end-user programmer managed to overcome some
of these obstacles, and ways she might have been able to over-

come others if she had used other resources, (3) identification of
chains of events that prevented the end-user programmer from
overcoming some obstacles, along with cascading effects, (4)
events leading to abandonment of visualization features, and fi-
nally (5) connections of the observed phenomena with predictions
from the applicable theories and formative empirical work of other
researchers.

2. SOFTWARE VISUALIZATION FOR
SPREADSHEET USERS

To give a flavor of the kinds of visualizations the participant in
our study had available and how she would need to trigger them,
this section describes the tool’s visualizations. The tool we studied

was a beta version of “Audit” [25], an interactive add-in to Excel.
Through its collection of visualizations, it aims to help spreadsheet
users find and correct faults (errors) in spreadsheet formulas.

The tool has five visualizations: a visualization of regions to de-
pict spreadsheet structure, two visualizations depicting the “ap-
proved” status of cells’ formulas, and two visualizations relating
to suspected faultiness of cells’ formulas. Some of the visualiza-
tions are integrated into the spreadsheet itself and others are sepa-

rate, located in a side panel. Consistent with the interactivity of the
spreadsheet paradigm, all of the visualizations are “live”; that is,
they update in real time, after each user action.

The first visualization, shown in Figure 2, depicts regions. It is a
low-cost visualization that is integrated into the main spreadsheet

view. The thickened borders (colored purple) show regions of
cells that have the same formula, as adjusted for relative positions,
using reasoning about regions similar to that of Fisher et al. [8].
The visualization emphasizes the structure, and is intended to help

the spreadsheet user spot potential problems from a structural
perspective. For example, the fact that there are three different
formulas that calculate the Net Pay cells probably warrants closer
scrutiny.

The second and third visualizations depict which of these regions’
formulas have been explicitly approved by the user. For example,
in Figure 3, the user has approved the formulas in the Gross Pay
region. (The user expresses approval with a checkmark in a por-

tion of the side panel, not shown here). Because the visualization
in Figure 3 is integrated with the main spreadsheet view, it blends
with the visualization of Figure 2. There is also a stand-alone
visualization in the side panel (Figure 4) that shows the approval
status of all regions.

The fourth and fifth visualizations are test-oriented fault likelihood
visualizations. The fourth is integrated into the main spreadsheet
view, blended with the other visualizations in that view, and the
fifth is stand-alone. Unlike the previous visualizations, which are

based on reasoning directly about formulas, these visualizations
are based on reasoning about values and their implications on
formulas.

They work as follows. If the user notices correct values, he or she
can “check them off”, and can “X out” incorrect values. These
marks, which the user makes directly in the spreadsheet, trigger
fault localization computations that result in highlights on all cells
whose values (and therefore formulas) contributed to the errone-

ous value. For example, in Figure 5, the user noticed a negative
value in the Net Pay column, and X’d it out. The Adjusted Gross
also should not go negative, so the user X’d that negative value
out too. Federal Income Tax is correct (10% for this amount of
pay), so the user checked that value off to indicate its correctness.
X’d out values add to the evidence of cells’ possible faultiness
along the backward dynamic slice, and checked off values subtract
from that evidence. (An early research version of this visualization

scheme was presented in [26]. A visualization system for profes-
sional programmers based on similar reasoning is Tarantula [12].)

Figure 2: Visualization #1: Integrated visualization of spread-

sheet structure in terms of regions of similar formulas. The

first five rows calculate pay, and the bottom row adds up the

totals.

Figure 3: Visualization #2: Integrated visualization of “ap-

proved” formula regions (light green border around “Gross

Pay” region).

Figure 4: Visualization #3: Stand-alone visualization of ap-

proved versus unapproved regions, located in the side panel.

136

There is also a stand-alone visualization of all cells suspected of
faults in the “Fault Investigator” visualization in a side panel (Fig-
ure 6).

3. RELATED WORK

Researchers have empirically evaluated software visualizations for
people who are not end-user programmers. For example, several
studies have empirically evaluated algorithm animations for stu-
dents (e.g. [10], [11], [30]). Mulholland tested Prolog visualiza-

tions for students and discussed evaluation techniques for software
visualizations generally [21]. However student programmers are a
very different population than end-user programmers.

There have also been several empirical studies of software visuali-
zation use by professional programmers. Lawrance et al. investi-
gated the effects of test coverage visualizations on programmers’
testing behaviors [16]. O’Reilly et al. studied how a software en-
gineering team used a “War Room” multi-monitor visualization of

a large program [22]. Orso et al. tested their program execution
trace visualization tool, by embedding it in another program they
had developed and collecting and visualizing real-world usage
[23], although here it was the researchers, not the users, interacting
with the visualizations. DeLine et al. did a formative study of how
professional programmers navigate through code, and used the
results to design visualizations of wear-based filtering [6]. None
of these studies dealt with tool adoption decisions, and, as with the

above, also did not investigate end-user programmers.

There was a regular workshop at ICSE from 2001-2004 on “Adop-
tion-Centric Software Engineering,” with the theme of technology
transfer and adoption of new software engineering tools. Leth-
bridge, for example, summarized results of several empirical stud-
ies of professional programmers, and proposed an adoption model
that encompasses cost to use, benefit of use, and risk of use [18]
(the same factors as in the Attention Investment model [1]). The

workshop focused on tools for professional programmers, not end-
user programmers.

Other than our own prior work in evaluating a software visualiza-
tion system for end-user programmers (e.g., [26]), the closest work
we have been able to find is the work of Tullio et al. [31], who

interviewed office workers to understand their mental models of
the workings of an AI program. This program displayed a visuali-
zation of its reasoning process as it attempted to predict and com-
municate their boss’s interruptibility. However no studies we have
found to date have considered the combination of factors we in-

vestigate in the current paper: the adoption decision, by an end-
user programmer, of a software visualization tool, by trying it out.

4. CASE STUDY METHODOLOGY

Our investigation method was the case study, which is the right
choice for investigating a contemporary set of events over which
the investigator has little or no control [36].

4.1 Design

Our “case” (situation) was an end user trying out an end-user
software visualization tool. It was a single-case design, with the
unit of analysis being an end-user programmer in this situation.
The single-case design was of necessity: there exist only a few

real-world software visualization tools for end-user programmers,
and there were not many users available to evaluate the software
visualization tool, so we could not replicate over either multiple
participants or multiple tools.

In controlled laboratory experiments, multiple participants in-
crease “degrees of freedom.” The greater the degrees of freedom,
the more confidence can be placed in numerical majorities, be-
cause sample size determines the number of chances for a conclu-
sion to be refuted. In case studies, each “case” is the counterpart to

an entire experiment [17], [36]. Thus counterparts to degrees of
freedom (ways conclusions can be refuted) include the number of
situations covered, the number of sources of evidence, the number
of phenomena pattern-matched against theoretical predictions, and
the number of rival theories considered.

Our case study used the latter three of these. Our analysis and
data collection were oriented toward triangulation—multiple
sources of independent data. In addition, we pattern-matched all

observed phenomena, doing so against five related but distinct
theories.

4.2 Theoretical foundations

The following foundations are applicable for making predictions
as to how end-user programmers will make adoption decisions
when trying out a software visualization tool: the Technology
Acceptance Model and its successor (TAM, UTAUT) [20], [32],
[34], [33], Minimalist Learning Theory [4], [5], the Attention In-
vestment Model [1], and formative empirical work on information
gaps for end-user debuggers [13], and learning barriers for novice

programmers [15]. As Figure 7 illustrates, these theories have
some degree of overlap with each other. We chose these five theo-
ries over others (such as Cognitive Dimensions [9]) because these
five explicitly consider software features people do not know or
are trying to learn, a critical aspect during the tryout period.

The Technology Acceptance Model [20], [32], [34], which later
evolved into the UTAUT Model [33], identified four conditions
that together predict users’ behavior intention to use a technology:

usefulness to job performance, difficulty of use, whether col-
leagues expect usage of the technology, and techni-
cal/organizational infrastructure encouraging use of the system.
Since we are interested in adoption obstacles that occur within
software and its related artifacts, we focus solely on usefulness
and ease of use. (The factors are also modified by gender, age,
experience, and whether usage is voluntary. Our participant’s

Figure 5: Visualization #4: Integrated visualization of fault

localization. Shaded (yellow/orange) cells denote the back-

ward slice of the X’d cell values. The darker the shading, the

greater the estimated likelihood of a formula error.

Figure 6: Visualization #5: Stand-alone fault localization

visualization, located in the side panel.

137

gender, age, and experience are described below, and her usage
was voluntary.)

Minimalist Learning Theory [4], [5] and the Attention Investment

Model [1] both emphasize the trade-off decisions between ease of
use and usefulness made by users in the course of using the tool.
Minimalist Learning Theory predicts that, for users trying to ac-
complish a task, known as “active users” in that theory, learning
(investments/costs, in Attention Investment) is counter to the goal
of completing the task because it takes away time from the task
itself. Yet, active users sometimes do choose to spend time learn-
ing, because taking the time to learn may pay off in getting the
task done more quickly now or in future instances of it (bene-

fits/payoffs, in Attention Investment). Thus, Minimalist Learning
Theory emphasizes the task at hand in situations that require new
learning of a tool, whereas Attention Investment more generally
predicts users’ trade-off decisions in any kind of usage situation
having to do with abstractions. Attention Investment also makes
explicit the concept of a user’s perception of risks involved in
taking an action with a tool, which is absent from the other theo-
ries.

The formative empirical works that also apply to this case are the
information gaps faced by end-user debuggers of spreadsheets
with little explicit training in how to do so in the presence of soft-
ware visualization features [13], and learning barriers faced by
novice programmers learning Visual Basic in a course [15].

The more specific and focused a theory, the easier it is to apply to
all details within that focus, but the more it misses due to its nar-
row focus. As Figure 7 shows, the information gaps and learning

barriers fall into TAM/UTAUT’s “ease of use”, which in turn falls
within Attention Investment’s concept of costs/investments. This
points out that these theories equip us with a sizable, detailed ar-
senal of ways to discover obstacles (absence of ease of use). It
also points out that theory has not done as good a job at equipping
us with ways of concretely identifying benefits or risks, pointing
to these as open for additional research.

These theories have similar philosophies, but have different em-

phases and are based on different assumptions of user motivations
and interests. Thus, they do not always predict the same outcomes,
and so are in some sense rivals. For example, Attention Invest-
ment predicts that the perception of risk will play a role in the

participant’s decision-making, while Minimalist Learning theory
does not. One contribution of this paper is to shed light on the
extent to which each is applicable.

4.3 The participant

Our participant was a female accountant. She was about 50 years
of age and has used Excel for accounting purposes for over 18

years. She took a couple of classes on Cobol, Fortran and Machine
Language in the 1970’s, and used Cobol for less than a year. Prior
to our study, she had never seen, used, or read about Audit.

4.4 Data and procedures

Our data came from seven sources. First, we used the tool our-
selves, to gather data on alternatives available to the participant
and how she would need to trigger them. Second, the vendor con-
ducted a training session for potential users of the tool, which we
observed, so that our data included what our participant had been
taught.

Third, two observers observed the participant during the entirety
of the time she spent trying out the software on her own work,
which took place over 5 hours (with some interruptions). The par-
ticipant notified us when she wanted to spend a block of time on
her spreadsheets (with Audit turned on). In this way, we ensured
that we were not rearranging her work priorities. Also, the observ-
ers brought “other work,” which the observers did whenever noth-
ing was happening involving Excel or Audit, so that the partici-
pant would not feel pressured to spend more time on the tool than

she otherwise would.

Fourth, before the observation period, the participant filled out a
background questionnaire. Fifth, after the observation period, we
conducted a semi-structured interview with the participant, to
gather her impressions of the tool and the obstacles she encoun-
tered. Sixth, we obtained the user-oriented documentation of the
software, as a possible variable in the participant’s understanding
of the tool. Finally, nine months later, we conducted a semi-

structured follow-up interview.

Figure 7: The relationships among theories used in this pa-

per. (IG=information gap, LB=learning barrier).

Information Gaps [13]

Strategy Gap: “What should I do next?”

Features/Feedback Gap: “What does this purple mean?”
Self Judgment Gap: “I am stupid.”
Big Information Gap: “Whoa! What’s going on?”
Value/Formula Gap: “What should this formula be?”

Learning Barriers [15]

Design Barrier: “I don’t know what I want the computer to do”

Selection Barrier: “I think I know what I want the computer to
do, but I don’t know what to use”

Coordination Barrier: “I think I know what things to use, but I
don’t know how to make them work together”

Use Barrier: “I think I know what to use, but I don’t know how
to use it”

Understanding Barrier: “I thought I knew what to use, but it

didn’t do what I expected”
Information Barrier: “I think I know why it didn’t do what I

expected, but I don’t know how to check”

New Code

Misinterpretation – for example, thinking that Audit would accu-
rately check the data ranges.

Table 1: Obstacle code set with example quotes/situations

(examples drawn from this study and from others).

138

4.5 Analysis methodology

For obstacles, we coded using Ko et al.’s code set on learning
barriers [15], and Kissinger et al.’s code set on information gaps
[13]. We chose to use both because Ko et al.’s covered the learn-
ing but not the “doing” situation, whereas Kissinger et al.’s was
intended for the “active user” situation of Minimalist Learning,

but was not detailed about the learning aspects per se. The final
obstacle code set is given in Table 1.

We then did an “open coding” pass, which produced codes to
describe the contexts and details of various events that took place,
which group as: (1) Strategies to overcome obstacles, e.g., online
help, integrated help, documentation, colleagues, (2) Behaviors

and reactions to software, e.g., curiosity, frustration, negative
experience, positive experience, complimenting the software, (3)
Type of work, e.g., manually verifying data, using features to ver-

ify data, (4) Features used, e.g., X-marks, checkmarks, etc., and
(5) Interruptions, e.g., phone calls, email, colleague interruptions.
The open coding pass also produced the new obstacles code Mis-

conceptions.

Our coding procedure was to divide the data (the observation and
the interviews) into “paragraphs” (segments). Then two research-
ers applied the codes to a subset of the data and compared the
results, and calculated agreement. Agreement calculation was

measured by the ratio of intersection to union for the codes re-
corded for each segment (the same technique as used by [13]).
After iterating on the code set and procedures until we reached an
agreement of 91%, the code set was deemed robust, and one re-
searcher coded the rest of the data.

5. RESULTS

5.1 Obstacles faced

We first consider the obstacles that arose for the participant. The
codes were not mutually exclusive, so some observations were
given more than one code. Table 2 shows frequencies of each
obstacle type, and how many of the obstacles were still open (un-
resolved) at the end of the observation. Figure 8 shows the propor-

tions of the three categories of obstacle.

Despite having attended a training session, the participant encoun-
tered problems relating to understanding some of the features.
The Understanding Barrier accounted for nearly half of the learn-
ing barrier codes assigned. 62.5% of these co-occurred with Fea-

ture/Feedback Gaps, which were demonstrated in statements such
as “I don’t understand why this shows a checkmark” during the
observation period. In the interview, the learning barrier she men-

tioned most was also the Understanding Barrier, which corrobo-
rates our analysis of the observation session.

A related problem she had was that of getting information. Infor-

mation Barriers occurred only when Understanding Barriers or
Feature/Feedback Gaps were present. For example, we coded one
quote as both Information Barrier and Understanding Barrier: “I
am trying to put this formula from the other tab/sheet but some-
how it throws me this error. And I don’t know if it’s because of

Audit’s interaction or because of something with Excel.” She
neither understood the error nor knew how to get further informa-
tion about it.

The Strategy Gap code accounted for only 18% of the gaps
opened. This is not surprising, since the participant has had over
18 years to build up problem-solving strategies with spreadsheets.
Further, the Audit training session explicitly taught strategies for

use with the tool. The Strategy Gaps that did occur exactly coin-
cided with Selection Barriers: i.e., her Strategy Gaps were about
which of the new features to incorporate into her work. For ex-
ample, when trying to get fault localization colors to appear, she
said, “I remember in the presentation the antecedents would be

shown…trying to remember how to do”.

Finally, some gaps were not about the tool itself, but rather related
to the tool’s ability to help solve her work problems. These were
the information gaps about the correctness of values and formulas
(Value/Formula Gaps) in the spreadsheet, such as when the par-
ticipant asked herself, “Oh… Why would that be $5? ... Oh, right,
that’s because she is…”. These gaps accounted for about a third of
the information gaps.

Implications

For theory: The participant’s obstacles pattern-matched very well

to the information gaps: all five of the information gaps were
demonstrated. Only three of the learning barriers were seen in the
observation part of the study, and since Selection Barrier dupli-
cated Strategy Gap, only two learning barriers came into play as
useful distinctions. Even so, the learning barriers add value even
when they co-occur with information gaps, by implying the miss-
ing material that might help remove the obstacle in future versions
of the system.

For design: The distribution of information gaps and learning
barriers points to the range of information categories that tool
designers should consider when designing a software visualization
tool’s explanatory affordances. One example of how to provide
information to remove some of the obstacles is the explanations
inherent in the WhyLine for Alice [14], which visually answers
understanding barriers and information barriers by allowing users
to ask the system “why” and “why not” questions about system

Information Gap Type % of gaps

(n=24)

Still open

Value/Formula Gap 29% 57%

Features/Feedback Gap 29% 71%

Negative Self Judgment Gap 21% 60%

Strategy Gap 17% 50%

Big Information Gap 4% 100%

Learning Barrier Type % of barriers

(n=12)

Still open

Understanding Barrier 50% 83%

Selection Barrier 33% 50%

Information Barrier 17% 50%

Design Barrier 0% N/A

Coordination Barrier 0% N/A

Use Barrier 0% N/A

Other Obstacles % of other

(n=1)

Still open

Misinterpretation 100% 100%

Table 2: Breakdown of information gaps during observation

session.

Figure 8: Obstacles during observation session: Information

gaps (blue/medium grey) were the most prevalent. Learning

barriers: red/dark grey; Other/Misinterpretations: white.

139

behavior. Another example is strategy hints in video snippets and
hypertext [29], which target self-judgment and strategy gaps.

5.2 In what circumstances were obstacles over-
come?

Table 2 shows that, in every category, most of the participant’s
obstacles remained unresolved. But how did she overcome the
obstacles she did manage to resolve? We analyzed the six situa-
tions in which she overcame obstacles, and identified two factors

leading to success.

The first factor was closeness to task. When the learning barrier or
information gap was directly related to her task and the budget
calculation problem that she was working on, she tried to resolve
it. For example:

“Wow, 5.5 million. I have last year budget’s figures.” (Trying to

find a figure using find replace global search) “Weird formula…if

you replace that with this, you should have nothing. Wow, that’s

really screwy. Why does it keep doing that?”(She checked the data

range for the cell, and fiddled with the cell options and then tried

fixing the formula and finally fixed the formula)

This constituted an Understanding Barrier, because the cell’s

output was “weird” and she did not understand its behavior. It
also included a Value/Formula Gap, since the formula and value
raised questions as to whether they were correct. Third, it included
an Information Barrier, because she did not know how to find out
why it was giving her this feedback.

She resolved all three of these obstacles as she explored, figured
out what could be wrong, and fixed the formula. Because she is an
accountant and an experienced user of Excel, this problem may
have seemed easy for her to resolve, which may be why she tried

to fix it. But the fact remains that out of six situations in which
obstacles were resolved, in four of them it was because the obsta-
cle was closely tied to the task and values/formulas.

The second factor leading to obstacle closure was the visibility of

expected benefit. In Attention Investment terms, she expended
attention when she perceived the benefits of overcoming the ob-
stacles to be greater than the cost. This point also ties to Ko et al.’s
reasoning as to why learners try to overcome barriers [15]. For

example:

 “Oh I see I am not paying attention here. The salary value…”

(sifting through the list) “I remember in the presentation the ante-

cedents would be shown…trying to remember how to do” (refer-

ring to the Dependent cells shaded by fault localization colors.

She hovers over the question mark) “Ah here it is.” (She clicks on

X, sees the fault localization colors) “That’s what I wanted.” (She

places an X on another cell)

The fault localization colors seemed to have caught her attention
during the training session. In that session, the demonstrator did a
good job of talking about the benefits of the colors by contrasting
them with Excel’s feature of tracking dependency through arrows.

These benefits seemed quite motivating to her, and she pursued
the feature in the face of obstacles to attain this benefit. The obsta-
cles were a Strategy Gap and a Selection Barrier. To overcome
them, she was willing to take time to explore. In the course of
these explorations, when she hovered over the question mark [35],
she clicked on it and tried the X-mark and got what she wanted,
and the obstacles were overcome.

Implications

For theory: Minimalist Learning Theory and the Model of Atten-
tion Investment both pattern-matched well to our participant’s
actions. Minimalist Learning theory predicts that an active user
will be more willing to expend her attention when she believes the
benefits will be related to her task, not merely to learning knowl-

edge or skills. Attention Investment theory predicts perceived
benefit as the only positive driver of an attention investment deci-
sion. Both of these predictions were borne out with this partici-
pant. The only problems she persevered with enough to solve were
ones she perceived to be of direct benefit to her task.

For design: Good news for designers of software visualization
tools is the fact that the visual aspect of the fault localization bene-
fits appeared to play a role in her pursuit of this benefit. Visible
benefits mattered in a related study too, in which Ruthruff et al.

demonstrated that even minor increases in a related visualization
system’s visual benefits made a significant difference in not only
participants’ understanding, but also their effectiveness [27].

5.3 Why were some obstacles not resolved?

In all but one of the situations in which obstacles were never
closed, the participant did not even try to close them—instead, she
chose to work around them.

Ten situations accounted for the 24 obstacles that were left unre-
solved (since obstacles could co-occur). We found six reasons for
the lack of resolution: invalid assumptions, staying on task, low

perceived benefits, existence of manual workarounds, existence of
(perceived) equivalent features, and improper problem specifica-
tions.

Invalid assumptions: In the course of the observation, the partici-
pant developed some misconceptions that were never corrected,
which prevented her from resolving her obstacles. For example, at
one point she started getting pop-up formula update errors from
Excel. After scrutinizing the error message, then opening and clos-

ing the Help system (without reading anything), she finally de-
cided that this was most likely caused by an interaction between
Audit and Excel. She decided to restart Excel, believing that was
the best way to resolve her problem.

Ko et al. observed the same syndrome: “Learning barriers over-
come with invalid assumptions often led to insurmountable barri-
ers” [15]. Once formed, invalid assumptions can be surprisingly
resistant to contradictory evidence [31]. Indeed, during the inter-

views, the participant reiterated her misinterpretations and said
that any strategy other than restarting Excel would be her last re-
sort. In addition, she added that she, as the user, does not have the
responsibility to figure out why.

“I don’t know what it was doing. I was trying to edit and it

wouldn’t let me and there were errors, I don’t understand. MS

programs will behave odd every now and then and I just shut off

and start again. In many cases you never really know why, maybe

it was the interaction with Audit. Excel does these funny things.

Excel was open for long so maybe that’s why.”

Interviewer: Was the problem resolved after you restarted Excel?

“No, it didn’t, it won’t let me change the formula. But I left it for

now. Excel was open for long and it usually fixes when you re-

start.”

Interviewer: What if doesn’t fix after you restart? What would

your ultimate solution be?

140

“Ultimate solution…I would probably open the documentation,

then call the support people. Maybe it’s because of something they

added to Audit… like these add-ons get touchy with Excel. After I

shut it, I figured that might be the problem. But that’s your job to

figure out (laughs) I am just the user, why should I figure out?”

(Laughs)

Similarly, she misinterpreted the checkmarks to work in an asser-
tion-like fashion, checking the data ranges of the cells. We can
imagine how this misinterpretation of hers could lead to further
obstacles in the future and may cause negative experiences with
the software, but this did not occur during our observation session.

Staying on task: As Minimalist Learning Theory predicts for ac-
tive users, there were instances in which she did not bother to
understand feedback, instead ignoring it and concentrating on her
task. As she stated in the interview segment above, she viewed
some messages as problems for the software vendor, not as prob-
lems it would be her responsibility to pursue.

Low perceived benefits: Previously we pointed out that the partici-
pant figured out how to use X-marks in order to get the Fault Like-

lihood colors because of her perception of their benefits. But when
she placed a couple of Xs, she placed them very “early” in the
dataflow chain, which resulted in only a couple of cells being
highlighted. She verbalized disappointment, expecting a long
chain of highlights as seen in the training session. The benefits
seemed not to be as great as she expected. After this disappoint-
ment, she did not see Xs as being worthy of the additional time it
might take to figure out how to get the full range of fault likeli-

hood colors, so she did not investigate further. However, she did
use a lot of X-marks throughout the task, suggesting that she still
saw enough benefit to use them, even if not enough benefit to
invest time in learning how to use them better.

Existence of manual workaround: This is probably a combination
of “staying on task” and “low perceived benefits.” The participant
sometimes expressed uncertainty about there being a better way to
do things, but she did not try to investigate whether this was the
case if she could perform the task manually. Hence with low per-

ceived benefits and being an active user, having an immediate
substitute caused her to not try. For example,

(She was breaking up the spreadsheet by inserting columns. She

cut a row and pasted at the top.) “At this point I am going to di-

vide the whole sheet into different you know… like the deans, the

departments and so on. I am just going to insert blank rows to do

that, because I don’t know how else to structure it.”

As the above excerpt shows, the participant was trying to structure
the spreadsheet by manually copying and pasting rows and insert-
ing blank rows. The most efficient way would have been to sort
the respective column and then add in blank rows. Although she
did use the Sort command often, she never thought of using it

here. This also ties in with Bhavnani et al’s findings that even
experienced users often fail to use the features and functionalities
of a software tool effectively [2].

Existence of (perceived) equivalent features: The participant did
not understand the difference between the feedback she got from
placing checks on cells, versus the feedback from approving for-
mula regions via the side panel (also done with a check mark). She
stated in the interview that she liked the feedback from approving

formula regions (green borders) but did not like the checks on
individual cells, as she found them to be “cluttered” (Figure 9).
So she resorted to approving formulas in the side panel instead of

values in cells, mistakenly assuming they were equivalent.

Improper problem specifications: There were also cases in which
she gave up on the task for reasons unrelated to the software, such
as when her boss asked her so vaguely for information that she
was unable to produce useful results.

Implications

For Theory: Three of the six situations above involved misper-
ceived costs that were apparently derived from misconceptions,
although we were not able to code most of them with the Misin-

terpretation code since the misinterpretations were not explicitly

stated. Attention Investment and Minimalist Learning refer to
perceived cost, benefit, and risk, and it is an important caveat in
the use of these theories that the user may not merely misjudge the
size of a benefit or cost, but may even base them on entirely inva-
lid assumptions. Ko et al. also tie misconceptions tightly to learn-
ing barriers [15]. Our participant’s behavior suggests that miscon-
ceptions should play a part in models of adoption decisions that
take into account the use of a free trial period.

In four of the six situations, the participant chose not to resolve
obstacles, instead working around them by disabling the tool or
underutilizing its features. This behavior is predicted by Minimal-
ist Learning and Attention Investment. She could do this easily,
since the visualization’s functionalities were optional additions to
a task she had been doing for years. None of the theories we con-
sidered are explicit about the extent to which optionality is a fac-
tor, which may be particularly relevant to software visualization
adoption decisions.

For design: Sometimes a simple change to the interaction devices
can remove misconceptions. In this case, the participant’s miscon-
ception was rooted in two functionalities with similar interfaces:
checkmarks both for values and for regions of formulas. We sus-
pected that making the distinction explicit would eliminate the
misconception, so we devised a small paper prototype replacing
the cell checkmarks (main spreadsheet view) with a pop-up choice
menu of two checkmarks side by side, one labeled with the cell’s

value and the other with the beginning of the formula. In a small
Wizard-of-Oz study, all five participants tested were able to ex-
plain the distinction.

5.4 Would the documentation or integrated help
system have helped?

We have pointed out the participant’s behavior being consistent
with the “active user” of Minimalist Learning Theory, who es-

Figure 9: A source of confusion: checkmarks inside cells ap-

prove values, but “Approved” checkmark approves formulas

for a region.

141

chews learning for learning’s sake, but is sometimes willing to
learn if doing so is expected to produce sizable benefits to the task
at hand. As such, she made no use of the documentation provided
with Audit.

Might she have performed better had she attempted to use the

documentation? We looked for answers in Audit’s and Excel’s
documentation and integrated help for eight of the ten situations of
unresolved obstacles (excluding the two that simply amounted to
inadequate problem specifications).

Only one of these eight problems might have been resolved with
the documentation: her confusion regarding the difference be-
tween approving formulas and checking values.

In four of the eight situations, the answers to her obstacles were in

the documentation, but the answers were unclear or non-explicit,
so she probably would not have found them. For example, she was
unsure of the meaning of the tooltip, “Medium chance of error”,
on a cell colored orange for fault likelihood (Figure 10). Neither
the training session nor the documentation explicitly states what
orange colors mean or clarify that the highlights just show the
probability of error, not guaranteed erroneous cells. The documen-
tation uses inconsistent terminology surrounding the notion of

“likelihood”. Some places use the word “suspicious”, others use
the word “relevance”. Three more of the eight situations were
outright absent from the documentation or Excel’s help system.
For example, she had a misconception that restarting Excel would
fix the messages on formula update error. We searched in Excel’s
help system for “cannot update formula error” and got back 29
possible links, but we were unable to find the answer in them. For
example, the link that seemed most relevant “find and correct

errors in formulas” did not have what we wanted. It was about
how to fix errors in formulas such as reference errors, but not
about updating.

Implications

For theory and design: These results suggest a useful synergy
between information gaps and Minimalist Learning Theory with
direct implications for design.

Minimalist Learning Theory proposes organizing a help system
around user tasks (as opposed to system features). Our results
suggest that, in addition, a help system designer might choose

documentation topics from the set of information gaps and learn-
ing barriers encountered in a user study or a Cognitive
Walkthrough [19].

Farkas adds a recommendation of layered help to Minimalist
Learning Theory [7], to reduce the user’s attention cost of turning
to a help system. “Layering” means providing a small explanation
that is easily accessible plus links to more information for those
who want to know more. We have tried out this idea in other
work, adding to tooltips about visualizations, links to strategy

explanations about how to use the visualizable information in
problem solving about spreadsheet bugs, and results have been
encouraging [29].

5.5 Effects of obstacles not closed

What were the consequences of failing to overcome an obstacle?
In the ten situations in which obstacles occurred that were never

closed, we were able to identify three consequence patterns: (1)
the participant resorting to manually doing the work, (2) no no-

ticeable effect at all on the participant, and (3) the participant ex-
periencing some combination of frustration, negative experiences,
and software not meeting her expectations.

Manual Alternatives: For 17% of the obstacles, she resorted to a
manual way of accomplishing her goal, circumventing the need to
use features or to dig out the problems’ causes. The example be-
low featuring turning off Audit and subsequent brute-force search

demonstrates this. This can be viewed as Attention Investment
saving the situation. The participant did not see reasons to spend
time investigating causes and effects, but simply found another
way to get the job done.

No Effect: For another 17% of the obstacles, she was able to con-
tinue her work despite the obstacle. For example, at one point she
copied a formula to a range, and in some rows values appeared
where she expected blanks:

 “Oh that’s interesting. Why would that happen?” (She deleted

them)

This was an obstacle she did not try to close. She simply deleted
the mysterious values and moved on.

Frustration: For 67% of the obstacles, failure to close them led to
the software not meeting her expectations, which led to a pattern
of frustration and negative experience. For example:

(Trying to edit a formula) “Why is it changing to D45? I want to

edit this. Is there something that allows me to edit this? I’m hav-

ing trouble, trouble”. (Turns off Audit completely, goes for brute

force search and started editing formulas with the similar error of

omitting $ signs)

Here, the formula would not change no matter how many times
she edited it. Understandably, this frustrated her. She attributed the
problem to Audit, and turned it off to solve the problem, but doing
so did not solve the problem (since Audit was not the cause after

all). These obstacles remained unresolved.

Misinterpretations often led to obstacles becoming insurmountable
and hence to failed expectations, as in the case of believing that an
Excel error was due to Audit. There was also a bona-fide problem
with that beta version of Audit itself, in which it refused to func-
tion if a user inserted or deleted rows or columns. The participant
needed this functionality, and running into this limitation led again
to failed expectations:

“Oh I can’t delete things as I am Auditing… that’s a serious prob-

lem for me isn’t it?”

Failed expectations were the most serious of the events observed,
culminating in her turning off Audit.

6. THE OUTCOME

Our follow-up interview with the participant nine months later

revealed that no explicit adoption decision had been made. The
participant said she did not use Audit very much after the observa-Figure 10: A message the participant did not understand.

142

tion period, because the free trial version expired. New versions
became available to her, but she has not had time to install them.
Her lack of use since that time can potentially be viewed as a “do
not adopt” decision.

Given this lack of use combined with the obstacles we had ob-

served, we were surprised when, asked if she were to explicitly
decide yes or no, she enthusiastically stated that she would indeed
choose to adopt Audit. Her reasons were tied to the perceived
benefits of using it.

Specifically, she explained that the spreadsheet she created during
the observation period was, in her words “extremely complicated,”
but despite that, has turned out to be one she has relied upon heav-
ily over the past year. She described “confidence” and “trust” in

the spreadsheet (using the quoted words), to an extent she ex-
plained was unusual with such a complex spreadsheet. She attrib-
utes her degree of confidence and trust to having used the software
visualization tool when she created that complex spreadsheet.

Thus, from a TAM/UTAUT perspective, her intent to adopt the
software visualization tool suggests that, in her case, usefulness
outweighed the ease-of-use obstacles she encountered, which
TAM/UTAUT links to intention to use. It is possible that her in-

tention could be made stronger (increasing the likelihood of fol-
low-through) via a change in the UTAUT “facilitating conditions”
factor, e.g., someone in the technical support staff installing the
software for her. Consistently with this, Attention investment pre-
dicts that whether she ultimately follows through to adopt the
software visualization tool will depend on whether her perception
of the benefits of using the tool and of the reduction of risk it
brings will outweigh her perception of the time it will cost her to

install it.

7. DISCUSSION AND THREATS TO VALIDITY

As we have pointed out, the participant’s retrospective enthusiasm
for the visualization tool was a surprise to us. The participant
abandoned the tool behaviorally during the observation, yet later
she expressed an enthusiastic desire to adopt it.

One likely reason for this apparent contradiction may be an in-
crease in perceived benefits due to the spreadsheet’s reliability
over the passage of time. Revisiting Figure 7 also suggests an-
other possible explanation. The “costs” bubble is well populated,

and produced most of the codes for our analysis of obstacles quite
successfully, but beyond our study’s scope of “obstacles”, there is
less foundation. The “benefits” bubble is empty other than the
TAM/UTAUT link, and we are not aware of a foundation that
would provide the same level of details for benefits as are avail-
able for costs. The figure also suggests perceived risk as a possible
blind spot. This points out gaps in the theoretical foundations for
observational studies investigating perceptions of benefits and
risks: theory does not provide concrete guidance on how one

might codify these aspects.

Focusing now on our study’s scope, namely to identify obstacles,
we coded only what we could observe: what the participant did
and said. As we have said, our tracking of obstacles was based on
information gaps and learning barriers, which we found to be very
useful due to their low-level specificity. Even so, this is not the
only coding scheme possible, and other schemes might have
yielded different results. Also, misconceptions, as we have pointed

out earlier, may have been underestimated due to our reliance on
the combination of information gaps and learning barriers.

There is some risk that we missed significant events by not video-

recording the session for later analysis. We took steps to mitigate
this risk by being careful to have one interviewer make notes
while the other interviewed, and completing our observation notes
immediately after the session.

Signs that the participant had encountered an obstacle (e.g., signs

of frustration) relied on observers’ interpretations, which can lead
to errors. To guard against this threat, during content analysis, we
were conservative about these measures, requiring explicit ver-
balizations or actions that suggested such mental states. In addi-
tion, investigator triangulation was used: both observers had to
agree in order for such data to be included. We also used data
triangulation, with the interviews, the documentation, and our
prior use of the software as multiple sources of evidence of our

interpretations. Finally, regarding generality, this case study used a
single-case design, involving a single participant in a single situa-
tion. We do not claim generality to other participants or to other
situations. However, the participant’s behaviors can still be
viewed as evidence in a real-word setting that corroborates theory
and foundational empirical results.

8. CONCLUSION

In this case study, we have reported how an end-user programmer
(an experienced accountant) went about deciding whether to adopt
an end-user software visualization tool by trying it out on her own

work. Although all five foundations were useful in understanding
our participant, we found in particular that:

• The most useful from a predictive standpoint was Minimalist
Learning theory. Its notion of the “active user” captured our
participant’s behavior in this tryout situation extremely well.
Creators of end-user software visualization tools would do
well to consider the focus of active users such as our partici-
pant, whose disinterest in learning per se was counteracted

only when she saw direct relevance to the task at hand.
• The most useful foundation for identifying obstacles was In-

formation gaps; all five from Kissinger et al.’s list occurred
in this case study. Learning barriers were less salient, but
were still helpful in teasing apart factors in information gaps
and also tended to be suggestive of possible solutions. Crea-
tors of end-user software visualization tools can benefit from
the list of obstacles we derived from these foundations (Table

1) in predicting obstacles that could arise with their own tools
at tryout time.

• Our results also point to gaps in foundational guidance for
understanding perceived benefits and risks at the same level
of detail as information gaps and learning barriers provide for
understanding perceived costs.

Two results of particular pertinence to software visualization are
the (advantageous) strong recollection by our participant of visual
benefits, leading to subsequent persistent pursuit of those benefits,

and the (disadvantageous) ease of abandoning visualizations when
they were not seen to be useful—a route readily followed by our
participant, perhaps because visualizations tend to be optional
“add-ons” rather than core functionalities.

Finally, our results enumerate specific troublesome obstacles that
can arise during the trial period, helping creators of software visu-
alization tools to anticipate and head off solve-or-abandon mo-
ments like this one: “Wow... that’s really screwy. Why does it

keep doing that?”

ACKNOWLEDGMENTS

We thank Pallavi Rajasekaran and Susan Wiedenbeck for their

143

contributions to this work. This study was supported in part by the
EUSES Consortium via NSF ITR-0325273, and by an IBM Inter-
national Faculty Award.

REFERENCES

[1] Blackwell, A., First steps in programming: A rationale for at-
tention investment models, IEEE Symp. Human-Centric Com-

puter Langs. Envs., 2002, 2-10.
[2] Bhavnani, S. K., John, B. E., From sufficient to efficient usage:

An analysis of strategic knowledge, ACM Conf. Human Fac-

tors Computing Systems, 1997, 91-98.
[3] Burnett, M., Cook, C., Rothermel, G., End-user software engi-

neering, Comm. ACM, 2004, 53-58.

[4] Carroll, J., Rosson, M., Paradox of the active user, In Interfac-

ing Thought: Cognitive Aspects of Human-Computer Interac-

tion, J. Carroll (Ed.), MIT Press, 1987.
[5] Carroll, J. M. (Ed.), Minimalism Beyond the Nurnberg Funnel,

MIT Press, 1998.
[6]DeLine, R., Khella, A., Czerwinski, M., Robertson, G., To-

wards understanding programs through wear-based filtering,
ACM Symp. Software Visualization, 183-192.

[7]Farkas, D., Layering as a safety net for minimalist documenta-

tion, in Minimalism Beyond the Nurnberg Funnel, Carroll, J.
M. (Ed.), MIT Press, 1998, 247-274.

[8]Fisher, M., Rothermel, G., Creelan, T., Burnett, M., Scaling a
dataflow testing methodology to the multiparadigm world of
commercial spreadsheets, Int. Symp. Software Reliability En-

gineering, 2006, 13-22.
[9]Green, T., Cognitive dimensions of notations, In People and

Computers V., A. Sutcliffe and L. Macaulay (Eds.), Cambridge

University Press, 1989, 443-460.
[10]Grissom, S., McNally, M. F., Naps, T., Algorithm visualiza-

tion in CS education: comparing levels of student engagement.
ACM Symp. Software Visualization, 2003, 87-94.

[11]Hundhausen, C. D., Brown, J. L., What You See Is What You
Code: A “live” algorithm development and visualization envi-
ronment for novice learners, J. Visual Lang. and Computing,
18, 1, Feb. 2007, 22-41.

[12]Jones, J. A., Harrold, M. J., Stasko, J., Visualization of test
information to assist fault localization, 24th Int. Conf. Software

Engineering, 2002, 467-477.
[13]Kissinger, C., Burnett, M., Stumpf, S., Subrahmaniyan, N.,

Beckwith, L., Yang, S., Rosson, M., Supporting end-user de-
bugging: What do users want to know? Advanced Visual Inter-

faces, 2006, 135-142.
[14]Ko, A., Myers, B., Designing the Whyline: A debugging inter-

face for asking questions about program behavior, ACM Conf.

Human Factors Computing Systems, 2004, 151-158.
[15]Ko, A., Myers, B., Aung, H., Six learning barriers in end-user

programming systems, IEEE Symp. Visual Lang. Human-

Centric Computing, 2004, 199-206.
[16]Lawrance, J., Clarke, S., Burnett, M., Rothermel, G., How

well do professional developers test with code coverage visu-
alizations? An empirical study, IEEE Symp. Visual Lang. Hu-

man-Centric Computing, 2005, 53-60.

[17] Lee, A., A scientific methodology for MIS case studies, MIS

Quarterly, 13, 1, 1989, 33-50.
[18]Lethbridge, T., Value assessment by potential tool adopters:

Towards a model that considers costs, benefits, and risks of
adoption, 4th

 Int’l Wkshp. Adoption-Centric Software Engineer-

ing, 2004, 46-50.
[19] C. Lewis, C., Polson, P., Wharton, C. and Rieman, J. Testing

a walkthrough methodology for theory-based design of walk-

up-and-use interfaces. ACM Conf. Human Factors Computing

Systems, Apr. 1990.
[20]Morris, M., Dillon, A., The influence of user perceptions on

software utilization: Application and evaluation of a theoretical
model of technology acceptance, IEEE Software, 14(4), 1997,
58-76.

[21]Mulholland, P., Using a fine-grained comparative evaluation
technique to understand and design software visualization
tools, In Empirical Studies of Programmers, S. Wiedenbeck
and J. Scholtz, Eds., ACM, 1997, 91-108.

[22] O’Reilly, C., Bustard, D., Morrow, P., The war room com-
mand console: Shared visualizations for inclusive team coordi-
nation, ACM Symp. Software Visualization,2005, 57-65.

[23] Orso, A., Jones, J., Harrold, M. J., Visualization of program-

execution data for deployed software, ACM Symp. Software

Visualization, 2003, 67-76.
[24]Prabhakararao, S., Cook, C., Ruthruff, J., Creswick, E., Main,

M., Durham, M., Burnett, M., Strategies and behaviors of end-
user programmers with interactive fault localization. IEEE

Symp. Human-Centric Computing Lang. and Environments,
2003, 15–22.

[25]RedRover Software Audit,

http://www.redroversoftware.com/products/audit
[26]Ruthruff, J., Creswick, E., Burnett, M., Cook, C., Prabhakara-

rao, S., Fisher II, M., Main, M., End-user software visualiza-
tions for vault localization, ACM Symp. Software Visualization,
2003, 123-132.

[27]Ruthruff, J., Phalgune, A., Beckwith, L., Burnett, M., Cook,
C., Rewarding good behavior: End-user debugging and re-
wards, IEEE Symp. Visual Lang. Human-Centric Computing,

2004, 69-71.
[28]Scaffidi, C., Shaw, M., Myers, B., Estimating the numbers of

end users and end user programmers, IEEE Symp. Visual Lang.

Human-Centric Computing, 2005, 207-214.
[29]Subrahmaniyan, N., Kissinger, C., Rector, K., Inman, D.,

Kaplan, J., Beckwith, L., Burnett, M., Explaining debugging
strategies to end-user programmers, IEEE Symp. Visual Lang.

Human-Centric Computing, 2007, 127-136.
[30]Tudoreanu, M. E., Designing effective program visualization

tools for reducing user’s cognitive effort, ACM Symp. Software

Visualization, 2003, 105-114.
[31]Tullio, J., Dey, A. K., Chalecki, J., Fogarty, J., How it works:

a field study of non-technical users interacting with an intelli-
gent system, ACM Conf. Human Factors Computing Systems,,
2007.

[32]Venkatesh, V., Morris, M., Why don’t men ever stop to ask
for directions? Gender, social influence, and their role in tech-

nology acceptance and usage behavior, MIS Quarterly, 24(1),
2000, 115-139.

[33] Venkatesh, V., Morris, M. G., Davis, G. B. and Davis, F. D.
User acceptance of information technology: Toward a unified
view. MIS Quarterly 27, 3, 2003, 425-478.

[34]Venkatesh, V., Determinants of perceived ease of use: Inte-
grating control, intrinsic motivation, and emotion into the
Technology Acceptance Model, Information Systems Research

(11:4), 2000, 342-365.
[35]Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn,

L., Cook, C., Durham, M., Rothermel, G., Harnessing curiosity
to increase correctness in end-user programming, ACM Conf.

Human Factors Computing Systems, 2003, 305–312.
[36]Yin, R., Case Study Research: Design and Methods, Sage

Publications, 2003.

144

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

