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The early detection of type errors is a well-known benefit of static typing, but until
recent years, this benefit usually has come at the cost of requiring the programmer to
explicitly declare the type of every object in a program. Since many visual programming
languages (VPLs), especially those VPLs intended for end users, are designed to
eliminate such programming mechanisms, most VPLs have been implemented with
dynamic typing, thereby sacrificing early type error feedback and other benefits of static
typing. One potential solution for this dilemma is static type inference, but unfortunate-
ly, the types inferred under previous approaches have been notoriously difficult to
understand, even for professional programmers. Compounding this problem is the fact
that when support for inheritance is added to such type inference systems, explicit type
declarations have re-emerged.

In this paper, we present a model of types that supports static type inference for
a declarative VPL that includes inheritance. Our model addresses the problems
presented in the previous paragraph. We present the formal model of our type system,
and show that the model is not only sound with respect to type safety, but that it also
has sufficient power to support traditional and non-traditional forms of inheritance, and
further that it requires the user to understand only a small vocabulary of types, a feature
important in addressing the understandability problem in end-user VPLs.
( 2000 Academic Press
1. Introduction

EVEN THOUGH MANY OF TODAY’S VISUAL PROGRAMMING LANGUAGES (VPLs) are designed
for programmers, an ever-increasing number is aimed at end users. This paper describes
a new model of types, intended to support static type inference in first-order declarative
VPLs—declarative VPLs with no higher-order functions, such as rule-based, con-
straint-based, dataflow, logic, and spreadsheet-based VPLs—aimed at either one of
these audiences. We focus on first-order declarative VPLs for two reasons: (1) in textual
languages, static type inference has been extensively studied in the realm of declarative
languages, a topic that is discussed further in Section 2; and (2) in VPL research,
first-order declarative paradigms have been widely used.

Most previous work into static types for VPLs has focused on declarative VPLs, but
has not included support for inheritance. This lack is a serious limitation on the ability to
employ static types in modern declarative VPLs, many of which are starting to
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incorporate forms of inheritance. In the context of our own research, the need for
a model of types supporting inheritance became paramount in our recent work to
develop similarity inheritance [1]. Similarity inheritance is an approach to inheritance
that eliminates the concept of subclasses. Without subclasses, the programmer need not
spend time contemplating the best relationship among classes, organizing subclasses
into a hierarchy, or understanding the subtle distinctions among subclasses, subtypes,
and interfaces. We believe these concepts are beyond the capabilities of end users with
no formal programming training, and even for programmers, they require valuable time
and effort. Similarity inheritance is a fine-grained approach to inheritance without
subclasses devised both for VPLs aimed at programmers and for those aimed at end
users. However, because the granularity of similarity inheritance is finer than previous
approaches to inheritance, models of types that have been developed for (textual or
visual) languages with inheritance do not support it.

In this paper, we present a new model of types to support static type inference in
a first-order declarative VPL that includes inheritance. Because one of our primary
motivations was the ability to support not only traditional forms of inheritance, but also
similarity inheritance, one property required of the model of types is:

z Fine-grained inference : most static type inference systems derive type information at the
granularity of entire classes, and this level of granularity prevents these languages from
supporting more fine-grained approaches to inheritance.

Another problem has been that previous models of types supporting static type
inference have not been well suited to VPLs aimed at end users. Yet, a type inference
approach that was suited to both end users and programmers would allow VPLs to
retain the benefits of static typing without requiring the user to engage in the program-
ming mechanics of explicitly declaring types. One of these benefits is particularly
important to VPLs that feature immediate visual feedback: a static approach potentially
allows a system to immediately report a type error as soon as the offending expression is
entered. Thus, additional goals of this research have been to devise an approach to type
inference—suited to VPLs with inheritance, including those for end users—that aims
for these two properties:

z Understandability : if a type inference system detects a type error, the error should be
communicated to the user. The types in existing models have become so complex that
they present difficulties even to professional programmers communicating with the
type system. This lack of understandability is not acceptable in VPLs aimed at end
users.

z Power without the addition of explicit declarations : in implicitly typed languages, the
introduction of inheritance or prototyping has typically re-introduced explicit declar-
ations of type constraints.

All three properties are of some relevance to textual programming languages, but they
are critical in VPLs, because their absence effectively prevents the effective use of static
type inference both in VPLs incorporating similarity inheritance and in VPLs aimed at
end users.
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In this paper, we present a model of types with these three properties in mind.
Its purpose is to give early feedback about type safety. Our model aims for understanda-
bility to both programmers and end users by basing its reasoning on concrete references
to objects and operations attempted, rather than reasoning in terms of complex type
names. This strategy turns out to be powerful enough to flexibly support both coarse-
and fine-grained approaches to inheritance, including single inheritance, multiple in-
heritance, and similarity inheritance.

1.1. Organization of this Paper

After surveying related work in Section 2, we introduce a subset of Forms/3 for formal
reasoning purposes in Section 3. (Although the subset is simpler than full Forms/3,
it is functionally equivalent to full Forms/3.) Building upon this subset, we present the
basic model of types in Section 4, and then expand the model to handle inheritance in
Section 5. In Section 6, we prove that the model has the property of soundness with
regard to type safety, and discuss the type vocabulary required for communication with
users. Finally, after a short discussion of future work in Section 7, we conclude in
Section 8.

2. Background and Related Work

2.1. Basic Concepts of Static Polymorphic Type Inference

This section provides a very brief introduction to the basic ideas of polymorphic type
inference. For more comprehensive coverage, two excellent introductory surveys are
Cardelli and Wegner [2] and Schwartzbach [3].

The term polymorphic types refers to ‘data or programs which have many types or
operate on many types’ [4]. For a programming language that requires explicit type
declarations, a polymorphic variable X may be declared:

var X : a

where a is a type variable whose actual meaning varies contextually. This explicit
approach is referred to as explicit polymorphism. The term implicit polymorphism is used to
describe polymorphic approaches in which such type declarations are unnecessary. In
these cases, type information is automatically inferred by the language processor. Most
inferences are made statically, and this paper confines its attention to approaches that
are entirely static. The primary goal is to preserve type safety, that is, if a program is
statically determined to be type-safe, then the type system guarantees that no run-time
type errors will arise.

Most type inference systems include function types which allow languages with
higher-order functions to employ type inference. Declarative languages with higher-
order functions are the class of languages in which type inference is most commonly
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found. For example, suppose in such a language, the following function has been
defined (adapted from Jun and Michaelson [5]):

fun sumfunc } [ ]"0 D
sumfunc f (h : : t )"f h#sumfunc f t

The function sumfunc sums the result of applying function f to every element
of a list, and has type (aPint)Pa listPint, where a is a polymorphic type, and
the Ps separate the arguments and the return value in a function’s type (e.g., aPint
means the function takes a polymorphic type a and returns an integer). Suppose
three additional functions, cardinal, realfn, and sq, are defined with the following
types:

cardinal: intPstring
realfn: intPreal
sq: intPint

If cardinal or realfn were passed into sumfunc as the first argument (f ), then a type
error would occur because the system could not resolve the type conflict between string
and int or between real and int. If sq is used, however, no type error would arise, and the
following inferences could be made:

sumfunc: (aPint)Pa listPint by initial definition
sq: intPint by initial definition
sumfunc: (aPint)Pa listPintNa"int by substituting sq for f
sumfunc: (intPint)Pint listPint final result for this use of sumfunc

In the same way, sumfunc could be used with a new function truncate of type
realPint or a function length of type stringPint. Such reusability is the benefit of
polymorphism.

The sumfunc function is an example of operation polymorphism [6] because it is code that
works on different types that are not necessarily related to one another. Parametric
polymorphism [ 2 ] is a special type of operation polymorphism that works on an infinite
number of types, as is true of the sumfunc function example, but the (more
general) operation polymorphism does not itself necessarily imply an infinite number
of types. Both are in contrast to the kind of polymorphism generally associated with
object-oriented languages, inclusion polymorphism, which instead allows reuse based
on an object belonging to multiple related types. We point out this distinction
because, unlike other inheritance-supporting languages, our model’s inheritance-related
polymorphism builds upon operation polymorphism rather than upon inclusion poly-
morphism.

2.2. Type Inference in Textual Programming Languages

Because the goal of our research has been to develop a type system capable of
supporting inheritance in an understandable way, the most closely related works on



STATIC TYPE INFERENCE FOR A VISUAL PROGRAMMING LANGUAGE 195
type systems in textual programming languages are works on static typing related to
inheritance and to understandability.

2.2.1. Static Types in the Presence of Inheritance

Two well-known languages representing the class-based approach and the prototype-
based approach, respectively, are Smalltalk [ 7 ] and Self [8]. Although these languages
were initially dynamically typed, there is research on incorporating static type inference
into both. A type inference algorithm for a simplified Smalltalk that includes inheritance,
late binding, and polymorphic methods was presented in Palsberg and Schwartzbach [9].
The algorithm guarantees that all objects understand all messages sent to them. Self is
a prototype-based language that includes both dynamic and multiple inheritance. Like
the Smalltalk algorithm, the approach for Self in Agesen et al. [10] is to derive and solve
sets of type constraints. Both of these approaches handle types on a coarse-grained level,
namely at the granularity of classes or prototypes.

Imposing a static view of types on a language with inheritance sometimes leads to
problematic theoretical issues. These issues arise from the fact that a fundamental
difference exists between subtypes and subclasses [11}13]. Subtypes reflect the property
of substitutability; they should be able to replace supertypes without introducing type
errors [14]. This definition of subtypes allows substitutability of subtypes for supertypes
but does not allow overriding in order to specialize a subtype. Subclasses, on the other
hand, do allow overriding, because they are simply an implementation convenience for
reusing code and do not inherently guarantee anything about substitutability. The
difficulty of combining substitutability with overriding in a type system comes from the
difficulty of typing methods whose arguments and return type vary from supertype to
subtype.

The solution is to separate the notions of subclass and subtype. In separating these
two concepts, the problem of covariance versus contravariance becomes clear.
Covariance typifies the conventional use of inheritance for reuse; method arguments and
results in a subclass are allowed to be subtypes of the arguments and results of the class
methods. On the other hand, subtyping requires method arguments of a subclass’s
methods to be supertypes (or the same types) as the method arguments of the parent
class’s method. This is called contravariance because the types of a subclass method’s
arguments vary in the opposite way from the method results, which are still allowed to
be subtypes (or the same types) of the class’s method results. Schwartzbach succinctly
captures the problem’s essence as follows: ‘for programming purposes (in many cases)
we would like to use covariant specialization. However (without re-type-checking
a method in each subclass where it is inherited), only contravariant specialization is
guaranteed to preserve static type-correctness’ [3].

Schwartzbach summarizes a variety of proposed solutions to this dilemma, some of
which include: supporting only covariance despite sacrificing type safety, as in Eiffel
[15]; restricting a language to invariant specialization, in which a subclass method’s type
signature must match that of the parent class method, as in C## [16]; incorporating
templates or generic types; incorporating at least some dynamic typing; and type-
checking each method again in every subclass in which it is inherited. Since our
approach to type inference is fine-grained, our solution to this problem is most similar to
this last approach.
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F-bounded polymorphism [17] is an approach that can avoid this problem. It is used to
model the inheritance that can happen between two classes of objects that are not in
a subtype relationship. It allows recursive type definitions and supports polymorphism
over all objects having a specified set of methods. This model expands on the bounded
polymorphism model [2], which did not allow inheritance apart from subtyping. Bruce’s
bounded matching [18, 19] implements the equivalent of F-bounded polymorphism. To use
bounded matching, the programmer provides a type that all suitable types must match in
order to type-check correctly. The requirement for a match is that a type supports at
least the methods of the type it matches. For example, an insert method for a binary
search tree class might take as argument an object whose type matches Comparable,
where Comparable is defined to have equal, greater-than and less-than methods that
operate on the same type as their receiver. Formally, two object types, Object-
TypeMm1 : q1;2;mk : qkN and ObjectTypeMm1 : q1; 2; mn : qnN, are said to match if and
only if n4k, where mi is a method with type signature qi. The type expression MyType
is used as the type of the self variable. The matching technique succeeds in separating
subtypes from subclasses but also promotes the use of abstract types that define only the
minimum required for matching.

The functional language Haskell [20] has both types and type classes, and this
combination provides some inheritance-like characteristics at a finer granularity than
traditional classes. Type classes are declarations of a type’s interface and can also include
default implementations of interface methods. A type class can inherit interface speci-
fications and default methods from other type classes. A type must implement (or use
a default implementation, if one exists) every method in every type class to which it
belongs. While most of Haskell’s type system allows implicit types which are resolved
automatically through unification, explicit declarations are needed of type classes and of
user-defined types’ membership in them.

None of the languages discussed here provide a type system fine-grained enough to
support similarity inheritance. Most of them reason at the granularity of entire classes or
objects. While Haskell reasons at a finer granularity, namely at the granularity
of interfaces (groups of operations), it does so at the added cost of type class
declarations.

2.2.2. Understandability of Type Inference Results

Although the theoretical foundation of implicit polymorphism is rooted in combinatory
logic, Milner [21] was the first to apply the theory to programming languages. Milner’s
work has been implemented in many textual languages, especially in functional lan-
guages (such as Haskell, ML and Miranda) in order to preserve type safety in implicitly
typed programs. Within this context, there has been some work in the functional
language community related directly to the understandability of type inference results.
For Milner-based type inference systems, which reason primarily about functions,
understandability of the types is a well-known problem. One reason for this problem is
that when higher-order functions are present, types may grow exponentially with respect
to the size of the program, as demonstrated in Figures 1 and 2. Even when no
higher-order functions are present in a program and the types are small, the presence of
polymorphic type variables, type constraints and function types—all of which must be
understood by programmers in order to understand why an erroneous first-order



Figure 1. A small program [3]

Figure 2. Type of function ‘pair’ in Figure 1 [3]
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program will not type check—can be barriers to the acceptance of type inference
systems.

To address this problem, Wand presented an algorithm to isolate and explain type
errors [22]. In the algorithm, the two types being compared are each represented by
a type tree. A type tree is created by expanding a type variable. When a type variable is
expanded, the reason for expansion is saved. In this manner, each tree has a collection of
reasons for previous type bindings. When a type error occurs, these reasons are
reported. Type error explanations, however, may not be scalable with respect to
program size. For large programs, the two type lists may grow to be very large. Bent and
Duggan furthered Wand’s algorithm by using and modifying the naive graph unification
algorithm used in the Glasgow Haskell compiler and almost all other ML and Haskell
compilers [23]. Their algorithm adds the ability to handle aliased type variables, but it
does not handle Haskell’s type classes.

Jun and Michaelson [5] presented an approach to improve the ease with which type
errors can be recognized, by encoding types with colors. This color visualization
approach has been implemented in a visual environment for a subset of standard
ML. Each function type is represented as a rectangular block with colored blocks inside
that represent argument and result types. Returning to the sumfunc example of Section
2.1, the sumfunc, realfn, and sq functions and the data types real and int can be depicted
as in Figure 3. A visual comparison of the blocks shows that the function realfn
cannot be substituted into sumfunc because its functional block type scheme conflicts



Figure 3. Type visualization for the sumfunc example, from Jun and Michaelson [5]. In the paper
describing the approach, colors were replaced by these black and white line patterns. (The label ‘real’ is not
a type, but rather a new name for the function named ‘realfn’ in the example.) The black block represents

a real type, and a diagonally striped block represents an int
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with sumfunc’s first argument block type scheme. sq’s functional block type scheme,
however, visually appears to and does fit sumfunc’s first argument type scheme.
Polymorphic types are represented by multi-striped blocks with each stripe representing
a different type. A scalability issue, however, is that, since each type has a represent-
ative color, the number of colors grows linearly with the number of types, and the
programmer has to learn and remember which color is associated with which
type.

2.3. Type Systems in VPLs

We have already pointed out that few VPLs use explicit type declarations and that in the
absence of explicit type declarations, language designers are left with the choice of either
dynamic typing or static typing with type inference. To date, most VPLs (e.g., Prograph
[24], KidSim/Cocoa [25], Chimera [26], VIPR [27], and Formulate [28]) have chosen
dynamic typing.

Interestingly, the disadvantage of dynamic typing’s inability to provide feedback
about type errors until run time bears re-examination for responsive VPLs. For
responsive VPLs (those languages at liveness level 3 and above on Tanimoto’s liveness
scalea), dynamic type checking can indeed produce immediate feedback about type
errors in many cases, due to the fact that at level 3 and above, ‘run-time’, ‘translation
aAt liveness level 1 no semantic feedback is available. At level 2, the user can obtain semantic feedback,
but it is not provided automatically (as in compilers and interpreters). At level 3, incremental semantic
feedback is automatically provided after each program edit, and all affected on-screen values are automati-
cally redisplayed (as in the automatic recalculation feature of spreadsheets). At level 4, the system responds
to edits as in level 3, as well as to other events such as system clock ticks [29].
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time’, and ‘program-entry time’ are intertwined. For example, in spreadsheet languages,
which are at level 3, concrete, immediate feedback about type errors can be provided by
eagerly evaluating a formula as soon as it is entered, which is even earlier than the
feedback about type errors in static approaches for traditional textual languages. If any
type error occurs in the course of this evaluation, a special value such as ‘Error’ is
displayed in the cell. This approach features simplicity and immediate visual feedback,
but unfortunately, it cannot detect all type errors. For example, if cell A had the value
‘true’, the type error in the formula ‘if cell A then (3#4) else (cell A #4)’ would not be
detected.

2.3.1. Static Types in VPLs

Our search through VPL literature has revealed only seven VPLs that have incorporated
static type inference. In about half of these VPLs, systems like Milner’s are fully
incorporated into the VPL, and hence static soundness is preserved. ESTL [30] and
CUBE [31] are VPLs in this category. For example, Milner’s type system has been
incorporated into ESTL as follows. ESTL, an extended version of the dataflow VPL
Show and Tell [32], has a feature termed consistency, with which values can be compared,
conditions tested, etc. If such conditions are not met, an inconsistency is said to exist. In
this case, the inconsistent area is rendered in a different pattern, and processing of
affected areas cease to produce output. This feature originally was developed for Show
and Tell as a visual mechanism to replace Booleans. In ESTL, the consistency concept
also is used to reflect type validity. The entire type system is visible to the user, including
the polymorphic type variables. The types and type variables are represented as icons.
Since the type system is a visual rendition of Milner’s type system, the programmer is
required to thoroughly understand the Milner system, including polymorphic types, type
variables, and types of higher-order functions.

The type system of the functional VPL VisaVis [33, 34] differs from the above in
that VisaVis incorporates implicit less ad hoc polymorphism. Ad hoc polymorphism means
that, for each different monomorphic type a function supports, a different implementa-
tion is required. That is, only a one-to-one relationship is allowed between a function’s
types supported and its implementations. For example, overloaded built-in
operators such as ‘#’ use ad hoc polymorphism. (Explicit) less ad hoc polymorphism
allows a many-to-one relationship, in which a single implementation can be shared
by a set of several (explicitly declared) types. Implicit less ad hoc polymorphism infers
the elements of each set. This approach is similar to the implicit aspects of type
classes of Haskell. Some differences are that in VisaVis no inheritance is supported,
no explicit declarations are required, and new user-defined type classes cannot be
added.

Clover [35] is a functional and object-oriented VPL. Clover combines traditional
object-oriented features such as (single) inheritance, subtyping and method overloading
with functional features that include referential transparency, polymorphism, curried
partial applications, higher-order functions and lazy evaluation. The language is com-
pletely type safe, but places some restrictions on subtypes such as invariant method
signatures (subclass method signatures must exactly match the type signatures of the
class methods) and requires explicit declarations of upper bounds on the types of
method arguments and results.
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A common limitation in many of these VPLs’ type systems is that they do not support
user-defined types. Of those systems that do support user-defined types, only the type
system of Clover supports inheritance.

2.3.2. Understandability of Type Inference Results in VPLs

The remaining VPLs with type inference systems have aimed for greater understandabil-
ity of type systems, primarily by emphasizing concreteness in the types themselves.
Fabrik, [36] which was the first VPL to report the use of type inference, is an
example. Fabrik is a dataflow VPL that includes an interactive polymorphic type system
with some type inference. Fabrik’s type system is simple, concrete and highly
visible. Each node in the dataflow graph contains input and output ‘pins’. Wires
that connect nodes are attached to these pins. Each pin has a type that may be either
a primitive type, a compound type constructed from only primitive types or an
unspecified (i.e. polymorphic) type. These types can be declared by the user explicitly,
or they can be derived implicitly. Type checking is performed when a user attempts
to connect two pins. A pin with an unspecified type acquires a type when it is attached
to a pin with a known type. If a type mismatch occurs, a message is displayed, and
the connection is not made. This approach to implicit polymorphism seems consistent
with the concreteness of the language, but the type system is not as fully developed
as that of the other languages discussed here. For example, user-defined types are not
handled.

In an unusual application of type inference in VPLs, Pacull introduces a visual type
system whose goal is not type safety; rather the system infers and propagates informa-
tion for rendering purposes [37]. The inference system’s primitives are a set of visual
items referred to as ‘basic glyphs’, such as lines, points, polygons, and text. These glyphs
are defined by tuples of visual attributes such as position, color, size, shape and
orientation. The attributes define the way a basic glyph should be rendered on the
screen. Complex glyphs are a composite of basic glyphs, and acquire their attributes
through the inference process.

Forms/3’s previous approach to types borrowed heavily from Milner’s approach but
was more concrete [38]. The goal was to design a concrete approach to types analogous
to ‘naive physics’ where the user sees and experiments with certain concrete entities and
draws conclusions about the way things work without proving theorems or dealing with
abstract concepts. A significant difference between our previous type system and
Milner-like systems is that matrices, user-defined types and the primitive types were the
only types in Forms/3. No function definition types, tuple types, subtypes, recursive
types, union types, higher-order types or type constructors were included. Our previous
system was sufficient to handle Forms/3’s features at that time, but it did not have the
power to support more advanced features such as inheritance.

3. Forms/3 and Core Forms/3

Forms/3 [39] is a research VPL in the spreadsheet paradigm. Our model of types was
developed to support not only features of Forms/3 such as cells, matrices (spreadsheet-
like grids of cells), and graphical types, that are also found (or emerging) in other
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spreadsheet-like languages, but also advanced features of Forms/3 such as similarity
inheritance. In this section, we first informally present an example from Forms/3 to
paint a concrete picture of a setting in which the type system is expected to function. We
then formally define Core Forms/3, which supports the complete semantics of Forms/3,
but eliminates syntactic sugar and other programming conveniences. Because Core
Forms/3 is small, it allows the type system to be defined, without loss of generality, using
a small axiom set.

3.1. An Informal Introduction to Forms/3

Forms/3 programs include forms (spreadsheets) with cells, but the cells are not locked
into a grid. A Forms/3 programmer creates a program by using direct manipulation to
place cells on forms and defines a formula for each cell using a flexible combination of
pointing, typing, and gesturing. A program’s calculations are entirely determined by
these formulas. As in other spreadsheet languages, Forms/3 formulas can be thought of
as a network of (one-way) constraints, and the system continuously ensures that all
values displayed on the screen satisfy these constraints.

Forms/3 supports both built-in types and user-defined types. A type is described by
a type definition form. Attributes of a type are defined by formulas in groups of cells on
that form, and instance(s) of a type are instantiated by one or more cells on that form
that can be referenced in formulas just like any other cell. Built-in types are provided in
the language implementation but are otherwise identical to user-defined types. For
example, the circle shown in cell newCircle in Figure 4 is defined by cells specifying its
radius, line thickness, color, and other attributes.

Suppose a spreadsheet user such as a population analyst would like to define a visual
representation of data using domain-specific visualization rules that make use of the
built-in circle type of Figure 4. Figure 5(a) shows such a visualization in Forms/3. The
program categorizes population data into cities, towns, and villages, and represents each
with a differently sized black circle. Each of these different black circles is defined by
a different copy of the form in Figure 4.

Users can specify formulas either textually or graphically. For example, the population
analyst can define the size of a circle by entering a spreadsheet formula in the conventional
textual manner, such as by typing a formula into the radius cell of Figure 4. Alternatively,
users can define formulas via direct manipulation and gestures, entering a circle-shaped
gesture in the formula edit window for a cell intended to result in a circle, instead of
typing a formula into the radius cell. For example, to define the formula for cell city,
the population analyst draws the circle gesture in Figure 5(b). This is syntactic sugar for
the mechanism of Figure 4: it defines the cell’s formula to be a reference to cell newCircle
on a copy of the built-in circle definition form whose radius formula is defined to
be the radius of the drawn circle gesture. To specify that the circle should be black,
the population analyst clicks on the circle to display its definition form, and then
defines the desired formula for cell fillForeColor [Figure 5(c)]. (Full details on pro-
gramming in Forms/3 by direct manipulation and gestures are given in Burnett and
Gottfried [39].)

Forms/3 has an explicit notion of time in which each formula actually defines
a stream-like collection of values rather than a single atomic value [40, 41]. However,
because our approach to types assumes homogeneous streams, reasoning about streams



Figure 4. A portion of a Forms/3 form (spreadsheet) primitiveCircle, which defines a circle. (The form
name can be seen in the window title bar.) A user can view and specify spreadsheet formulas by clicking on
the formula tabs ( ). Radio buttons and popup menus are the equivalent of cells with simple formulas.
Above the line, the circle in someCircle is a sample circle (or the user can edit its formula to refer to some
other circle), and all the other cells above the line report on its attributes. Below the line, the circle in

newCircle is constructed using the specifications in the other cells below the line
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can be done as a unit, in the same manner as if each formula did simply define an atomic
value. Hence, the only result of considering time in our approach to types would be to
complicate the notation, and we will thus ignore it in this paper.

Forms/3 has recently incorporated a fine-grained approach to inheritance termed
‘similarity inheritance’. We will consider this feature and its impact on type inference in
Section 5.

3.2. Core Forms/3: The Subset for Formal Reasoning

3.2.1. Programming Objects and Notational Conventions

In the previous section, the programming objects in Forms/3 were informally used
as follows. A program consisted of a set of forms, such as the population and
primitiveCircle forms, each of which contained cell groups and cells, which in turn
had formulas. In this section, we revisit these programming objects formally in Core
Forms/3, a subset of Forms/3 for formal reasoning purposes. The following define the
basic programming objects in Core Forms/3:

z A program is a set of forms, where each form is identified by a unique formID.



Figure 5. (a) A visualization of population data. The formula shown for graph is shared by the four
cells inside the matrix. (The s in the formula are miniaturized drawings of the cells’ current values, which
can optionally be included in formula displays.) (b) To define the circle for cell city, the population
analyst first draws a circle gesture in city’s formula edit window, and then, (c) after clicking on the resulting
circle to display its definition form (in gray because it is a copy; white indicates formulas different from
the original), the population analyst specifies the black fillForeColor formula via a popup menu.
Each manipulation is immediately reflected textually and graphically in city’s formula edit window

(shown behind the circle form)
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Figure 5. (Continued)
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z A form is a tuple (formID, modelName, ROset), where ROset is a set of referenceable
objects, and

modelName"G
formID if this form is not a copy or is a promoted copy

(defined in Section 5)

F.modelName if this form is a copy of form F

z An ROset is a set of referenceable objects, each of which is identified by a unique
cellID.

z A referenceable object (RO) is a cell or a cell group.
z A cell group is a matrix or an abstraction box.
z A cell is a tuple (cellID, ROset, formula, value) whose ROset contains only (zero or

more) virtual ROs (defined later in this section).
z A matrix is a tuple (cellID, ROset, formula) whose ROset contains only cells, including

one whose cellID is ‘SMIDT[numrows]’ and one whose cellID is ‘SMIDT[numcols]’,
where SMIDT is the matrix’s cellID. (The term gridROset will be used to denote
a matrix’s ROset—MSMIDT[numrows], SMIDT[numcols]N.)

z A formula is as defined in Table 1.
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The reason for the modelName element of forms is to explicitly track similarities
among forms, which will allow some inferences about a form’s types to be made based
upon the form’s similarities to another form. The intuition behind ROs is that
a referenceable object is any non-constant that can be referenced in a formula. But
because the term ‘referenceable object’ is not particularly evocative, we will sometimes
refer instead concretely to the possible ROs for greater clarity, e.g., ‘cell or cell group’.
Note from these definitions that it is not possible in Core Forms/3 for a cell or cell
group to exist without a formula. Also note that matrices, unlike other ROs, have no
value: rather, matrices are a flexible mechanism to support spreadsheet-like grids of cells
(each of which has a value). However, we will occasionally refer to a matrix’s value as an
abbreviation for the set of values of the ROs in the matrix’s ROset.

The Core Forms/3 programming objects also exist in full Forms/3, but in the full
version they have additional cosmetic attributes, such as positions and borders, not
present in Core Forms/3. Figure 5 shows examples of each of these programming
objects as they exist in full Forms/3. The program consists of the population form and
several copies of the primitiveCircle form. For Figure 5(a), the form id and its
modelName are both ‘population’. Form population’s ROset consists of cells city, town,
and village, and of matrices location, population, and graph.

In addition to the above objects, Visual Abstract Data Type (VADT) forms are type
definition forms that support both built-in and user-defined types. The primitiveCircle
form of Figure 4 and the Point form of Figure 6 are examples of VADT forms in full
Forms/3. VADT forms and their components are defined as follows:

z A VADT form is a form whose ROset includes a cell with cellID ‘Image’, one
abstraction box with cellID ‘MainAbs’, and zero or more additional ROs.

z An abstraction box is a tuple (cellID, ROset, formula, value) whose ROset contains only
cells and matrices and that is an element of a VADT form’s ROset.

z A virtual RO is a virtual cell or a virtual matrix.
z A virtual cell is a cell whose ROset is empty and that is an element of another cell’s

ROset.
z A virtual matrix is a matrix whose ROset contains only virtual cells and that is an

element of a cell’s ROset.

The purpose of a VADT form whose formID is T is to define a type named T. Both
built-in and user-defined types, including recursive types, are defined by VADT forms
[39]. An abstraction box on the VADT form defines the group of ROs from which an
instance of T is constructed, and hence the value of each abstraction box on a form with
formID T is an instance of type T. For example, in Figure 4, the abstraction boxes are
newCircle and someCircle, and each has as its value an instance of type primitiveCircle.
(For built-in types such as circles, the component ROs of the abstraction box that would
reveal the implementation of the type are not visible on the screen.) Cell names are
actually cosmetic attributes to help document functionality, and in this paper often
correspond to the behind-the-scenes cellIDs; however, in Figure 4, the actual cellID for
someCircle is ‘MainAbs’. The formula for cell Image on VADT form T defines the
appearance of an instance of type T, and Image’s value shows the formula applied to
the instance of T defined in MainAbs. Figure 4’s cell Image was right-truncated from the
screen shot. In Figure 6, cell Image is the upper right cell, and the abstraction boxes



Figure 6. The Point VADT form defines type Point and two of its instances: Each of the abstraction
boxes aPoint and movedPoint has a value of type Point
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are aPoint and movedPoint; aPoint is the one whose cellID behind the scenes is ‘MainAbs’.
If a cell X references an abstraction box A, the cell’s ROset ‘virtually’ corresponds to the
abstraction box’s ROset; that is, X ’s ROset is comprised of virtual ROs, one for each
RO in A’s ROset. These relationships will be formalized in the next subsections.

The notational conventions used in this paper pertaining to the programming
objects are:

z ‘Dot notation’ specifies elements of a tuple. For example, F.modelName refers to the
modelName of F.

z Qdenotes the referencing operation (‘ref ’) when the operand is an RO. For example,
XQY means that RO X ’s formula is a reference to RO Y. (The arrow points in the
direction of data flow.)

z Q̀denotes the transitive closure ofQ. XQ̀Z iff either XQZ, or XQY and YQ̀Z.
z Qc denotes the constant specification operation (‘ref’) when the operand is a con-

stant. For example, XQc C means that RO X’s formula is the constant C.
z 3̀ denotes the transitive closure of 3. X 3̀Z iff either X3Z, or X3Y and Y 3̀Z.

3.2.2. Formula Syntax and Semantics

As Table 1 shows, there are only three operators in Core Forms/3: the implicit operator
referencing another RO (‘Q’ ), the implicit operator specifying equality to a constant



Table 1. The grammar for Core Forms/3’s formula language. The divider separates the
operator syntax from the ref operand syntax. (The third line of the top section is not useful in the
grammar, but is included to make clear how the implicit operators relate to the explicit elements
of the grammar). To minimize the amount of new notation, we also build upon the terms

established here in the formal presentation of the model, as explained in the text

formula : :"compositionOfParts D expr
expr : :"constant D ref
exprShowingImplicits : :"Qc constant DQref

ref : :" RORef D formRef : RORef
formRef : :"formID D modelName defSet
defSet : :"(defs)
defs : :"def D def, defs
def : :"RORef"expr

RORef : :"cellID
cellID : :"simpleCellID DmatrixID DmatrixID [subscripts] D

absID D absID [simpleCellID ] D absID [matrixID ] D
absID [matrixID ] [subscripts]

subscripts : :"matrixSubscript@matrixSubscript
matrixSubscript : :"expr
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(‘Qc’ ), and the explicit operator ‘compositionOfParts’. Table 2 defines the semantics of
each of these operators in terms of their preconditions and postconditions. In full
Forms/3, the cells in matrix graph in the population example [Figure 5(a)] provide
examples of the first operator because they reference cells city, town and village. The
cells in matrix population provide examples of the second operator, because the formula
for each is simply a constant. The abstraction box aPoint in Figure 6 provides an
example of the third operator, which is implicit in full Forms/3, because cells x and y are
inside aPoint.

Returning to Core Forms/3, note that there are no explicit input operators such as
‘read’ or ‘getc’. As in most spreadsheet languages, inputs are entered into the program
via constant formulas. This characteristic of spreadsheet languages provides opportuni-
ties not found in many other paradigms regarding the ability to apply (incremental) static
type checking to every part of a program.

The syntax given in Table 1 includes textual versions of some elements that the user
would never actually type in (in either Core Forms/3 or Forms/3). For example, the
user never uses the textual defSet syntax shown; instead he/she clicks on the
desired cell and the system internally records the reference using the defSet
notation above. However, we present the internal notation here because it is a useful
formal notation to express the type reasoning mechanism. Also, for the purposes
of this paper, we take advantage of the notation in Table 1 as follows. Unless specifi-
cally used in the context of a formula syntax example, we will use ref syntax
as an abbreviation for the forms and ROs themselves. For example, ‘form F ’ will be
used as an abbreviation for ‘the form whose id is F ’, and ‘F : A’ will be used as an
abbreviation for: ‘the RO whose cellID is A that is an element of the form whose
formID is F ’.



Table 2. Axiomatic semantics for each operator in Core Forms/3. (The special provisions for
matrices are primarily because matrices do not have values.) Implicit in the notion of equality is
the fact that if value1"value2, then their types are equal. Also note that the ‘YQ̀/ X’
precondition prevents circular references. All the preconditions are easily checked statically, and

in full Forms/3 are enforced by the environment

Formula for RO X Preconditions Postconditions

QY, where
Y is an RO

Y is an existing cell or
abstraction box

X.value"Y.value

YQ̀/ X DX.ROsetD"DY.ROsetD
X is not a matrix ∀Yi3Y.ROset:

Xi3X.ROset
XiQYi

Y is an existing matrix (matrices do not have values)
YQ̀/ X DX.ROsetD"DY.ROsetD
X is a matrix ∀Yi3Y.ROset:

Xi3X.ROset
XiQYi
Xi.id"X.id[rowi@coli] iff

Yi.id"Y.id[rowi@coli]

QcC, where
C is a constant

X is not a matrix X.value"C

compositionOfParts X is a cell group X.value"MXi.value DXi3X.ROsetN
iff X is not a matrix
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3.2.3. Forms

The above set of operators may seem too limited to get any computation done; for
example, there are no conditional or arithmetic operators. However, the functionality
normally found in these built-in operators is provided instead by referring to ROs on
built-in forms named ‘if ’, ‘#’, and so on. These forms can be copied as many times as
needed to get the desired number of instances, in which case all copies will have the
same modelName. Some of the ROs on them have modifiable formulas, and these
formulas can be set up to be references to other ROs in the program. The result ROs
can then be referenced by other ROs in the program to propagate the results where
needed.

The semantics of each built-in form is defined through preconditions and postcondi-
tions. Table 3 gives the semantics for one of these forms, although we will expand the
expression of type information about such forms later in this paper. The ‘#’ form in
Table 3 consists of a set of three ROs: plusA, plusB and plusC. The cells plusA
and plusB are the two arguments for addition. They are modifiable in order to
allow passing in different arguments for different additions needed in a program. The
cell plusC contains the result and is therefore not modifiable. It is this cell, plusC, that
can be referenced in Core Forms/3 to mean the same thing as ‘plusA#plusB’ in full
Forms/3.



Table 3. Semantics of form#(and of forms copied from#). The term ‘modifiable’ means
that the programmer is allowed to edit the formulas for these cells; ‘unmodifiable’ means the
formulas may not be edited. Since there is no state modification in Core Forms/3 (or in Forms/3),
the preconditions are invariant. Form#is one of the forms built into Core Forms/3 to provide
access to a primitive operation; the others are: !, *, /, mod, ", and, or, ', (, not, width,

height, if, and compose

ModelName ROset Preconditions Postconditions

# contains modifiable cells
with cellIDs plusA,
plusB, and unmodifiable
cell with cellID plusC

plusA.value is
a number
plusB.value is
a number

plusC.value is a number
that is the sum of
plusA.value and
plusB.value
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The defSet notation of Table 1 is generated by the system when copies are made, and
enumerates formulas that make a copied form different from the form from which it
was copied. For example, the notation if(ifB,100) indicates a copy of form ‘if ’ on
which cell ifB contains the constant formula 100. Hence, ‘Q#(plusA,10,
plusB,100): plusC’ in Core Forms/3 would mean the same as ‘10#100’ in full
Forms/3. In this paper, we will use the defSet notation generated by the system as
a formal notation as well.

As Table 3 implies, all copies of#have the ‘same’ cells on them, although their
formulas for plusA and plusB may be different. More precisely (and more generally), this
relationship is described as the first property in Table 4, which says that forms with the
same modelName always have ROsets whose cells have the same cellIDs.

The rest of the properties given in Table 4 are particular to VADT forms. As we
pointed out before, VADT forms can be used to define new types, and all built-in types
are also described with VADT forms, such as primitiveCircle in Figure 4. There is also
a primitiveNumber form, primitiveBoolean form, etc. (The only difference between
user-defined types and built-in types is whether some of the formulas for the ROs on
the VADT form had to be created by the language implementor.) The definitions of
Section 3.2.1 distinguish one abstraction box on each VADT form by cellID ‘MainAbs’.
Although there can be additional abstraction boxes, all abstraction boxes on the same
form have ROsets of the same size and structure and their values have the same type
(from properties [AbsType] and [AbsStruct]). [AbsType] further says that every abstrac-
tion box on VADT form T results in a value of type T. For example, recall that aPoint
and movedPoint on form Point in Figure 6 are both of type Point.

What [VADTformExistsC], [VADTformExistsR], and [Inst] say is that, for every RO
X, there exists a VADT form denoted TX whose main abstraction box references X. As
a result, T : MainAbs.value"X.value, and X.value is of type T. Further, each TX has the
same modelName as VADT form T. Hence, a constant formula (Qc C ) can always
be replaced by a reference to TC :MainAbs. For example, if the constant 3 of type
primitiveNumber exists, then there exists a form primitiveNumber3"primitive
Number(MainAbs,3), whose modelName is primitiveNumber. Similarly, if some cell
Z has a Point (15, !7) as its value, then a copy of form Point exists. [Inst] states further
that if Z has such a value, it directly or transitively references an abstraction box on the
appropriate VADT form (Point, in this example).



Table 4. Invariant properties of forms. Entries such as ‘T(MainAbs,C )’ follow the defSet syntax
established in Table 1. (The subscript notation for set elements is used to represent arbitrary elements

in the set, and does not imply any position in the set, since sets are inherently unordered)

[Copies] F and G are forms, F.modelName"G.modelName, fi3F.ROset
DF.ROsetD"DG.ROsetD, g i3G.ROset, g i .cellID"fi .cellID

[VADTformExistsC] C is of type T, where C is a constant
& VADT form TC, where TC"T(MainAbs,C ), TC .modelName"T

[VADTformExistsR] X.value is of type T, where X is an RO
& VADT form TX, where TX"T(MainAbs,X ), TX.modelName"T

[Inst] X.value is of type T, where X is a cell and XQsomeRO
XQ̀T : Y, where Y is an abstraction box and T.modelName"T

[AbsType] T : X is an abstraction box
X.value is of type TX.modelName"T.modelName

[AbsStruc] T : X, T : Y are abstraction boxes, Xi3X.ROset
DY.ROsetD"DX.ROsetD, Yi3Y.ROset, Yi is a matrix iff Xi is a matrix
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3.3. Translating Between Forms/3 and Core Forms/3

Core Forms/3 includes all the programming objects of Forms/3 except radio cells and
popup-menu cells (such as those seen in Figure 4). The translation of full Forms/3
programming objects to Core Forms/3 programming objects consists of removing their
cosmetic attributes (such as positions, borders, cellnames which are distinct from
cellIDs, etc.). Since radio cells and popup-menu cells are only cosmetically different
from ordinary cells, eliminating cosmetics effectively reduces them to ordinary cells.

However, one cosmetic attribute, position, is semantically significant in Forms/3 in
one situation: if RO X is positioned inside another RO Y, then not only is X an element
of Y.ROset, but also Y.formula is implicitly defined to be compositionOfParts. Core
Forms/3 makes this formula explicit: if the Forms/3 user has not given Y an explicit
formula, the translation to Core Forms/3 explicitly defines Y.formula to be ‘composi-
tionOfParts’.

All other formulas in Forms/3 are explicit. Explicit formulas expressed by direct
manipulation and gestures are translated to Core Forms/3 in two steps: first by
translating them to a series of ordinary textual Forms/3 formulas (using equivalents
presented in detail in Burnett and Gottfried [39]), and then proceeding as below.

Since operands are the same in Forms/3 as in Core Forms/3, only the operators need
to be translated. Translating a Forms/3 operator in a formula for RO X is done by
expressing X.formula as a reference to an RO on another form. Consider a formula that
contains only one operator. Hence, there are no subexpressions, and each argument is



Figure 7. Translation of the Forms/3 formula (a#(x * y)) to Core Forms/3 proceeds bottom-up, first
translating (x * y) to *(timesA,x, timesB,y): timesC, and then incorporating that translation into
the full expression, resulting in the Core Forms/3 formula being a reference to #(plusA,a, plusB,

*(timesA,x, timesB,y): timesC): plusC
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an expr (following Table 1). If the prefix version of X.formula is op expr1, expr2,2,
then X.formula in Core Forms/3 is the following reference:

op(arg1,expr1, arg2,expr2,2): Result

where arg1, arg2,2 are the cellIDs of modifiable ROs on form op, and Result is the
cellID of an unmodifiable RO containing the result of the built-in operation. (The
notation is that defined for defSets in Table 1.) For Forms/3 formulas with embedded
subexpressions, each embedded subexpression is replaced (bottom up) by a reference
following the above translation scheme; this results in the parent expression having
arguments of the required syntax, so that translation can proceed up another level of the
tree, and so on to the root. See Figure 7 for an example.

Since all of Core Forms/3 except the explicit operator compositionOfParts is a legal
subset of Forms/3 (assuming some default set of cosmetic attributes), then the only
translation mechanism needed to translate Core Forms/3 to Forms/3 is to deal with
compositionOfParts, making the formula implicit in the Forms/3 programming object
Y by positioning all elements of Y.ROset within the bounding box of Y.

4. Model of Types

4.1. Fine-grained Reasoning in Terms of Guarantees versus
Requirements

The goals of this research were to develop a model of types comprehensive enough to
be usable in VPLs for programmers with powerful features such as polymorphism and
fine-grained inheritance, while at the same time being potentially understandable enough
for use even in VPLs intended for end users. (We emphasize that we are speaking of
a model of types being usable in these two different sorts of VPLs, not of a single VPL
being usable by these two audiences.) In order to achieve the first goal without
sacrificing the second, we needed to try an approach that departs from traditional
approaches, reasoning at a fine-grained level about individual operations guaranteed and
required rather than about entire types as atomic units.

At this granularity, reasoning about the operations that can be guaranteed compared
to those required eliminates the need to reintroduce declarations of interfaces or subtype
relationships, which would have run counter to the goal of potential use by end users.
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For example, if cell X is being added to something, then a requirement exists that
operation#(actually, #: plusC in Core Forms/3) be supported for X. If cell X is able
to be added to something, then operation#is guaranteed for X. If all the requirements
are met by the guarantees, the program is type safe.

More formally, if the set of operations that are inferred by our model to be
guaranteed for RO X are denoted G(X ), and the set of operations inferred to
be required of RO X are denoted R(X ), then in this model of types, type safety is
defined as follows:

Definition. If ∀ROs X 3̀ program P, R(X )-G(X ), then P is type safe.

Because all reasoning is done in terms of guarantees and requirements in our model,
there are no subtypes, complex compositions of types, or interfaces. Instead, as the
above definition implies, if the requirements are not a subset of the guarantees, then
there is a type error.

The model of types presented here is intended to be applied incrementally, doing as
much analysis or reanalysis as is necessary after each user edit. (Recall from the
discussion in Section 2.3 that—even given incremental execution—due to laziness or
short-circuit evaluation, static type inference can detect errors that go undetected under
dynamic typing.) Given such an incremental implementation of the model, the under-
standability potential of error messages is greater than in a non-incremental implementa-
tion, because if the program was previously type safe, then any type error incrementally
reported must have been introduced by the just-entered program edit. For Forms/3, this
is the formula just entered.

The next two sections describe how the guarantees and requirements are statically
inferred by our type system.

4.2. Guarantee Sets

In general, each RO guarantees all the operations defined on the VADT form corre-
sponding to its value (this form was defined by [VADTformExistsR] in Table 4). In
Core Forms/3, each operation is associated with an RO.

The simplest kind of guarantee set to infer is that for an abstraction box. Abstraction
boxes reside only on VADT forms, which thus identify their type. Thus the guarantee
set for an abstraction box F : A is the collection of operations available on that same
(VADT) form F. Since operations are cells and cell groups, the axiom is

[GA] G(F : A)"Mx Dx 3̀F.ROsetN where A is an abstraction box

This axiom is applicable to both user-defined types and built-in types. For example,
G(primitiveCircle : newCircle) includes all the ROs on form primitiveCircle:
the operators radius, thickness, lineStyle, lineForeColor, etc., including the abstraction
boxes someCircle and newCircle (refer back to Figure 4 to view primitiveCircle).
Other circle-related tasks that can be constructed using these low-level operations
do not need to be included on the primitiveCircle form itself. In this paper, we
abbreviate the set of low-level operations for these primitive types (the ROs on
their VADT forms) as ‘SprimitiveTypeTOperations’; in this example ‘primitive-
CircleOperations’.



Table 5. Every constant value guarantees exactly the operations
on its primitive form. For succinctness, we abbreviate these sets
SprimitiveTypeTOperations rather than listing the individual

ROs

Example constants C G(C )

C"3 primitiveNumberOperations

C"‘hello’ primitiveTextOperations

C"true primitiveBooleanOperations
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Using the notation established in Tables 1 and 4, axiom [GC] says that ROs with
constant formulas simply derive their guarantee sets from the primitive form describing
the constant’s value (see Table 5):

[GC]
XQcC

G(X )"G(C )
where C is a constant

where G(C )"M y D y 3̀FC.ROsetN

For cells and matrices referencing other cells and matrices, the guarantee set simply
propagates from the referenced cell or matrix by axiom [Gref ] below. The ‘where’
clause restricts this axiom to cells and matrices only because it is not needed for
abstraction boxes; they are already handled by axiom [GA]. However, removing this
restriction would not cause any adverse effects, since it would not introduce any
conflicts with [GA].

[Gref ]
XQY

G(X )"G(Y )
where X is a cell or matrix

The above three axioms handle every legal Core Forms/3 formula except matrices
with compositionOfParts formulas. For this case, axiom [GM] says that the
guarantee set is derived from the guarantees of the matrix’s ROset. This axiom could
have the precondition ‘M.formula"compositionOfParts,’ but it is not necessary, since
the resulting guarantee set will be the same regardless of whether [Gref ] or [GM] is
applied to a matrix with a reference (‘Q’) formula.

[GM] G(M )"WG(M[ i ] ) where M[ i ]D3M.gridROset

[GM] is one of several elements in this model that are different for matrices than for
other ROs. It would have been possible to change the language definition of matrices to
make them define a complex value, as do abstraction boxes, and this would eliminate
most of the specialized matrix reasoning. We elected not to do so because reasoning
about Core Forms/3 matrices shows how the model can apply to other VPLs’ groups of
objects (such as grids in spreadsheets and in rule-based demonstrational systems) that do
not produce a single value.



Table 6. Guarantee sets for some primitive forms. Type postconditions are stated as guarantees
under our model of types; this table shows these postconditions for a few of the primitive forms.
(Compare these with the previous type-related postconditions of Table 3.) Preconditions for

these forms will be given in the next subsection

ModelName ROset Type-related postconditions (Guarantees)

# Contains modifiable cells with
cellIDs plusA, plusB, and
unmodifiable cell with
cellID plusC

G(plusC)"primitiveNumberOperations

' Contains modifiable cells with
cellIDs greaterthanA,
greaterthanB, and unmodifiable
cell with cellID greaterthanC

G(greaterthanC)"primitiveBoolean
Operations

append Contains modifiable matrices
with cellIDs appA, appB, and
unmodifiable matrix with
cellID appC

G(appC)"G(appA)WG(appB)

if Contains modifiable cells with
cellIDs ifA, ifB, ifC, and
unmodifiable cell with
cellID ifD

G(ifD)"G(ifB)WG(ifC)
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Finally, regarding primitive operations, guarantees are provided for ROs on the
primitive forms via the postconditions that define their semantics. For example, the
result cell (plusC) of form#guarantees all the operations guaranteed for built-in
type number (which are enumerated via axiom [GA] and [GC]). Postcondition guaran-
tees for some of the primitive forms are given in Table 6.

4.3. Requirement Sets

Although guarantees normally propagate with dataflow and in Core Forms/3 usually
have only one source (since a Core Forms/3 formula has no more than one reference in
its formula), requirements propagate against dataflow, because they indicate how the RO
is to be used by other parts of the program. Further, since there may be many parts of
the program that make use of (reference) a single RO, all of these uses must be collected.
The implication of these two differences is that requirement sets must be aggregated and
propagated via set unions, rather than via the equality assertions that sufficed for most
of the guarantee sets.

From the previous paragraph, the requirements axiom needed might seem to be that the
requirements of an RO are the union of all the requirements of ROs referencing it, as in

X1, X2,2, XnQY
R(Y )"XR(Xi )

for i"12n, where Xi is not an abstraction box.
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Abstraction boxes referencing Y are already ‘safe’ from type errors because their
definitions and properties prevent impersonations: assignments of invalid types into an
abstraction box. Hence, it is not necessary to propagate requirements from abstraction
boxes that reference Y into the requirements of Y, and such references can simply be
ignored in the requirements axiom. Taking advantage of this fact propagates fewer
requirements, which encourages polymorphism.

The above version is adequate for propagating requirements that are already present
in the system, but it does not initiate new ones. The primary way for new requirements
to be initiated is for an operation on a VADT form to be referenced. That is, R(Y )
needs to include not only the operations given in the axiom version above, but also
those operations in FY.ROset that are actually being used (referenced). Adding an
appropriate precondition and union factor to address this need leads to a version
something like the one below (the new additions are on the right):

X1, X2,2, XnQY and Z1QFY : Op1, Z2QFY :Op2,2, ZmQFY : Opm

R(Y )"X R(Xi ) X MOp1, Op2,2OpmN

for i"12n, where Xi is not an abstraction box.
However, this version overlooks the fact that copies of FY (multiple VADT forms

whose main abstraction boxes reference Y) may have individual differences in some of
the formulas of their other ROs. For example, there could be two copies of form Point
(from Figure 6) with aPoint on both copies referencing a cell Y, but with cell delta-x on
one of the copies referencing some cell V, and with cell delta-y on the other copy
referencing some cell W. In defSet notation, the first copy is Point(aPoint,Y,
delta-x,V ) and the second copy is Point(aPoint,Y, delta-y,W ). Thus, additional
requirements for Y are that its type definition form also includes operations that appear
in these defSets, namely aPoint, delta-x, and delta-y in this example. Changing the
second precondition to defSet notation and adding a third union factor to the con-
clusion leads to the final version below:

[R1]
X1, X2,2, XnQY and Z1QFY(defSet1) : Op1, Z1QFY(defSet2) : Op2,2, ZmQFY(defSetm) : Opm

R(Y )"XR(Xi ) X MOp1, Op2,2OpmN X MOp DOp3argkN where argk"Marg D arg,expr3defSetkN

for i"12n, k"12m, where Xi is not an abstraction box.
In summary, what this final version of [R1] says is that the requirements of Y

include the requirements of ROs referencing Y (these are the Xi’s in the axiom), the
operations on all copies of Y ’s VADT form that any RO is actually referencing (the
Opi s referenced by the Zi’s), and any additional operations on all copies of Y ’ s VADT
form that are in the defSets defining the form copy (the last Op set in the axiom’s
conclusion).

Turning now to matrices, let M be a matrix. M’s numrows and numcols cells are
always known to require primitiveNumberOperations:

[RN] R(N)"primitiveNumberOperations

where N3M.ROset and either N.ID"M.ID[numrows] or N.ID"M.ID[numcols].



Table 7. Requirements sets for some primitive forms. For the primitive forms, type precondi-
tions are stated as requirements under our model of types; this table shows these preconditions
for a few of the primitive forms. (The preconditions are invariant, but to avoid clutter, we did not

explicitly repeat them in the postconditions of Table 6)

ModelName ROset Type-related preconditions: Requirements

# Contains modifiable cells with
cellIDs plusA, plusB, and
unmodifiable cell with
cellID plusC

R(plusA)"primitiveNumber
Operations

R(plusB)"primitiveNumber
Operations

' Contains modifiable cells with
cellIDs greaterthanA,
greaterthanB, and unmodifiable
cell with cellID greaterthanC

R(greaterthanA)"primitiveNumber
Operations

R(greaterthanB)"primitiveNumber
Operations

append Contains modifiable matrices
with cellIDs appA, appB, and
unmodifiable matrix with
cellID appC

If tempR"application of [R1] to appA,
then R(appA)"tempRXR(appC)a

If tempR"application of [R1] to appB,
then R(appB)"tempRXR(appC)

if Contains modifiable cells with
cellIDs ifA, ifB, ifC, and
unmodifiable cell with
cellID ifD

R(ifA)"primitiveBooleanOperations
If tempR"application of [R1] to ifB,

then R(ifB)"tempRXR(ifD)
If tempR"application of [R1] to ifC,

then R(ifC)"tempRXR(ifD)

a Or, more formally,
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X1, X2,2XnQappA and Z1QFappA (defSet1) : Op1, Z2QFappA (defSet2) : Op2,2ZmQFappA (defSetm) : Opm

R(appA)"X R(Xi)XMOp1, Op2,2OpmNXR(appC)

for i"12n.

Matrices require everything that the cells in their gridROsets require:

[RM] R(M)"XR(M[ i ]) where M[ i ]3M.gridROset

Regarding primitive forms, preconditions on primitive forms’ ROs add to the
requirements propagating through the system (see Table 7). For example, in the#form,
the ROs plusA and plusB now require primitiveNumberOperations in addition to the
preconditions previously given for form#.

4.4. Recursion

Most ‘function calls’ (uses of new copies of forms) can be individually statically type
checked when a ‘call’ (reference) to an RO on one of these copies is edited into
a formula, but this static strategy cannot be employed successfully with recursion,
because the number of form copies that will be generated by the recursive call cannot be
determined statically. To solve this problem, the next two axioms provide a conservative
static determination of the guarantee set of an RO involved in recursion; they say that if
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one branch of an ‘if ’ is recursive, then it only guarantees what the non-recursive branch
guarantees.

[RecB] F : XQif(ifA,Adef, ifB,Bdef, ifC,Cdef ) : ifD, there is a recursive reference in

G(F :X )"G(if(ifA,Adef, ifB,Bdef, ifC,Cdef ) : ifC)

Bdef b

[RecC] F : XQif(ifA,Adef, ifB,Bdef, ifC,Cdef ) : ifD, there is a recursive reference in

G(F : X )"G(if(ifA,Adef, ifB,Bdef, ifC,Cdef ) : ifB)

Cdef

Obviously, if there are nested ‘ if ’s involved, both branches could be recursive. This
does not cause difficulties, since the axiom can simply be applied recursively. However,
it is also possible to construct multi-recursive ‘ if ’s that never terminate at all because
there is no base condition provided, and the axiom set presented here does not provide
a way to reason about the types of such non-terminating programs.

4.5. Example: Type Inference (Without Inheritance)

The population example in Figure 5 is a program with no inheritance. The population
program provides different-sized circles to represent cities depending on their popula-
tion. For this type inference example, we use full Forms/3 because it is a real
environment and thus allows screenshots of example programs. Although the axiom set
is given for Core Forms/3, formal reasoning about full Forms/3 is possible using the
translations between Forms/3 and Core Forms/3 specified in Section 3. (For concise-
ness, we omit form names where doing so does not introduce ambiguity.)

Notice that in the case of ROs whose only purpose is to display answers on the
screen, the requirement set will always be empty. The matrix element population : loca-
tion[1@1], which contains the value ‘Portland’, is an example of such a cell, since there
are no references to it

R(location[1@1])"M N [ R1]
G(location[1@1])"G(‘Portland’)"primitiveTextOperations [GC]

Obviously, R(location[1@1])-G(location[1@1]), so there is no type error here.
The same axioms apply to the other cells in location’s gridROset with exactly the same
results.

The city cell is another example of an RO with an empty requirement set, but the
derivation is a little lengthier, since city is referenced by other ROs in the program. For
precise reasoning, we can translate the formula for the cells in the graph matrix’s
gridROSet to the Core Forms/3 equivalent; for example, there is a copy of the if form
bSome languages’ type inference systems require a special construct for recursive calls to allow static
detection of recursion. In Core Forms/3, recursion can be detected statically without such a device. There
is a recursive reference in Bdef if either F @ : X is referenced in Bdef, or else there is a recursive reference
in Mrecdef1 D Bdef"someForm(arg1,recdef

1
, arg1,recdef2,2) : someCellN, where F.modelName

"F @.modelName.
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on which ifBQpopulation : city. In the context of that copy of the ‘ if ’ form, the
reasoning proceeds as follows:

R(city)"R(ifB) [R1]

"R(ifD) [Table 7 ]

"R(graph[1@1])XR(graph[2@1])XR(graph[3@1])XR(graph[4@1]) [R1]

"M N [R1]

However, for a more direct translation to the (real) programs displayed in full
Forms/3 screenshots, we will present the implications of these precise steps to the
full Forms/3 programs. Thus, the equivalent of the above in the full Forms/3
program is:

R(city)"R(‘then’ part of graph’s ‘ if ’ formula) [R1]

"R(result of graph’s ‘ if ’ formula) [Table 7 ]

"R(graph[1@1])XR(graph[2@1])XR(graph[3@1])XR(graph[4@1]) [R1]

"M N [R1]

Continuing from here (the same way in Core Forms/3 as in full Forms/3) finishes up
the reasoning about the requirements on cell city:

G(city)"G(290-primitiveCircle : newCircle)"primitiveCircleOperations [GC]
Thus, R(city)"M N-primitiveCircleOperations"G(city)

The town and village cells have similar derivations with the same results.
Cell graph[1@1]’s formula is a reference rather than a constant. Again translating

the formula for the cells in the graph matrix to the Core Forms/3 equivalent, let
if1 and if2 be the appropriate copies of ‘if ’; for example, if2 is a copy of ‘if ’ in
which if2 : fCQvillage, if1 is a copy of ‘if ’ in which if1 : ifCQif2 : ifD, and so on.
Then

R(graph[1@1])"M N [R1]

G(graph[1@1])"G(if1 : ifD) i.e., result of graph’s ‘ if ’ formula [Gref ]

"G(city)WG(if2 : ifD) i.e. G(city)Wresult of graph’s inner ‘ if ’

subexpression [Table 6]

"G(city)W(G(town)WG(village)) [Table 6]

"primitiveCircleOperations [GC]

R(graph[1@1])"M N [R1]

Thus, R(graph[1@1])"M N-primitiveCircleOperations"G(graph[1@1])

The same results apply for the other cells in graph’s gridROset.
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Turning to a cell with a non-empty requirement set, the population[1@1] cell has
a requirement set of primitiveNumberOperations. (Forms ‘'1’ and ‘'2’ are copies of
form ‘'’ on which greaterthanAQpopulation[1@1].)

R(population[1@1])"R('1 : greaterthanA)XR('2 : greaterthanA)
i.e. the union of the requirements on the first
arguments of both ‘' ’ comparisons [R1]

"primitiveNumberOperations [Table 7 ]
G(population[1@1])"G(450000) [GC]

"primitiveNumberOperations
Thus, R(population[1@1])"primitiveNumberOperations

-primitiveNumberOperations
"G(population[1@1])

The same results apply to the other cells in population’s gridROset. The population
matrix itself is an example of a Forms/3 matrix with the implicit ‘composition-
OfParts’ operator, which translates to Core Forms/3’s explicit use of that operator.
Hence, its guarantee and requirement sets are derived solely from the cells in its
gridROset.

R(population)"R(population[1@1])XR(population[2@1])XR(population[3@1])
XR(population[4@1]) [RM]

"primitiveNumberOperations [Table 7 ]
G(population)"G(population[1@1])WG(population[2@1])

WG(population[3@1])
WG(population[4@1]) [GM]

"primitiveNumberOperations [GC]
Thus, R(population)"primitiveNumberOperations

-primitiveNumberOperations
"G(population)

In the same way, the matrix location can be shown to have an empty requirement
set and a guarantee set of primitiveTextOperations and the matrix graph can be
shown to have an empty requirement set and a guarantee set of primitiveCircleOper-
ations.

Each of the three matrices on the population form also has a numrows cell and
a numcols cell in its ROset. They all have the same requirement and guarantee sets, so
we give only one example here.

R(location[numrows])"primitiveNumberOperations [RN]
G(location[numrows])"G(4)"primitiveNumberOperations [GC]
Thus, R(location[numrows])"primitiveNumberOperations

-primitiveNumberOperations
"G(location[numrows])
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Since every RO on the population form satisfies the constraint that its requirement set
be a subset of its guarantee set, the population program is type safe.

Now suppose a new cell X were added to form population, where X ’s formula
was ‘population : location[1@1]#5’. A type error would occur because the matrix
cell location[1@1] guarantees primitiveTextOperations, whereas it is required to
support primitiveNumberOperations. More precisely, in Core Forms/3 terms, since
R(location[1@1])"R(#5 : plusA)"primitiveNumberOperations, where#5 is the
appropriate copy of#for adding 5, and since G(location[1@1])"primitiveTextOper-
ations, then R(location[1@1])JG(location[1@1]), and hence the program would not
be type safe.

5. Adding Inheritance

5.1. Similarity Inheritance

This section provides necessary background in similarity inheritance for showing in
ensuing sections how the model of types can be extended to support similarity
inheritance, and thereby to support traditional forms of inheritance as well.

Similarity inheritance [1] is a new, fine-grained model of inheritance intended for
responsive, declarative VPLs. From the perspective of type theory, the most important
difference from other forms of inheritance is the fact that it allows inheritance of entire
types as well as of individual operations. From the perspective of the VPL user, another
important difference from traditional forms of inheritance is that similarity inheritance’s
basic relation (‘like’) is about implementation similarities only, instead of traditional
inheritance’s ‘is-a’ relation, which is about both implementation and abstract similarities.
For example, with similarity inheritance, it is sensible to say that a Queue is ‘like’ a Stack
in order to share some of the implementation, but with traditional inheritance, sharing
code in this particular way would be considered to be bad design (since a Queue is not
a Stack in an abstract sense). Similarity inheritance is intended for users who are not
trained in object oriented programming, supporting their reuse of code by allowing
them to customize starting from any existing example, as in copy/paste, but without the
copy/paste disadvantage of losing all the underlying relationships.

Because similarity inheritance is specifically for responsive VPLs, its definition
requires both a model of interaction (between the programmer and the computer) and
a semantic model. The interaction model is composed of the tuple (C, F, L, R), where
C is the user copy action that creates an inherited definition, F is the formula definition
action, L is a liveness level 3 or higher from Tanimoto’s [29] liveness scale indicating that
immediate semantic feedback is automatically provided, and R is a representation
mechanism that explicitly includes all inherited formulas and inheritance relationships
in each object’s representation. Due to these characteristics of element R of the inter-
action model, objects in the similarity inheritance model have the property of self-
sufficiency from the programmer’s perspective, meaning that every supported operation
for an object and every piece of data it contains can be determined by examining the
object itself rather than also requiring the inspection of parent objects or descriptive
classes. The implication of the presence of element L is that the programmer creates
and manipulates live objects while constructing the program, rather than abstract



Table 8. Conditions that establish and remove an inheritance (P) relationship. (Postcondi-
tions that duplicate preconditions are omitted.) The first row defines large-grained similarity, and
means that if C is applied to a VADT form F, an inheritance relationship will be created between
F and a new VADT form G such that all of F ’s operations are inherited by G (this can be
abbreviated as FPG ). The second row defines fine-grained similarity, which allows a single
operation F : Op

,
to be copied to VADT form G to create a similarity relationship between

F : Opk and G : Opk. The third row implies that overriding removes ‘upstream’ inheritance
relationships

Action Precondition Postcondition

C applied to F F is a VADT form;
G does not exist

G is a new VADT form
∀F :Opi3F.ROset,
F : OpiPG : Opi

C applied to F : Opk
and G

F and G are VADT forms,
FOG

F : OpkPG :Opk

F applied to G :Opk G is a VADT form ∀F, F :Opk P/ G : Opk
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descriptions of objects. The details of elements L and R have little impact on type
theory, so will largely be ignored in this paper.

The semantic model is as follows. Each type definition in a program has a set of
operations MOp1, Op2,2,OpnN. In Forms/3 and Core Forms/3, a type definition is
a VADT form F. The definition of each operation F : Opi is provided by the formula in
cell or cell group F : Opi in F.ROset. The symbolPdenotes the inheritance relation
supported by similarity inheritance. For example, APC denotes C inheriting from A;
we say C is ‘like’ A. (The arrow points from the original version to the inherited version,
which maintains our convention in this paper of having arrows point in the direction of
information flow). It is also useful to define the transitive closure of inheritance, denoted
P̀: AP̀C iff APC, or APB and BP̀C.

The actions C and F determine when the inheritance relation holds, as summarized in
Table 8.

As part of applying action C to a form F, the user may rename (provide a new
formID for) the resulting copy, and doing so designates the resulting copy as a promoted
copy. The only formal difference between an ordinary copy F1 and a promoted copy F2
is that F2.modelNameOF.modelName; rather, F2.modelName"F2.formID. From
the user’s standpoint, having a user-specified name/formID is useful if the intent of the
copy was to start a new type (which is the only application of similarity inheritance we
discuss in this paper; see Djang and Burnett [1] for other applications). From
the standpoint of type reasoning, promoting copy F2 reduces the type information
propagated about F2 to that which can be inferred from its operations, because F2’s new
modelName prevents use of the [Copies] axiom on F2.

Similarity inheritance supersedes single inheritance and multiple inheritance. Regard-
ing single inheritance, FPG is the same relationship as if a class (or object) F is
subclassed (or cloned) under another G, in the class-based and prototype-based models.
These models support similarity inheritance’s concept of ‘like’ (P) at the granularity of
entire types (classes or objects), and ‘not like’ (P/ ) at the granularity of operations
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through overriding. However, neither supports ‘like’ at the granularity of operations,
that is, the ability to inherit just one operation. Multiple and even mutual inheritance are
direct by-products of this fine-grained capability of similarity inheritance. Multiple
inheritance occurs in cases such as FPG and H : Op1PG : Op1, and mutual inherit-
ance occurs in cases such as G :Op2PH : Op2 and H : Op3PG : Op3.

5.2. Forms/3 Examples

In Forms/3, the interaction model is instantiated as follows. Action C is supported by
a ‘copy form’ button, which copies the form selected in a scrolling list, and by a ‘paste’
button on each form, which pastes selected cells and cell groups onto the form. Recall
that C is not simply an edit action, but establishes an inheritance relationship. Action
F is supported by allowing the programmer to edit any formula that is visible. Liveness
level L is level 4, so after every formula edit, immediate visual feedback is given about
the edit’s effect on the program. In Forms/3’s representation R, each cell and cell group,
whether copied or not, is visible, which allows it to be edited by action F. Shading
indicates whether a form or cell/cell group is copied. (See Djang and Burnett [1] for
additional details of the representation.)

Suppose the Forms/3 programmer wants to make use of an existing implementation
of type Stack to create a new type that is similar to a stack, for example, a queue. The
programmer can start with a copy of the Stack form in Figure 8 and then modify it using
action F. Inheritance and overriding of cell/cell group names are also allowed and, since
inheritance is fine grained, it is also possible to delete cells/cell groups from the copy. In
this example, a change to the formula for the push abstraction box and some renaming
of cells and cell groups are all that is required to turn the copy into a Queue (see
Figure 9). Because StackPQueue, changes to formulas on Stack will propagate to
Queue unless they have been overridden. For example, a bug fix to the formula for push
on Stack would not have any effect on Queue, but a bug fix to pop’s formula would
propagate to dequeue on the Queue form.

Now suppose, as in Figure 10, someone has added the new operations size and
empty? to Queue. Another programmer might find those operations useful for Stack as
well and copy them to the Stack form. Stack and Queue now both inherit from each
other.

5.3. Type Inference with Similarity Inheritance

To add similarity inheritance to the basic axioms already presented, it suffices to
change only the guarantee axiom [GA]:

[GA@ ] G(F : A)"Mx, ‘like’ y D x 3̀F.ROset, yP̀xN where A is an abstraction box

This new version says that the guarantee set includes not only every operation defined
on form F, but also the word ‘like’ prepended to every operation from which the
operations on form F are inherited. For example, since in Figure 9, StackPQueue, then
G(Queue : Queue) includes not only the operations on form Queue, but also the word
‘like’ with the Stack operation top, the word ‘like’ with the Stack operation pop, and so



Figure 8. The Stack form
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on. Inherited operations are already included on form F (recall the self sufficiency
property), but the user is allowed to rename them, such as by changing the name of
inherited cell top to front on the Queue form, so by explicitly including the ‘‘like’ top’
entry, the operation is known to the inference system by all of its aliases.

A revised definition of type safety is now needed that takes into account the ‘like’
entries in guarantee sets:

Revised Definition. If ∀ROs X 3̀ program P and ∀Op3R(X )Neither Op3G(X )
or ‘like’ Op3G(X ), then P is type safe.

In essence, this definition says that every required operation needs to either be
present in the guarantee set, or the operation from which it is inherited, prepended with
the word ‘like’, needs to be present in the guarantee set. As a corollary to this revised
definition, a type error is now defined as: &X, Op such that Op3R(X ), OpNG(X ), and
‘like’ Op N G(X ).



Figure 9. A Queue form created with similarity inheritance from the Stack form of Figure 8, as indicated
by ‘‘like stacks’’ displayed upper left. Several names and one matrix are unshaded to indicate that they have

been overridden
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An obvious implication of axiom [GA@ ] is that, since the guarantee sets are larger than
those inferrable under the pre-inheritance version (axiom [GA]), more programs can
potentially be inferred to be type safe than under [GA].

5.4. Operation Polymorphism

In addition to supporting code reuse via inheritance as demonstrated to this point,
similarity inheritance also supports operation polymorphism, similar to dynamic dis-
patch in other languages. That this capability, which sounds inherently dynamic on the
surface, can coexist with static type inference is due to the fact that type reasoning is
done at the granularity of operations.

Suppose that a cell Y results in an instance of the Stack type in Figure 8, that a cell
Z references cell empty? on the appropriate copy of Stack (i.e., Z references
StackY : empty?), and that the program is type safe. Now suppose that the user edits cell
Y so that its value is an instance of Queue (Figure 9). This would mean that StackY : Stack
now references a Queue, which would violate axiom [AbsType] in Table 4.



Figure 10. Mutual inheritance between Queue and Stack. The new cells size and empty? appear white on
the Queue form where they originated, and shaded on the Stack form
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The implications of axiom [AbsType] are that if one abstraction box has a dataflow
path to another abstraction box, both must be on forms with the same modelName;
because of [VADTformExistsC], the same constraint exists if a constant is the source in
the dataflow chain. The violation of this axiom can be detected statically, because it
involves a static dataflow chain either from a constant to an abstraction box or from one
abstraction box to another. When a formula edit such as the one to cell Y causes
a violation of this axiom, the system automatically generalizes the monomorphic
reference in cell Z to transform it into a polymorphic reference. This generalization, which is
an extension of the generalization of Yang and Burnett [42], happens only when a cell is
edited. The result is that Z ’s formula is changed from ‘StackY : empty?’ to
‘SVADTTY : empty?’, namely a reference to cell empty? on whatever VADT form is
appropriate for Y, which can be determined statically from the dataflow path leading to
Y. Generalizing Z ’s formula in this way removes the violation of the axiom, allowing
type inference to proceed in the usual way to make sure the guarantees for Y (which are
now the Queue operations, by virtue of Y ’s new formula) fulfill the requirements of
Y (Mempty?N, the same set as before the edit to Y, since Z still references a cell of that
name).
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This generalization not only allows the edit in which Y references a Queue, it also
would allow Y to be edited to polymorphically reference the result of a polymorphic ‘if’
or a lazy matrix while still immediately verifying type safety.

5.5. Example: Type Inference in the Presence of Single Inheritance

The Stack and Queue example at the stage depicted by Figures 8 and 9 can show how
our model of types works in the presence of single inheritance. First consider what the
main abstraction box on each form guarantees. The guarantee sets for these abstraction
boxes are lengthy, because they include every RO 3̀ the ROset for the forms. (Note
that type safety is separated from information hiding, which is solved in a different
way [43].) Although shared data structures in a system implementing this model
can cut down on some duplication of these lengthy sets, not all copying can be
avoided.

G(Stack:Stack)"MStack, push, pop, top, Image, new, lines, new-matrix, Stack[items],
Stack[items][numrows], Stack[items[1@1]2N [GA@ ]

G(Queue:Queue)"MQueue, enqueue, dequeue, front, Image, new, lines, new-matrix,
Queue[items], Queue[items][numrows], Queue[items][1@1],2,
‘like’ Stack, ‘like’ pop, ‘like’ top, ‘like’ Stack[items], ‘like’
Stack[items][numrows],2N [GA@ ]

As we briefly mentioned before, since form Queue was created via similarity
inheritance from form Stack, the guarantee sets for abstraction boxes on a Queue form
include several operations inherited from Stack (‘like’ pop, ‘like’ top, etc.). Notice,
however, that these guarantee sets do not include ‘like’ push’, because the programmer
overrode the similarity between Stack’s push and Queue’s enqueue.

Figure 11 shows a simple form with some uses of operations on a stack. Cell
collection references a Stack, so its guarantee set is the same as G(Stack:Stack).
Assuming that cells removed-item and the-rest are the only references to cells that
perform operations on cell collection, cell collection’s requirements set contains two
operations:

R(collection)"Mtop, popN [R1]

Since G(Queue) on every copy of form Queue includes ‘‘like’ top’ and ‘‘like’ pop’,
a reference to Queue on one of these copies by cell collection would have triggered
generalization of the-rest and removed-item, thereby preserving type safety according to
the revised definition of type safety in Section 5.3.

5.6. Example: Type Inference in the Presence of Multiple Inheritance

The Deque (double-ended queue) at the stage of development shown in Figure 12
illustrates use of multiple inheritance. Deque inherits most of its ROset from Queue, but



Figure 11. Cells removed-item and the-rest contain examples of references that will eventually become
polymorphic. The figure shows the formulas before generalization. Cell collection’s formula (not shown)
references some instance of a Stack, and form 348-Stack’s main abstraction box, Stack, in turn references
cell collection. If cell collection’s formula is changed to reference, for example, a Queue, the formulas of

removed-item and the-rest will be generalized
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it also inherits the push operation from Stack. Deque’s main abstraction box’s guarantee
set is not much different from that of Queue’s.

G(Deque:Deque)"MDeque, enqueue, dequeue, front, Image, new, lines, new-matrix,

Deque[items], Deque[items][numrows], Deque[items[1@1],2, ‘like’ Stack, ‘like’

pop, ‘like’ top, ‘like’ Stack[items], ‘like’ Stack[items][numrows],2, push, ‘like’

Queue, ‘like’ Queue[items], ‘like’ Queue[items][numrows],2N [GA@ ]

Due to the fine-grained granularity of our model, the presence of multiple inheritance
in a program does not significantly affect the derivations of guarantee and requirement
sets of operations. The same axioms are applied regardless of the presence and the form
of inheritance.

6. Properties of the Types Model

6.1. Soundness

Most other type systems reason about the types themselves, and in these systems the
notion of soundness reduces to whether the inferred type name is always correct.
However, our type system is based on operation guarantees and operation requirements
as a way of reasoning directly about type safety. Hence, a notion of soundness with
respect to type safety is needed.



Figure 12. A Deque form inheriting from the forms and operations for Stack and Queue
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Let A be the axiom set presented in this paper. We define soundness with respect to
type safety as follows:

Definition. A is sound with respect to type safety iff applications of A cannot prove that
a program P is type safe if P ’s dynamic execution could result in type errors.

Type safety has earlier been defined in terms of guarantee sets and requirement sets.
Substituting this for the phrase ‘a program P is type safe’ in the above definition
produces the following:

(1) A is sound with respect to type safety iff applications of A cannot prove that

∀ROs X 3̀ program P and ∀Op3R(X ), either Op3G(X ) or ‘like’ Op3G(X )
if P ’s dynamic execution could result in type errors.

Focusing now on the last line of (1), P ’s dynamic execution could result in type errors
if (and only if ), despite the contents of G(X ) and R(X), in some dynamic execution of
P an operation could be used on some X that was not actually guaranteed for X. Let
G ideal (X) and Rideal(X ) be ‘ideal’ sets that perfectly reflect the operations on X that are
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actually guaranteed and required, respectively, in any dynamic execution of P. Wording
the last line of (1) in terms of these ideal sets gives:

(2) A is sound with respect to type safety iff applications of A cannot prove that

∀ROs X 3̀ program P and ∀Op3R(X), either Op3G(X) or ‘like’ Op3G(X )

if &X 3̀ program P and &Op3Rideal(X ), such that Op NG ideal(X) and ‘like’
Op N G ideal(X ).

From (2), it is clear that if G(X)"Gideal (X ) and R(X)"R ideal (X ), then it follows
that A is sound with respect to type safety. However, it is more convenient for proof
purposes to subdivide the property of equality to an ideal set into two properties, termed
reliability and comprehensiveness.

We define G(X) to be reliable iff G(X)-Gideal(X ), and similarly define R(X)
to be reliable iff R(X)-R ideal (X). We define G(X) to be comprehensive iff
G(X).Gideal(X ), and similarly define R(X) to be comprehensive iff
R(X ).Rideal (X ). Of course, if G(X ) is both reliable and comprehensive then
G(X)"Gideal(X ), and likewise for R(X). Intuitively, G(X ), for example, is reliable if
it contains only operations that are actually supported for X, and is comprehensive if it
includes every operation that is actually supported for X.

Thus, to this point, we have shown that proving the guarantee sets to be both reliable
and comprehensive and the requirement sets to be both reliable and comprehensive would
be sufficient to prove that A is sound with respect to type safety. However, it turns out
that it is not necessary to meet all four of these conditions. In the remainder of this section
we complete the proof that A is sound with respect to type safety by proving that

1. the guarantee sets are reliable;
2. the requirement sets are comprehensive; and
3. reliability of the guarantee sets and comprehensiveness of the requirement sets are

sufficient for soundness with respect to type safety.

6.1.1. Reliability of the Guarantee Sets

We have defined a guarantee set G(X ) to be reliable if every operation in G(X ) is in
Gideal(X ) by virtue of actually being supported for X. We restate this definition, separately
for non-matrices and matrices, in terms of Core Forms/3 programming objects.

(a) For any non-matrix RO X, G(X ) is reliable iff every operation in G(X ) according
to A is defined on X’s VADT form F, either by being present under the same name, or
by having been inherited and renamed.

Proof that G(X ) is reliable for any non-matrix RO X:
Case 1: X is an abstraction box on its VADT form F.

Let Op3G(X )

NOp 3̀F.ROset by [GA@]
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Hence, since Op is defined on F, G(X ) is reliable.
Let ‘like’ Op3G(X )

NOpP̀Op2 where Op2 3̀F.ROset by [GA@]

Hence, since Op is a different name for Op2, which is on F, G(X ) is reliable.

Case 2: X is not an abstraction box, and XQZ.

XQ̀F : Y, where F : Y is an abstraction box by [Inst]

X ’s VADT form FX is a copy of F by [VADTformExistsR] and [Copies]

N∀Op 3̀ F.ROset, Op 3̀FX.ROset by [Copies]

G(X )"G(F : Y ) by (repeated application of ) [Gref ]

G(F : Y ) is reliable by Case (1) above

Hence since G(X )"G(F : Y ), which is reliable given the same ROset for Y as exists
for X, then G(X ) is reliable.

Case 3: X is not an abstraction box, and XQc C. Because constants are shortcuts for
referencing an abstraction box on a built-in VADT form, this case trivially reduces to
case 2.

(b) For any matrix X, G(X ) is reliable iff every operation in G(X ) according to A is
present in G(X [ i ]) and G(X [ i ]) is reliable, ∀X [ i ]3X.gridROset.

Proof that G(X ) is reliable for any matrix X:

Let x3G(X ) where x"Op or x"‘like’ Op

Nx3G(X [ i ]), ∀X [ i ]3X.gridROset by [GM]

X[ i ] is not a matrix by definition of matrix ROsets (Section 3.2)

NG(X[ i ]) is reliable by (a) above

Hence, G(X ) is reliable.

6.1.2. Comprehensiveness of the Requirement Sets

We have defined a requirement set R(X ) to be comprehensive if R(X ) includes every
operation that will be used on X in some dynamic execution of P. The restatement in
terms of Core Forms/3 programming objects again is separated for non-matrices and
matrices.

(a) For any non-matrix RO X, R(X ) is comprehensive iff, given Op N R(X )
according to A, then there is no use of Op on X (that is, &/ Z such that ZQFX :Op),
and there is no use of Op on any Y (that is, &/ Z such that ZQFY :Op) such that

YQ̀X.
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Proof that R(X ) is comprehensive for any non-matrix RO X (by contradiction):
Assume that Op N R(X ). Then either case 1 or case 2 below must be true:

Case 1: &Z such that ZQFX :Op
NOp3R(X ) by [ R1]
But Op NR(X ) by the assumption above.

Case 2: &Z such that ZQFY : Op and YQ̀X

NOp3R(Y)NOp3R(X ) by [ R1]
But Op NR(X ) by the assumption above.

Hence, R(X ) is comprehensive.

(b) For any matrix X, R(X ) is comprehensive iff, given Op N R(X ) according to A,
then there is no use of Op on any X[ i ] (&/Z such that ZQFX[ i ] : Op).

Proof that R(X ) is comprehensive for any matrix X (by contradiction): Assume that
Op N R(X ), and that &Z such that ZQFX[i ] : Op.

NOp3R(X[ i ]) by [R1]
NOp3R(X ) by [RM]
But OpNR(X ) by the assumption above.

Hence, R(X ) is comprehensive.

6.1.3. Sufficiency

We have pointed out that all four properties (reliability of guarantee sets, comprehens-
iveness of guarantee sets, reliability of requirement sets, and comprehensiveness of
requirement sets) would have been sufficient to show that A is sound with respect to
type safety. We now show that the two properties just proven, reliability of guarantee
sets and comprehensiveness of requirement sets, are sufficient for soundness with
respect to type safety, i.e. that the other two properties are not necessary.

Focusing first on the requirement sets, let R(X ) be the requirements on X according
to A, which we have just shown to be comprehensive. R(X ) is not reliable if it is
possible for Op to be in R(X ) when Op can never be executed for Y. For example,
suppose P (in full Forms/3) consists of cells X and Y, and that Y.formula"‘If
true"false then (X div 2) else 3’; from this, R(X )"primitiveNumberOperations,
in order to ensure divisibility. However, since the division can never actually execute
then Rideal (X )"M N. Comprehensiveness of requirements R(X ) means that
R(X ).Rideal (X ). Hence, whereas comprehensiveness without reliability can allow too
many requirements to be inferred, it cannot allow requirements in Rideal (X ) to be
omitted from R(X ). Thus, given comprehensive requirements sets, every program
inferred to be type safe using R(X ) would also be type safe using Rideal(X ), and
reliability of the requirement sets is not necessary to achieve soundness with respect to
type safety.

By similar reasoning, it is not necessary for guarantee sets to be comprehensive given
that they are reliable: if G(X ) is not comprehensive, its missing guarantees will result in
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an overly conservative measure of which programs are type safe, but will not allow
programs deemed unsafe using Gideal(X ) to be deemed type safe using G(X).

6.2. Understandability of User Communication

One of the goals of this work has been to devise a type system understandable enough
that it could be used in end-user languages as well as languages for professional
programmers. Although the question of understandability by a particular audience
ultimately requires testing human subjects’ use of the model in a particular implementa-
tion, it is possible to gain some early insights into the question in an implementation-
independent way by considering the amount and kind of vocabulary necessary to
communicate with the user about types.

We consider the minimum communication necessary to communicate with the user
to be the type error messages, since without error messages, there would be no benefit
to having a type inference system. To be useful, a type error message must indicate three
pieces of information:

1. Where in the program the error occurs
2. What the offending type is
3. What the offending type should have been

The second and third pieces of information require a vocabulary of types. Our model’s
vocabulary of types consists of only three different concepts: primitiveOperations (e.g.
primitiveCircleOperations), formIDs (e.g. Stack) and cellIDs (e.g. empty?). In fact, since
the concept of primitiveOperations is a shorthand for the specific set of operations, it
could be eliminated from user communications, reducing the number of concepts in the
vocabulary of types to only two. Since user-assigned names are used in place of
generated IDs, we expect these concepts to be familiar and thus understandable to the
user. Because of this simple type vocabulary, we believe type inference under our model
of types offers a potential for greater understandability than type inference with other
models of types. In particular, the absence of polymorphic types, function types, and
compositions of types, simplifies the type vocabulary required of the user, whereas type
models that use these concepts must also communicate about them when type errors
occur, complicating the type vocabulary with which the user must be conversant.

7. Future Work

Although similarity inheritance has been implemented, the static type system to support
it presented in this paper is so far solely a theoretical model, not an implementation.
Our next step will be to devise algorithms that will allow this model to be instantiated
in the Forms/3 implementation. (Forms/3 itself is currently implemented in Lisp
under the Garnet user interface system, and is freely available at http:
//www.cs.orst.edu/&burnett.) An important goal of the implementation of the type
system will be to provide insights into the efficiency characteristics of the model. Also,
after the type system has been implemented, we hope to conduct user experiments to
see if automatic type inference under this fine-grained model of types is indeed useful
and helpful to various types of VPL users.
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8. Conclusion

Static type inference increases the amount of immediate visual feedback that VPLs can
potentially provide, because it affords the possibility of immediate (edit-time) feedback
as soon as the user introduces a type error. In this paper, we have presented a static type
inference system intended for the purpose of type checking in first-order declarative
VPLs, both those for programmers and those for end users. The model is presented
here in the context of one particular such VPL, Forms/3. Two unique aspects of our
model are

z it separates type requirements from type guarantees, and
z reasoning about each portion of the program is done at the granularity of each

operation, rather than at the granularity of entire types.

These aspects have several interesting and desirable effects. First, they allow support
even of flexible, fine-grained approaches to inheritance, which supersedes support of
traditional, coarse-grained approaches to inheritance. Second, they allow support for
these various forms of inheritance without the traditional measure of re-introducing
explicit type declarations. Finally, they allow reasoning to be performed in terms of
concrete program units that were explicitly created by the user (such as cells, in
Forms/3), rather than in terms of abstract type names, and this simplifies the user
vocabulary associated with use of this model. These properties, while potentially useful
in traditional programming languages, are critical in declarative VPLs, because their
absence has prevented the possibility of using static type inference either in VPLs
incorporating similarity inheritance or in VPLs aimed at end users.
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