Journal of Visual Languages and Computing (1994) 5, 29-60

Interactive Visual Data Abstraction in a Declarative
Visual Programming Language

MaRrRGARET M. BurNeTr*f anp ALLEN L. AmsLEr?

*Department of Computer Science, Oregon State Untversity, Corvallis, Oregon 97331, U.S.A,
and 1 Department of Electrical Engineering and Computer Science, University of Kansas,
Lawrence, Kansas 66045, U.5.A.

Received 17 April 1993 and accepted 2 November 1993

Visual data abstraction is the concept of data abstraction for visual languages. In this
paper, first we discuss how the requirements of data abstraction for visual languages
differ from the requirements for traditional textual languages. We then present a
declarative approach to visual data abstraction in the language Forms/3. Within the
context of this system, issues of particular importance to declarative visual languages
are examined. These issues include enforcing information hiding through visual
techniques, supporting abstraction while preserving concreteness, conceptual simpli-
city and specification of a type’s appearance and interactive behavior as part of its
definition. Interactive behavior is seen to be part of the larger problem of
event-handling in a declarative language. A significant feature is that all programming
and execution are done in a fully-integrated visual manner, without requiring other
languages or tools for any part of the programming process.

1. Introduction

THE IDEA OF VISUAL PROGRAMMING is intuitively very appealing because it allows the
programmer to express relationships among, or transformations to, data simply by
sketching them, pointing at them or demonstrating them-—not by translating them
into sequences of commands, pointers and abstract symbols. Declarative visual
programming languages (VPLs) contribute the additional strength that the program-
mer has only to specify what the solution 1s, not how the computer must go about
modifying and manipulating the contents of memory to arrive at a solution. These
simplifications and removal of many of the concepts traditionally required to
program, combined with continuous visual feedback, seem to have great promise in
making programming easier and more reliable. Yet, the potential of declarative VPLs
has remained largely untapped. One reason for this has been the lack of an approach
to data abstraction that is suitable for declarative visual programming languages.
Without data abstraction, expressive power and high-level programming capabilities
are very limited because the programmer must always express all manipulations on
data in terms of the low-level details.

An abstract data type is a type traditionally specified as a collection of other types
and a set of operations. It 15 expected that programmers will operate upon instances of
abstract data types only through these defined operations. Data abstraction is the
concept of abstract data types plus the information hiding that enforces use of abstract
data types only through the defined operations.

§ To whom correspondence should be addressed.

1045-926X /94 /010029 + 32 $08.00/0 © 1994 Academic Press Limited

30 M. M. BURNETT & A. L. AMBLER

There has been little work done that supports data abstraction in declarative VPLs.
Prior approaches have fallen into three categories: (1) approaches in which a VPL is
used for only part of the programming task, requiring switching to another (textual)
programming language for the remainder; (2) approaches designed for special-purpose
problem domains which can be handled via combinations of a few “built-in” types;
and (3) approaches that are not fully declarative. These approaches cannot be said to
offer general solutions to the problem of data abstraction for declarative visual
programming languages because the first approach solves the problem only with the
help of traditional textual languages, the second lacks generality and the third is not
declarative. Qur work differs from these in that it does not require the use of external
languages or tools, it is general and it is fully declarative.

Our goal was to find a way to achieve the needed power by exploiting the
visualness and conceptual simplicity of VPLs. In our efforts to achieve this goal, we
started at the foundations. Rather than finding a visual way to incorporate data
abstraction as defined for textual programming languages, we decided to instead start
afresh by exploring the concept of data abstraction for visual languages. We term this
concept visual data abstraction. Visual data abstraction is different from traditional
data abstraction in two ways: (1) it adds grahical representations and interactive
behaviors to a type’s definition; and (2) it is accomplished entirely through visual
programming mechanisms. In developing this concept, we wanted to achieve the
following:

» The definition of a new data type will be visual and concrete, and will be viewable
at any time. This implies that definitions can only be accomplished as part of the
VPL. This requirement cannot be satisfied via ‘visual code generators’ because
such approaches produce textual, not visual, definitions.

* The process of creating, changing and working with instances of the data type will
be interactive and visual, featuring concrete, immediate visual feedback. Appro-
aches in which data types are created textually but can later be used visually do
not provide this characteristic.

* The data resulting from such a definition will be interactive and visual. This
implies that its appearance 1s visual, and that the appearance is part of the
definition of the type. It also implies that the definition includes specifications
about its behavior under user interaction.

1.1. Example Scenarios for Visual Data Abstraction in VPLs

The following programming scenarios provide an intuitive sense of the goals that
underlie the research presented in this paper. The first scenario presents a visual,
interactive kind of data whose creation would be artificial and cumbersome without
the use of a VPL. The second scenario demonstrates the same kind of wvisual,
interactive programming style for a traditional abstract data type. Later in this paper
we will return to these examples to explain how they can be programmed using the
declarative VPL Forms/3 in which we prototyped our approach to visual data
abstraction.

1.1.1. A Movable Object in a Window

An object within a2 window can be moved by grabbing it and flicking it off in some
direction. As long as the mouse button is down, the object 1s actually being dragged.

INTERACTIVE VISUAL DATA ABSTRACTION 31

But if the mouse button is released while the mouse is still moving, the object
continues to move in the direction and speed used while it was being dragged. The
movement of the object continues until it arrives at a border, or until it is again
grabbed. This problem is indicative of the kind encountered in any sort of gestural
interface, which generally requires the ability to detect and abstract arbitrary
sequences of events. Such sequences may be quite complex, going far beyond the
capabilities of systems able only to recognize discrete button clicks, mouse moveme-
nts and keystrokes.

There are two types of data that need to be programmed in this scenario—windows
and movable objects. A window 1s simply the composition of the objects on it, and its
only operation is the computation of its appearance. A movable object consists of a
shape, size, position and event history. The primary task in defining it consists of
specifying its appearance and position based upon its event history.

Programming these two interactive visual data types without being able to work
with them visually would be frustrating, rather like trying to create a painting
blindfolded. But in Forms/3 the process of programming them is highly visual. For
example, throughout the programming process the appearance of the window
dynamically provides continuous visual feedback as to the speed, direction and
location of the object. Part of this feedback is due to the fact that everything on the
screen has a value as soon as it is defined. This allows the programmer to experiment
while programming through the use of concrete sample values. For example, by
providing a definiton for the movable object’s appearance, an instance of it
immediately appears and can be observed. As the programmer experiments with the
application, his or her interest changes from low-level events (did the mouse just
move?), to higher level events (is the object being dragged?). The programmer can
navigate through these levels of abstraction, sometimes viewing the details of the
components of the data types, other tines watching its behavior as a whole, switching
between alternative views as needed. As the programmer interactively modifies the
program, the effects of these changes can be immediately observed because the results
are continuously displayed.

The completed movable object type will be usable in a variety of applications.
Instances of it can be used directly on an instance of the window type as in the
program development process described above, or they can be incorporated into other
types (customers, stacks, etc.) to give them the same movability properties,

1.1.2. A Production Planning Simulation

In this scenario, the goal 1s to minimize handling of the goods being produced by
either avoiding inventory altogether (producing exactly enough to meet demands), or
by using LIFO inventory for easiest storage and retrieval of goods from inventory
when demand does not exactly match supply. The programmer begins by defining a
stack needed to handle LIFO inventory. While defining the components of the stack
and its operations using the visual, interactive mechanisms of the language, the
programmer begins to test the simulation by interactively placing two items in an
inventory stack. The stack is displayed on the screen, and the simulation pops the first
one {which causes the stack’s appearance on the screen to change), and then the
second one. While watching the simulation, the programmer interacts with it to test

32 M. M. BURNETT & A. L. AMBLER

other circumstances, instantiating more stacks with different inventory items, increas-
ing the production rate causing a build-up of inventory, etc. If there are troublesome
aspects of the simulation (why is this stack so large? how old is the oldest item in it?),
the programmer can inspect the detailed components of the data. As needed, he or she
changes the simulation program, changes the definition of the stack operations and
adds alternative views of the stacks, all using the same programming constructs and
visual notations. All changes are immediately reflected in the data that appears on the
screen.

Long after the programming of the production planning problem is complete, the
programmer uses the same stack type in a maze-playing game, an infix expression
parser for a calculator, and a variety of other applications. This reuse of the stack does
not require re-programming multiple versions of the same code or dropping down
into a translated textual version, but rather can be done by simple manipulations to
the existing code using the same visual programming constructs.

1.2. Organization of this Paper

In this paper we present a declarative approach to visual data abstraction. After a
discussion of related work in Section 2, we present a brief introduction to the
language Forms/3 in Section 3, and then describe the approach to visual data
abstraction in Sections 4 through 6.

2. Related work

Most earlier visual languages have not attempted to provide visual constructs for data
abstraction and none have attempted fully-declarative solutions, but several have
contributed ideas that are related. ThinkerToy [1], a concrete modeling environment
for decision support problems, is a visual language which supports many aspects of
visual data abstraction for a specific problem domain. It uses a concrete, object-
oriented approach to allow the user to define the composition and inheritance of new
data types in an entirely visual manner, and to compose these new data types into
larger constructions. However, it does not visually support more abstract kinds of
data. Other successful visual languages designed for specific problem domains (for
example, ThingLab [2] and Action Graphics [3]) have incorporated varying degrees of
support for the creation of problem-specific data types, but are not intended to
support greater generality.

Several object-oriented systems, such as Hi-Visual [4], use coarse-grained visual
approaches. In these systems, definition of most new abstract data types is of a finer
grain than is supported by the visual part of the system, and is done at least in part via
2 traditional textual language. The GRClass system [5] focuses directly on data
abstraction and supports completely visual definition of new abstract data types.
GRClass is a visual tool for Andrew Toolkit data structure code generauon. Thus, it
supports visualness only during data type definition, generating textual code which is
then incorporated into a textual program that is maintained and debugged in the
traditional way. In ObjectWorld [6), concrete, continuous feedback 1s provided
throughout a visual process of defining general-purpose abstract data types (objects),
but the methods for the objects are programmed using a textual language.

INTERACTIVE VISUAL DATA ABSTRACTION 33

Prograph [7,8] is a language in the declarative family with strong support for
general-purpose abstract data types. Prograph is an object-oriented dataflow visual
language, although it does not claim to be strictly declarative—some side-effecting
constructs have been introduced. A university research project for several years, it is
now a commercial product for the Macintosh. The support for the definition of new
abstract data types is completely visual, and is tightly coupled with the visual
execution environment, but the information-hiding aspect of data abstraction is not
present.

Much of the work supporting interactivity in types has been done in special-
purpose VPLs specifically pertaining to user interfaces, and has not generally been
tied to data abstraction. InterCONS [9] is a visual dataflow language which has
certain primitives associated with user interaction (e.g. buttons, shders). These
primitives accept interactive input events, and generate integer outputs which can be
routed into other dataflow nodes for further calculation. The system is intended only
for the specific problem domain of user-interface generation. A similar approach can
be found in ConMan [10]. Prograph also provides such an approach, but supports
more generality by providing dataflow connectibility to the Macintosh Toolbox
methods. This allows direct access and manipulation of the various Macintosh
user-interface and operating system primitives.

Fabrik [11, 12] does not support abstract data types, but it does allow certain kinds
of interactive aggregate types. In Fabnk, primitive graphical objects called graphemes
(e.g. rectangles, bitmaps) can be sensitized to certain kinds of interactive events. The
sensors that are incorporated into these graphemes provide conunuous tracking
information, such as the mouse’s position. This 1s similar in concept to the Forms/3
approach, but is different in that it tes event detection to specific, viewable objects. A
similarity between Fabrik and Forms/3 is that both also support non-interactive
events such as system clock tcks.

While NoPump II [13] does not include a general approach to data abstraction or to
interactive events, it does support certain specific events, namely system clock ticks
and the relocation of objects on the screen. These events are supported through the
ability to reference event-supporting cells on a spreadsheet, one being the clock cell
and the others being pairs of coordinate cells for graphical objects. The authors also
propose adding an additional distinguished cell to report the state of the mouse’s
button. However, generality nas not been a goal of the NoPump system, and the
generality of the event-handling proposed is insufficient for complex interactions for
several reasons. First, there is no access to mouse movement events unless an object is
being dragged. Second, due to the lack of any facility for abstraction, interactions of
any complexity would require a large and detailed group of coordinate and
sequencing comparisons, making the program’s intended logic obscure.

Schoberth’s proposal [14] for event-handling in Forms/2 [15], the predecessor of
Forms/3, had a strong influence on Forms/3’s approach to interactive events. In
Forms/2, a form is a collection of cells. Each cell has a formula defining its value and
a set of attributes which can be formulated in cells themselves. In an extension of this
fact, events are represented by special-attribute cells whose values are maintained and
updated automatically whenever events occur in the cells they describe. Auribute
cells’ values can then be referenced by formulas in other cells, thus contributing to
calculations as needed. Values dependent on newly-arrived events are marked

34 M. M. BURNETT & A. L. AMBLER

out-of-date by creating a new entry in time for the affected forms with the out-of-date
cells’ values shown as ‘unknown’ (eventually to be re-computed if needed). The
special attributes supported are mouseln, mouseDown, keyboardValue and focusin.
In addition, a special form has three event cells (mouseLocX, mouseLocY and clock)
which are always kept up-to-date by the system in the same manner as above.
Forms/2 does not support construction of new types. Our current approach to events
is different from the Forms/2 approach, but borrows from its declarative, time-based
aspects.

3. Forms/3, a Declarative Visual Programming Language

Our work was done using the declarative VPL Forms/3 as a prototype. In order to
explain the approach to visual data abstraction, we first present Forms/3. This section
includes an informal presentation of basic concepts, a more rigorous treatment of the
same basic concepts and definitions of some of the primitives. The complete
specification is given in Burnett [16].

Forms/3 is a form-based VPL that incorporates facilities for procedural abstraction,
visual data abstraction, polymorphic types with type inference, file handling, erfor
handling, and both interactive and non-interactive events. Research prototypes
without user interfaces® have been implemented for Sun 3/160s and SPARCstation/2
color workstations using Lucid Common Lisp and the CLX interface to X Windows.
A new implementation of the system including a user interface is currently being
developed.

Forms/3 is a declarative VPL. It is declarative because all programming is done by
defining formulas for cells, which can be referenced by formulas in other cells. These
formulas are expressions such as 2+ 3 which define the value of the cell. Circular
formulas are not allowed in Forms/3. There is no mechanism for side-effecting state
modification, and the only way a cell can get a value is through its own formula,
Because of the lack of state modification, the property of referential transparency® is
preserved.

The cells are arranged on forms as desired by the user. Cells can also be grouped
into a matrix or an abstraction box which can be referenced like cells from other
formulas. The term referenceable object denotes a cell, a matrix or an abstraction box,

83 72 A=

1 H
@ m ~l 2y © @
‘/ Tatel o8 Dept Name Logo

Contest Entry

Figure 1. {a) A cell. (b) A sketch of the temporal vector of values defined for the cell. (c) A matnx of six
cells representing a student’s grades. (d) An abstraction box whose cells constitute the parts of a visual
abstract data type. Any of these can be named by the user if desired as in (d)

2 For this reason, hand-drawn formulas simulating those which would be displayed by the user interface
are superimposed on the screen shots in the figures.

®The property of referential transparency says that given the same arguments a module will always
produce the same outputs, no matter how many times it is executed. This property is not preserved for
languages in which it 1s possible to have mutable (modifiable) values affecting a computation that are not
part of the parameter list.

INTERACTIVE VISUAL DATA ABSTRACTION 35

7]

o A AR A

R g I R R U R R B R a2 e A S

RS SN R OIG R UMD NSO FV 3 DRI KON LSO S A 5 SO AT

Figure 2. Computation of the area of a square. The cell Sguare represents a square by the length of one of
its sides. The formulas are shown superimposed on the screen dump. Square has the formula 5. The cell
Area multiplies a reference 1o Square times itself 1o compute the area

1.e. anything that can be referenced in a formula (see Figure 1). Figure 2 contains a
very small programming example in Forms/3. Table 1 presents more precise
definitions of this terminology.

Although there is often quite a bit of text in Forms/3 formulas, Forms/3 is a visual
programming language. One reason for this is that direct manipulation is part of the
language syntax; although it is possible to name cells and refer to them by these
textual names, names are optional and the only mechanism for referencing an
unnamed cell is by pointing at it with the mouse. Another reason that Forms/3 is a
visual programming language is that the scope rules, which are explained in Section 4,
are both defined and enforced only through visual mechanisms. Finally, the textual
operations often seen in the formulas are actually shortcuts (reminiscent of keyboard
shortcuts for menu items) for cell references make by direct manipulation on
system-provided forms, as defined in Table 2 and Table 3.

In Forms/3, a cell’s formula may define a sequence of values over time, termed a
temporal vector. There are two differences between temporal vectors and other vectors
traditionally found in programming. The first is that subscripting is defined along a
logical uime dimension rather than a space dimension, and the second is that temporal
vectors need not have an element at every point on the temporal dimension, Temporal
vectors differ from the sequential ‘streams’ often found in functional or dataflow
languages because elements of temporal vectors can be directly referenced via
subscripts. Another difference from streams is that there is no notion of data moving
or being consumed in temporal vectors; every element is defined at a fixed location,
and remains there forever (at least in theory). The positions along the logical time
dimension are not defined by the passage of real time, but rather by the occurrence of
computational events. A sketch of the temporal dimension is given in Figure 1, and
several examples of its use are given later in this paper,

4. Visual Data Abstraction in a Declarative Language
In this section we will first discuss visual abstract data types (VADTSs) and their
specification in Forms/3, and then turn our attention to the information-hiding aspect

M. M, BURNETT & A, L. AMBLER

36

*$A.0J JO 3zis 2t 21eudIsop 03 A[[EULIOJUI PISN UINJO SI Suzunjor LML Y],

[zz] Is|quy puE 1pPaBISYIIA Ul puUnoOj aq Ue2 1ng traded sup jo adoos sy puodaq a1e sao1nEW Ajads uea Jasn syl moq jo S|IER(Q .,
Vi 2 (g uojonaup) ‘Y42 (, 24mubg, “auippy) isajdwexy] "o3ey pAERWNUS JOW ST Yf “Ansdiq 30 q

U034 [IUN PAIIRJIp SI $9X0qG UONIEIISqE JO UONIUY3p 2Y],,

A[pandadsar < smoy pue sbagmoy [[e J© 3ZIS Y3 JUPIP SE[NUWLIO} dSOUYA S[]30 paysmiunsip a1e YN pue YN
d TV “ON) (d TV YN} = swed
1122 & ST QY Yor2 1oy yons (J “7V ‘OF) mu_msu-uuo?_o-u?_«vucuuumm._ Jo aouanbas e st moy ¢
’ ‘saoy jo doudnbas v st bagmoy

L} 24 = ¥ Yor2 213 S JH JO 195 B S1 195
‘7agnuapt anbiun e st (77 d5ya

(suir(q ‘bagmoy S I ‘(JI) = ,XMwm Y

¢ /5Wio,] Jo] pauysp

sired 21nguITE Ww2puadapUL-150Y JO 138 Y T 77 puE ‘wansds Gunmopuis 150y 3yl Lq papiacid sned ainguie J0 138 AP 81 YR YA
{WaNVH 3 (L} | (£x)} = 1577 a1mquazsy uy

e
2I31As ‘POUYIP ST ANJEA T YOI 18 / SWN WNUIXEW Y1 I8 A U1 WUILWI Y3 SI 2 JWN IE JqIssaory /| 101024 {er0dwal Ul A Juawaps ay]
uotsuowp [ezodur2l 31 SUOIE SIUII[D JO I0IIIA T S1 403 [rA0dUdl

101098 [eaodwal B ST A J PUR SIURISUOD [[€ JO 125 A3 ST 1987 5302(Q0 I[qEIdUIIAI [[E JO 135 3yt SISy WD NWSOY 3 M 20Ya
‘AL i = vpruiof

e[nuLIo} ¢ St J pue Iaynuapt anbiun e 1 (77 219ym
dan=np»v
,X0Q UOTILISGE UT IO XUIBWL B [[30 & = 13{q0 3jqraoudiafas §

O¥ jo uonisod £—x a1p st g pue 151 INGUUE UE SI 7} “192(Q0 J[GEIDUIINII € ST QY 2I9Ym
(d TV ‘O¥) = 2jdni-113lqo-ajqraouaiafos

sa]dn1 100(qo 2[qEaDURIRYRI JO 195 € SI Jasy 15T AINQLIIE UE ST 7} “ToYnuapt anbun ¥ s (77 Oweu paudisse-1asn e 51 N 2RYM
125y “TV ‘Al ‘N) = w0 V

.M\mEuOnH JO s10n1sU0d> Y1 o mﬂomumﬂm«uﬁ— T 2|19,

37

INTERACTIVE VISUAL DATA ABSTRACTION

ASLAIYI0 HNTYAON

ana ="'y 10U puE S1SIX3 ' 1o
mn="pp T o="D

(+%):2D (0)q

pa3ueyoun sie g pue {;ueajooq) Dpue gy wy
astainio o)

mn ="y T ='q (+X)1:D

(+0):a (d)g
padueroun axe 5 pue g ‘Y (Lued[00q)i1y apuwed‘qy y

‘g pue 'y =" ‘(Lueaooqd) {.uesjooqyi:g
padueyoun axe g pue {.uE300q)1 Dpue gy pue

g ="V =" (sueaqo0q)::> {wdoqunu)g
padueydun s1e g pue {Jaquinu iy JDpue gV =

g+ 'Y ="D ‘(spqunudin {Pqunu)ig
padueyoun are g pue ¢ {I3qunu)y opue gy +
SUONTPUOISOJ SUORIPUOIAL] s12lqo "Joy N

‘72> 1duosqns
wInwixew 3y) Yaum 7 AW I8 I[QISSIIOE 30U ST IR 101094 [erodwIn s X JO JUIWSEY A ST Y pue 7 WM 1B I[qISSI0T 101094
Jerodwon sy Jo wwaps sy st 'y arydrowed st ad4r oy “1ama) Y210 € st g 51 ' 244 jo S9M{EA 310W 10 | JO 101204 fetodwn € s1
ad£1 s, x 1o sarouap (|, 1)y g 2d43 Jo sanjea ssow 10 (jo 103934 [erodwan € st 2dK1 s, ¥ 1EY) sa0Uap {sd Y1 X TUONTION ¢ J[qE],
ul pauysp st pue ‘sejnwiioy 35513 Jo dos uo pasade| si s1o1esado s xauds [enixa1 euondo Uy "213Y UMOYS St “SIUBISUOD 01 1O §102(q0
[qEIVUIIVNIT IO 03 SIVUIINPI A[uo—s103es2do E[NWIIO) OU 3T 331 ‘¢ /SWio] Jo uonesywmads [euutoy oy uf *[91] nawng w usad
st suonuyap jo 33s arapdwoo sy, 1oded sip ul pasn suntoy sanmuLd UI-fing) JO AUBW JO SONUBLIAS AY1 SAUYAP el STYY, 7 AqEL

M. M. BURNETT & A. L. AMBLER

38

“198ewn (jo doy uo, sreadde) sdepraso Ajjerreds
‘zofeun ‘uowrwod ut m_ux_m Aue areys ‘zadewn pue ‘padeun JU 'snyp c1vsn oyl plemol Furseslour uotsuawip Teneds e s1 sixe-z oyJ,,

‘|adeun jo vomsod-z a3 UeY) ssa] 10U
st ‘zaffeunt jo uonsod-z a3y azaya ‘xoq Surpunog s Jynsay
jJo 12ur02 Ya| 1addn ays o1 aanepa (‘g4 “zx) 1® pauonisod

‘zafeun pue ‘xoq Suipunog s [nsay jo sou1od 133 Jaddn {Ioquinu):igd clzx L
23 01 2aneRa ("144 %) 38 patonsod ‘[odewrn = [nsay Tx L gx ‘1 x Qnsay
{ X ymnsay {4 gadeun ‘zodeun asodwon)
pa8ueyoun are 74 ‘7x 1L 1 x ‘godeun [afeun {, o) a8eun *1a3ew a8ewn
anu3 = “TI N[Y2Iyas I8 7 WINIWTUIU 33 ST # 2daym
= > IA “151X3 10U s30p '~Tg q1 vV
H=>1p 'SISIXa ‘g 1 ‘g =g { «Ueaj00q)i TLLNN
(=0):d (.¢)g
_uuwc.ﬁ_u:: e JLLNN pue g ‘v A.“"Bv: d pue TLINN ‘g'V RE BL:ES
ann = "TILN(] Yorya 1€ J wnwiuiw 33 sl # 213y m
H= > 1/ “151X2 10U s30p g o v
r=>IAS g g ='q {4uea100q) TIINN
(:0):a (.g):g
padueyoun axe TIIN[] PUe § 'V (w0)y a pue TILNN ‘g °V Asxd
SUONIPUOISO] SUOBIPUODAL] s109(qo "oy N

{panunuoo)—y ajqey,

39

INTERACTIVE VISUAL DATA ABSTRACTION

AnsoY:{Q-eag A X.ae7x ‘(. am]d 0 (9 *X) 1A um zdgx 14 asodwo)
1% ‘A-sszadewn ‘rse(aewnosodwonysfeun {g ‘®) 1 r ssodwod ‘px ‘ynsoy ‘gafewn ‘jadeun s3eun
@(INTYAON

S TLLN(‘g-mg ‘AN TYAON-})I31]1ed g aoped d pue TLLNN ‘9 'V A31fED
C{ENTVAON L

= TLLN{ ‘f-g ‘71 TVAQN-my)r21d g rad pue TILNN 4 'V adxd

Di(f-amg sy)udy Ly g uspop DPpUEg 'V uatf 1 1

X)) ‘f-aag ‘0-wmp) X aspp g uap o p apueElgV b4

i (g-mg ‘0-my)pue d pue JpuE gy pue

Di(gf-emg vy)= if=n DPpuE gV =

Di(g-mag “vsap)+ g+ D pue gV +

01 23U213J21 ® 01 JuRfeAlnb2 5] uouEIou Y], 5102(qo “Joy N

‘uoIssa1dxa [en1xa1 pl[EA € 10 1531q0 31qEadULIRJRI ¥ ‘JUEISUOD B SL X 2Iaym
0 3q ©) PAUYAP U23q SEY ENULIOJ 5, ¥ 122[q0 J[qEasualall tey dunousp (D)) st 1517 oy jo JAUWI[? YB3 10f UONLIOY
oY1, "D 30 199[q0 J[qEsdUsIdfRI B SI Y PUE ‘f UO UB D U0 APUSIJIP pauyap st 1By 103[qo I[qesdtaIagal yaes jo
SUOTHUYAP B[nULIOY Jo I8 € ST [§77fag *f waoy [ewiduo jo Adoo e saiousp 57 210ya ‘Oy:(#sr7f2q))1 st uoneou ay g,
‘sasaypuosed (ita suorssardxaqns sdnord sosn oy ssajun 1ySur 01 Y] Aporas s1 suoissaadia yons jo Julsie “SULO) Ul-)ing
U 5159100 H[QEIGUDIFY31 01 SAIUDIDJAI JO SN Ul poulap ‘suoissaidxa PRIxa1 pijes Jo 1] JEnaed € ST 3jqel siyy, "¢ 3jqe],

40 M, M. BURNETT & A. L. AMBLER

25 * 25
Box:width? _Box:width?

Figure 3. Another version of the computation of the area of a square. This version uses graphical dara
types. Here cell Square is a reference to a cell named aBox on a form named Box, and Area multiplies a
reference 1o cell width? on form Box times itself to compute the area. Form Box is shown in Figure 4

of visual data abstraction. The notion of a VADT is that it is a 4-tuple: (components,
operations, graphical representations, interacuve behaviors). The third and fourth
elements of the tuple are important differences between the concept of a visual
abstract data type and the traditional textual concept of an abstract data type.

In Figure 2 of the previous section we presented a very small programming example
in Forms/3. However, in a visual language it seems artificial to represent a square by
a number measuring the length of one side. Instead, it seems more appropriate to
represent an inherently graphical data type such as a square by a W, as in Figure 3.
Notice the reference to cells on form Box. Form Box is an example of a VADT
definition that in this case is provided with the language,® and is shown in Figure 4.
The user can incorporate a box into his/her programming simply by referencing cell
aBox in a formula, as in the example. The next section will describe how the user can
define new VADTs that can be used in the same way as the built-in types by simply
referencing cells on forms.

i These cells can be used to find out
: information about aBox:
| aBox
: 25 25 Black Black
width? height? lineColar? fillCclar?

Figure 4. This copy of the built-in form Box describes an instance of the primitive type Box

“ The built-in YADTs are: Boolean, box, error, eventReceptor, file, glyph, line, number and rext. Every
VADT, whether built-in or user-defined, is defined by a form, as will be discussed in the next subsection.
The formal definitions of the built-in VADTSs are given axiomatically via pre- and postconditions for
referenceable obiects on those forms, in the same manner as the primitives defined in Table 2.

INTERACTIVE VISUAL DATA ABSTRACTION 11

4.1. Declaratively Programming a New Visual Abstract Data Type

In Forms/3, a visual abstract data type is defined by placing cells and groups of cells
on a form. A form defining a VADT is termed a visual abstract data type definition
form. There are two distinctions between the definition of a VADT definition form
and that of other forms: (1) a VADT definition form contains at least one abstraction
box which defines in detail the physical parts of the data; and (2) a VADT defimuion
form contains a distinguished cell whose formula defines the appearance of the data
(called the image cell). In addition, a distinction between the use of VADT definition
form versus other forms is that the (user-assigned) name of a VADT definition form
defines the type name of all values produced by abstraction boxes on any instance of
that form (see Table 4). We will demonstrate the use of these concepts first with a
simple example in which the user will visually create a traditional stack. Later
examples will show the creation of other, less traditional, kinds of data types.

The user’s process of creating a new stack VADT is as follows. First, he/she creates
a new VADT definition form via menu selection, and names it ‘stack’. An abstraction
box and the image cell are automatically created by the system and placed on the
form. The user defines formulas for these objects and places additional objects on the
form, defining their formulas as shown in Figure 5. The abstraction box aStack
contains a one-dimensional matrix named elements. The matrix shown in the figure
has zero columns which is reflected in the unbordered cell attached to the matrix.
More about the possible formulas for the elements of this matrix and for the image
cell will be discussed in later sections. In this example, the user has also chosen to
make a stack’s size, topmost element and empty status accessible by defining
appropriate formulas, as shown in the figure.

The appearance of the form and the cells on it are entirely controlled by the user.
The user may place cells wherever desired, specifying formatting information via
menus in a manner reminiscent of spreadsheets. For example, the user also has placed
the phrase ‘Information about the stack:’ on the form for documentation purposes.
This phrase is actually just another cell with a formula, in this example a constant
formula, and the user has set up the format of that cell to use 8 X 13 bold font with no
border around the cell. There are no restrictions on the kinds or placement of these
additional objects; they are the same as any other referenceable object on the form
and may have as simple or complex formulas as desired. Another documentation
technique is naming. Although the user has chosen to name all the cells in this

Table 4. Definitions of the VADT constructs of Forms/3.

A VADT definition form is a form with the restriction that Rset contains at least one
referenceable-object-tuple (RO, AL, P) in which RQ is an abstraction box, and contains
exactly one referenceable-object-tupte (RO, AL, P} in which RO is a cell designated as the
image cell

An abstraction box on VADT definition form (N, ID, AL, Rset) 1s {AID, F, ARset)

where AID is a unique identifier,

ARset is a set of referenceable-object-tuples (RO, AL, P) such that each RO is a cell or a
matrix,

F={RO,YROs| RO is in a referenceable-object-tuple € ARset}— N, where the mapping
operation is composition

42 M. M. BURNETT & A. L. AMBLER

example, naming is strictly optional since references to other cells in a formula can be
made simply by pointing at them with the mouse,

The user continues with the definition of the stack by adding two more abstraction
boxes, naming them Pushed and Popped, as in Figure 6. All abstraction boxes on the
same form must have the same structure. Each abstraction box on form ‘stack’, by

virtue of its presence on that form, results in an instance of type ‘stack’. The purpose
of Pushed is to define a stack based upon the original stack (aStack), but with one
more element on the top. This approach of defining different stacks resulting from
different kinds of operations is entirely declarative and does not involve state
modification—the original value of aStack is unchanged since the only way its value is
ever computed 1s through its own formula or those of its enclosed cells and matrices.
This declarative approach does not carry efficiency penalties because it is implemented
largely through pointers, thus avoiding the time and space associated with copying.

So far, we have described the process by which a user can define a new visual
abstract data type. Significant features are that the approach is entirely declarative;
that it is entirely interactive and visual, involving no external languages or tools in any
part of the programming process; and that it is conceptually simple because all
programmmg is done by simply providing formulas for cells. In the next sections we
will give an example of the usage of the new stack type, while also looking more
deeply into the programming language issues of the approach.

empty stack

,.éi&ﬁé{;.t;mm....m_.: image

adtack

Information about the stack:

0 ho entiry
size ﬂ top 1
if E: 0 then true else false 10 if@= 0 then "no entry”
size elements s1z¢
else i i
elements

Figure 5. Top part of the stack form. The formula for the column dimension of the matrix (shown just to

the right of the matrix) is the constant 0. Cell size references this dimension cell as its formula. The top

element will always be in the first element of the matrix, as is reflected in the formula for cell top. The
image cell’s formula (not shown) will be discussed in Section 5

INTERACTIVE VISUAL DATA ABSTRACTION 43

ik stack B
o] empty stack
elements mage
abtack

Information about the stack:

TRUE o] na entry
empty? size top

Uays to build more stacks:
1 I
+

e s a stack with 29 added to the top.
o newElement
newElement g
elements
0 is a stack with no entry removed from the top.
oldTop

Popped

LN

Figure 6. The first clement of the matrix in the Pushed abstraction box is a reference to cell newElement.
The rest of the marrix is a reference 1o the elements matrix within the aStack abstraction box

4.2. Sample Values for Liveness, and Form Instances for Generalized
Calculations

In this section we turn our attention to issues relating to the generality of user-defined
VADTSs, as well as issues relating to the interactivity of the programming process. In
Forms/3 these issues are intertwined.

In Forms/3, sample values are used to help achieve liveness level 4. Tanimoto
identified four levels of liveness [17]. Level 1 liveness is informative to the user but
not to the machine. Level 2 is informative both to the user and to the machine, such as
an executable flowchart. Level 3 liveness adds responsiveness—as soon as a visual
representation is entered or changed, the machine acts upon 1t without requiring a
separate execution phase. The examples given thus far show liveness level 3. Level 4 is
continuously responsive, automatically responding whenever conditions so warrant
even if no changes to the visual representation of the program occur (e.g. displaying
the result of system occurrences such as clock ticks). The production planning
example described later in this section shows liveness level 4.

Recall that on the form given earlier whose purpose was to compute the area of a
square, the user defined Sguare’s formula to be the constant 5. This sample value
allows immediate visual feedback based on a ‘sample’ of the area computation because
the cell Area (based on Sguare) can calculate its value as soon as its formula is entered.

44 M. M. BURNETT & A. L. AMBLER

This allows the user developing the form to see the results incrementally, using them
to ecliminate errors. In the stack example above, the user’s decision to define the
number of columns in the matrix as 0 was also an example of a sample value. By
including such sample values, the entry of each new formula allows the system to
calculate immediately the answer based upon references to these sample values. For
example, as soon as the user entered the formula for the cell size, the system displayed
a 0, and as soon as the user entered the formula for the cell empey?, the system
displayed TRUE. The use of sample values, besides providing immediate feedback,
also means that the abstraction boxes on a VADT definition form immediately result
in concrete instances of the VADT which can be viewed, referenced and used.

These concrete forms can be generalized beyond the sample values as follows. After
the formulas for the objects on a form have been defined, other instances (copies) of
the form can be created and modified. The underpinnings for generalization lie in the
scheme for constructing these copies’ unique IDs. Each copy’s ID is of the form
FC(DefList):RO as defined in Table 3, and is constructed so that it defines exactly
how the copy differs from the original form. For example, a copy of form
AreaOfSquare in which cell Sguare’s formula has been changed to 10 would have ID
‘AreaOfSquare(Square w- (10))’, denoting ‘AreaOfSquare in which Square’s formula
is a reference to the temploral vector consisting of the constant 10°. Similarly, a copy
of Stack in which aStack’s formula has been changed to be a reference to some other
form F’s cell X (whose value i1s a stack) would have ID ‘stack(aStack w F:X).
Through this scheme, the system has exactly the information needed to access any
instance of the original form if it already exists, and to create the instance if it does not
already exist.® Of course, the user does not know about these IDs, but instead creates
new instances by copying the form and re-defining formulas on it via direct
manipulation.

The production planning example described in the introduction shows this ability
to generalize using two copies of the stack form defined in the previous section (see
Figure 7). The inventory is represented by a one-dimensional matrix, each element of
which is a stack of some particular kind of inventory item. Each inventory stack is
calculated based upon the previous value in its temporal vector. The other matrices
give the corresponding kind of inventory item, and production and consumption rates
for each kind of item in number of clock ticks before the next item is
produced/consumed. These formulas are simply integer constants here, although
there is no reason why they could not be arbitrarily complex. The formula shown in
the figure defines a sequence which begins with the (empty) sample stack in aStack on
form stack, and is followed by the result of pushing or popping inventory items as
appropriate to the production and consumption rates. The operator fby® means

9The system also uses aliases 1o redundantly describe the values being computed. This allows it to rake
advantage of compurations which are described slightly differemly, but which perform the same
computation, e.g. AreaOfSquare{Square m (5}) and AreaOfSquare(Square m X), where X = (5)). The
details and efficiency implications of this mechanism are given in Burnett and Ambler [18].

“Fby is a higher-level form implemented using the primitive built-in form Earlier as follows. Fby
contains four cells: fnitially, Rest, Until and Result. The first three cells are formulated as needed by the
and the formula for Resslt is “if System :initial? then Initially else if not earlier Until then Rest’. Following
the notation of Table 3, the textual equivalent of a reference to fby({/nitially w o, Rest m B, Until
NOVALUE}: Result is “a tby B°, and the equivalent of a reference 1o fby(Initially w o, Rest wr 8, Until wr
x}:Result 1s “a fby B until 7.

INTERACTIVE VISUAL DATA ABSTRACTION 45

’Jjj Simulation *1

Laundry Hand Soap

Soap—1 qt. {4 pack fby

Stack:aStack
Kind of Product

4 3 ifnol(mod = mod)

Systern:Time Production Rate[i] System:Time Consumption Rate[i}

Production Rate then if mod =0 then -

System:Time Production Rate[i] Stack:Pushed

> 3 e it 557850 mea] =0 ten

System:Time Consumption Rate[i] Stack:Popped

Consumption Ra

empty stack|| empty stack

Inventory
L - i

Figure 7 A production planning program. System :2fme is a cell on form System which containg a count of
seconds. The references to cells on the original version of form stack (plain text) and a new instance (bold)
are shown here with different text styles

“followed by’ and defines a sequence of values. (This construct was inspired by Lucid
{19]). The second instance of form stack referenced is simply a copy in which aStack
references the previous element in the Inventory cell’s temporal vector; thus
references to Pushed or Popped provide the next element needed for the Inventory
cell’s temporal vector.

4.3. Information Hiding and Scope Rules via Visibility

It is important in any abstraction mechanism to preserve information hiding. In
textual languages, information hiding is enforced via behind-the-scenes scope rules or
formal declarations. Forms/3 uses a different philosophy—the accessibility /scope of
an object is determined and communicated by its visibility. The rule for accessibility is

@ o T © || A®

Pushed

Pushed

Figure 8. Hidden objects, when they are visible, can freely be referenced in formulas, and are displayed

using devices such as dotted border lines or paler colors (depending on the capabilities of the workstation).

(a) The abstraction box Pushed with its hidden contents shown. (b) The encapsulated view of the same

abstraction box. The user can only reference the abstraction box as an encapsulated whole when the hidden
objects inside are not visible

46 M., M, BURNETT & A. L. AMBLER

that if an object can be seen, it can be referenced in a formula. A referenceable object
can be seen at any time unless it is bidden. Some objects are hidden by definition, and
it 1s also possible for objects to be explicitly made hidden by the user. Hidden objects
can be referenced only when they are visible,

There are two kinds of objects that are hidden by definition: (1) the objects inside
an abstraction box; and (2) all objects on attached subforms, which are just ordinary
forms which have been employed for reasons of modularity and attached to another
form, similar in function 1o subroutines. Hidden objects are normally not visible, and
thus not accessible. For example, the objects in an abstraction box are normally not
visible, which means that the implementation details of how instances of VADTS are
constructed are normally not accessible. However, there are three ways in which
hidden objects can become visible and thus accessible:

1. Hidden objects are automatically made visible by the system when the user is in
the process of entering a formula for a referenceable object on the same form.
For example, when the user is defining a formula on a2 VADT definition form,
all the hidden objects within the abstraction boxes on that form are visible.

2. Hidden objects are automatically made visible by the system when the user is
defining the formula for a directly attached subform. This communicates and
enables an expansion of the hidden objects’ scope to include the subform.
Unlike traditional block-structured languages, more deeply nested subforms do
not inherit this access to hidden objects. Thus, each level of nesting corresponds
to another layer of information hiding.

3. Hidden objects may be made visible by the user via specific ad boc interactions,
aiding debugging. To do this, the user requests, via menu selection, that the
hidden objects on a specific form instance on the screen be temporarily
displayed. When a hidden object becomes visible, it can be referenced by cells
on other forms, but these references are valid only as long as the hidden object is
visible, and only for that specific object. An example of the use of this capability
will be seen in Section 5. Thus, an ad boc calculation can be done flexibly using
even a hidden object, but it is not generalizable to other copies of the VADT
form and hence does not provide a general mechanism for circumventing
information hiding. An important feature of the approach is that these ad hoc
calculations allow extensive debugging during the normal course of interacting
with the system without the need for ‘debugging modes’ or external tools, but
do so without compromising information hiding.

4.4. Polymorphism

As the stack example illustrates, the approach supports polymorphism. Thus, the
same description of the abstract data type ‘stack’ pertains to stacks containing any
type of elements, and separate abstract data type definitions, such as
stackOfCustomers, stackQOfNumbers, etc., are not required. But, despite this flexibi-
lity, it is possible to guarantee type safety because the approach is not based on
dynamic typing. Instead, static type-checking is used 1o allow only type-correct
formulas to be entered, preventing errors such as arithmetic operations on non-
numeric values. The use of static typing does not interfere with the simplicity of the
language because it does not use explicit type declarations, but rather gathers its type

INTERACTIVE VISUAL DATA ABSTRACTION 47

information via type inference. Details of the approach to type-checking are given in
Burnett [20].

5. Appearance and Multiple Views
5.1. The VADT’s Appearance is Flexible

How data can be viewed occupies a central role in visual languages. In keeping with
this fact, the appearance of data is an integral part of the visual abstract data type
concept. In the approach described here, an object’s appearance is entirely flexible and
can be based on its properties. This feature, which was inspired by the dynamic icons
introduced by PT (21], is realized in our system through the use of the image cell.

The image cell must be present on every VADT definition form. In the stack
example presented earlier, the image cell was very much like any other cell in that it
had a formula and its value was displayed on the screen. But also, when the hidden
itemns within the abstraction box were no longer displayed, the image cell dictated the
way the stack in cell aStack appeared on the screen. This is in fact true in the general
case—whenever a stack anywhere in the system needs to be displayed, the image cell
is used to determine the stack’s appearance. This is done as follows.

Suppose the formula for cellX on some form F resulis in a stack. This would occur
if cellX’s formula references a stack that is in some other cell, such as a reference to
cell aStack, Pushed or Popped on an instance of form stack. Further suppose that
cellX is on the screen. This means that the system must consult the image formula to
decide how to display cellX. To accomplish this, the system internally re-uses or
creates an Instance of form stack in which cell aStack is a reference to cellX, and
calculates the image cell on that form instance. The result of that calculation is used to
display the contents of cellX. The new form instance is not itself automatically
displayed, but it is possible for the user to bring it up and view it like any other form.

The evaluation mechanism affects the practicality -of this approach to displaying
values. In Forms/3 evaluation is done lazily. Thus, a value is only computed if it is
needed. It is needed if: (1) it has not already been computed before; and (2) it is
needed for display on the screen or it is needed to finish computing something else
that is needed. Because of this lazy approach, only the image cell on the new copy is
calculated, along with the other cells needed by the image cell’s formula; the other
objects on the new copy, such as Pushed, etc., are not calculated.

The image cell is entirely flexible, and there are no restrictions on which kinds of
formulas can be used. In the figures in this paper, empty stacks have been displayed as
the string ‘empty stack’, and non-empty stacks have been displayed by layering two
images of the topmost element, via the following formula in the image cell (shown
here using the textual equivalent):

if empty? then ‘empty stack’
else compose rop with top at (005 5)
Thus, the data definition itself can determine how an instance of it should be
displayed based upon its data. Although this example is very simple, the image

formula can be arbitrarily complex, including conditional compositions of images
predicated on many different combinations of values.

48 M. M. BURNETT & A. L. AMBLER

Note what happens to the calculated image if a cell’s value ‘changes’ over time. Of
course, the declarative aspect of our model means that a cell does not change state per
se, but its temporal vector represents a sequence of values over time. Since the formula
of the image cell is normally based on the current element in that temporal vector,
then a rudimentary form of animation is inherent in the approach. This is because as a
displayed object’s temporal vector gains new elements, the image will be recomputed
based upon those new elements, causing the screen to be constantly updated.

5.2. Layers of Visual Abstraction for Multiple Views

Although the image of a visual abstract data type is formulated by the user in the
image cell, sometimes for debugging purposes the user would like to see more details.
To do this, the user can simply use instances of the VADT definition form. For
example, to see a more detailed view of a stack in some cell cellX, the user makes a
copy of the VADT definition form but defines the formula for zStack on the copy to be
a reference to celfX. This automatically shows the top entry, size, etc. If the user
would also like to see a display of every entry in that stack, he or she can, via menu
selection, request that the hidden cells on that copy be displayed, causing the matrix
elements implementing aStack to appear as own in Figure 9. If even more details

=

D
1 »

P D AR A AT

These cells can be used tc
information about a card:

P e e) LS S

2 v 2

faceValue? swt? sorfValue?

RS
ez rmas

Figure 9. Viewing the derails behind the abstractions. The user’s interactions are shown via arrows
superimposed on the screen dump

INTERACTIVE VISUAL DATA ABSTRACTION 49

about one of the cards shown in the stack is needed, the user can repeat this process
by making a copy of the VADT definition form for cards, and setung the formula for
the abstraction box aCard to be a reference to the entry of interest in the stack. This
ability to see ever more detailed views of the data is due to the characteristic that
logical visibility is tightly coupled with physical visibility.

5.3. Multiple Images Selected Interactively

Many visual languages support interactivity in the programming environment but not
in the language. In Forms/3, interactivity is supported in the language, the derails of
which will be given in the next section. Using this feature, the user can incorporate
the notion of interactivity into a VADT’s image definition, thus allowing interactive
runtime selection from a variety of views of the data. For example, suppose the user
wants to interactively choose between the stack image as in Figure 9 and a
representation including the stack’s size. To accomplish this, a stack can be defined to
include more than one possible image and an instance of a VADT called an
ImageChooser. An ImageChooser accepts mouse clicks from the user to toggle among
an assortment of possible images. How interactive types such as the ImageChooser
can be programmed by the user will be discussed in the next section; for now, we will
assume that it exists. Since an ImageChooser is just a VADT like any other VADT
(number, box, Boolean, customer, etc.), it can be composed into the stack’s definition
as shown in Figure 10.

1 item|
() "
whichImage?
item
A ‘ }s)
;@ elements image
j item item .
%5) ls) A ‘

fwhichImage? possiblelmag es
| aStack

Cpp oot

imageChooser:aChooser

Figure 10. Incorporated into the abstraction box in this version of the stack is a reference to a cell on an

ImageChooser form. ImageChoosers sclect a new image from a matrix of choices whenever they are clicked

upon, and are an example of an interactive data type. Whenever the user clicks upon the border of any

instance of the stack, the displayed image toggles back and forth between the two image definitions in
matrix possible/mages

50 M. M. BURNETT & A. L. AMBLER

6. Adding Interactivity: a Declarative Approach to Events

We have defined the notion of a VADT as the 4-tuple {(components, operations,
graphical representations, interactive behaviors). In previous sections we have shown
how the first three elements of the tuple are supported in Forms/3, and in this section
we will show how interactivity is supported as an integral part of a VADT.

The temporal dimension provides the foundations needed for a declarative
approach. Events such as mouse clicks, system clock ticks and printer-out-of-paper
interrupts fit naturally into the temporal model, because an event at time # can be
defined as the presence of a value at time ¢ in a temporal vector. This implies that any
cell X whose formula refers to such a temporal vector will also have an element
defined in its temporal vector at time z This declarative approach is functionally
equivalent to the more traditional imperative notion, expressed as:

‘whenever an event of interest to X occurs, X is activated and performs
the actions needed’.

Events not tied to user interactions on the screen are recorded in a primitive form
called Systemn (Figure 11). System contains cells reflecting the state of the system and
the environment. In theory, form System would contain a cell for each type of
mterrupt. {Our prototype supports only one such type, namely clock ticks). Cell time
defines a temporal vector of numbers, each of which reflects the (wall) time to the
nearest second, m seconds past 1 January 1900. (Recall a reference to this cell in the
production planning example.) Form System also contains some additional cells for
convenience. The cells on form System can be referenced in the usual way by other
cells.

6.1. Interactive Events

Although form System could also be used for events stemming from user interaction,
we wanted a less centralized approach in which the detection and response to user
interaction would be controlled by the data with which that interaction took place.
The approach described here generalizes upon the event-detection capabilities found
in traditional special-purpose interactive data types (e.g. buttons, windows, etc.) but
distinguishes between event-detection and event-response. Interactivity is supported
through the use of a built-in VADT called an event receptor which is capable of

Figure 11, Form System

INTERACTIVE VISUAL DATA ARSTRACTION 51

receiving an interactive event. It can be parameterized and composed in the same
manner as in the previous examples to build arbitrary visual objects capable of any
kind of response. This generality and support for high-level programming is suitable
not only for creating traditional point-and-click user interactions, but aiso for creating
more complex, gestural interactions such as might be found in pen-based interfaces.

6.1.1. The Visual Abstract Data Type Event Receptor

Conceptually, an event receptor consists of an invisible image and the sequence of
events that have transpired on that event receptor. One way our system is different
from others is that there is only one kind of event receptor, although it may be
parameterized in ways that cause it to be sensitive to particular events. Its only
purpose is to detect interactive events and to reflect the occurrence of such events in
its value, not to respond to events in any way. An event receptor can then be used as
ordinary data in definitions of other data types or calculations. Similarly, events
themselves can be treated as ordinary data, and ordinary data can be treated as events.
Because there is no distinction between data associated with an event receptor and
other forms of data, event receptors can be composed with other objects to form
high-level event detection/response mechanisms.

An event receptor provides event-related information and calculations, but does not
have any ability actually to respond to events. This characteristic is crucial to the
generality of the approach. An event receptor can be used to perform calculations
without being tied to any visible object, or it can be composed with some
combination of other data types, or even with just a portion of another object. This
allows the user a great deal of flexibility in defining simple interactive objects such as
buttons and menus, as well as more complex interactive objects with varying degrees
of autonomy such as screen-savers or animated images.

Like all VADTSs, an event receptor is instantiated via a VADT definition form.
Using this form, the user can specify the events of interest, the shape of the
event-sensitive area and the desired amount of transparency. The event receptor
VADT definition form also can be used to examine information about an instance of
an event receptor, such as the current event or status information derived from the
sequence of recent events. The event receptor VADT definition form is shown in
Figure 12.

As with any VADT, to instantiate an event receptor the user copies the event
receptor definition form, provides new formulas to parameterize it and includes
references to the resulting event receptor {cell EventReceptor) as needed in formulas
elsewhere in the program. The cells shape, transparent, Name and the matrix
eventsOfinterest are the parameters that can be formulated by the user, although the
system automatically provides default formulas.

In the figure, cell shape’s formula, which results in a bitmap of a person eating ice
cream, is a reference to a cell on a parameterized copy of the built-in VADT
definition form Glyph. Glyphs are drawn using a normal bitmap editor provided by
the window server. Although this parameter defines the shape of the event receptor,
the event receptor’s image is not visible on the screen. This parameter allows an event
receptor’s image to be formulated in the image cell as a portion of some other image
(such as only a certain box within a larger object), or to have an event-sensitive area
on the screen not tied to any visible value at all (as might be needed in a screen-saver).

52 M. M. BURNETT & A. L. AMBLER

SRS AR e
;Parameters used to create a neu }
‘EventReceptor: :
Efg; FALSE 14 BUTTON-PRESS JLBUTrou.-
shape transparent Name events Of Interest
EventR eceptar

: 3
,‘ 3

Euent information: what just happened
stﬂ EventReceptor?

Ao digra e

S

> 0] NO-EVENT

<7 y? whatBvent? whichButton? whlc];;

E

;Status information: what’s the i

‘situation now with EventReceptor? §

[FALSE Was there just a click?]
&k ;

The mouse is Up, Down,

o] Position of mouse relat

m i e

Figure 12. The user has made a copy of the built-in VADT definition form for type eventReceptor and has
placed new formulas in some of the parameter cells

The Name parameter gives a name to the event receptor being defined, and the
eventsOfInterest matrix allows the user 1o specify which types of events the evemt
receptor should detect (button presses, button releases and mouse motion). This
matrix may contain any number of cells, each of whose formula is the name of any
event supported by the host (in Forms/3, any X event).

Cell transparent is used to specify whether the image of the event receptor is
transparent or translucent. A transparent image does not obscure any other image.
Thus, if two transparent event receptors overlap, both will receive an event occurring
in the overlapped area. An example of the use of a transparent image is a screen saver
object because both the screen saver’s event receptor and the event receptors

INTERACTIVE VISUAL DATA ABSTRACTION 53

underneath it need to receive interactive events. The screen saver needs to know
whenever any interactive event occurs to any other event receptor on the screen so
that it can keep track of the time of the last interaction to determine whether the
screen saver should be invoked. A translucent image obscures other translucent and
transparent images. Thus, if a translucent image covers another event receptor image,
only the event receptor associated with the top image will receive the event. Most
event receptors are translucent. Since only one translucent event receptor can logically
receive an event at once, the user can control event sensitivity by formulating the
composition of event receptors so that one obscures the others,

An event queue of interactive events is maintained internally by the system for each
event receptor. Since cell EventReceptor’s internal formula includes a reference to this
system-maintained event queue, and since any calculations that use an event receptor
include references to it in their formulas, any event added to the queue will affect the
appropriate cells. Thus, it is through the image of the event receptor that interactive
events received by the system are associated with the corresponding event receptors,
and 1t is through the system that the event receptor has access to the event queue.

6.1.2. Composition with Other Visual Abstract Data Types

Since an event receptor is a VADT, it can be used to create new VADTSs of arbitrary
semantics. The scenario in the introduction in which objects in a window can be
moved via dragging and fiicking gestures demonstrates this.

An event receptor is used to program a VADT which we will call an ImageMover.
Instances of this new type can then be placed directly on a window and moved, or
they can be incorporated into other types (customers, stacks, etc.) to give them the
same movability properties. In the same manner as previous examples, the user defines
the construction of an ImageMover using cells and formulas (see Figure 13).
Definition of the ImageMover involves only simple calculations, and hence most of
the formulas are just references to other cells and constants.

The user starts by defining width, height and id cells on the ImageMover definition
form. Cells w:dth and beight allow an instance of type ImageMover to know the area
in which it can move. These serve a parameterization purpose, since the user can set
the formulas as needed on any instance of the form. Cell desiredImage parameterizes
how the ImageMover should appear on the screen. Its formula is a reference to a cell
on a copy of the built-in VADT definition form Glyph. The desiredImage cell is also
passed on to the event receptor to indicate its shape, as is the fact that it is to be
sensitive to mouse and button movements. The cell id serves a parameter-like
function, and requires a unique number passed in by the caller. This unique number is
passed on to ‘name’ the corresponding event receptor which is a part of each
ImageMover. We will return to this issue later.

The user then parameterizes an instance of the eventReceptor form, resulting in the
particular instance of the eventReceptor form that was shown in Figure 12. Cell shape
is specified to be a reference to desiredimage. Cell Name is a reference to
ImageMover form’s id cell. The remaining parameter-like cells (transparent and
eventsOfInterest) are left with the system-provided default formulas. Using the
resulting eventReceptor form, the programming of the ImageMover can be completed.
Cell er’s formula is a reference to cell EventReceptor in Figure 12, Cells changeX and

54 M. M. BURNETT & A. L. AMBLER

0fby if [rruejthen EventReceptorix? - earlierEveniReceptor‘.x?
dragging
e <
jwikif%?ﬁ?&éﬁ% e b e
‘Paramet :
'used u:hil5 200 200 14
‘creating a mew
'1mageMover-> width height id desiredmage
gL 0
e image chang eX " changeY
|FALSE ||[FALSE ||[FALSE |[200 200
‘|dragging fhicking atABorder barderWidth barderHeight

- aMover

‘These cells can be 14 19
‘used to learn

‘information about an "

I mageMover->

0 fby .
if or then earlier [13] + [0]

dragging flicking X changeX

Compose with D

image a

Figure 13. The definition of an ImageMover

changeY keep track of the directionality and rate of change when the ImageMover is
being dragged so that they can be maintained during flicking. Cell atABorder detects
when the ImageMover collides with a border. Cells dragging and flicking will be
discussed in the next section.

Once the VADT ImageMover has been defined, new instances can be created as
discussed previously. The behavior of these ImageMovers is affected by the formulas
defined for the parameter-like cells at the top of the figure. The implementation
details of an instance of an ImageMover are encapsulated in the abstraction box
aMover. The cells at the bottom of the form provide information about an
ImageMover (middle of Figure 13). Cell image defines the appearance of an instance
of an ImageMover; thus, any cell on any form which contains an ImageMover uses
the user-defined formula in cell image on an instance of form ImageMover to
determine how it 1s to be displayed.

6.2. Higher-level Events

On the EventReceptor form, two separate events (ButtonPress and ButtonRelease)
can also be thought of in combination as one event (click). This is an example of

INTERACTIVE VISUAL DATA ABSTRACTION 55

combining two interactive events to form a new, higher-level event. Although this
particular combination is provided as part of the primitive event receptor type, the
user also has the power to combine any combination of events and ordinary data to
define higher-level events.

Cells dragging and flicking demonstrate this ability to define higher-level events.
Dragging becomes true if there is a Moton-Notify event on the object’s event
receptor while the mouse is down, and becomes false if there is a Button-Release
event, as can be seen in the textual equivalent of dragging’s formula:

false fby
if whatEvent? = Motion-Notify and mouse = Down then true
else if whatEvent ? = Button-Release then false

Note that there 1s no ‘else’ clause on the final ‘if’. This is the textval form of the
ifThen primitive defined in Tables 2 and 3, and defines new values only if the desired
combination of events and computations mean that dragging is initiated or terminated.
This is a higher-level event which has been defined by the user as an abstraction of a
sequence of low-level interactive events and internal calculations. The representation
of this event is just a Boolean true or false. These simple values serve as events because
they affect all “interested’ cells just as we expect events to do. This is due to the fact
that any formula that references cell dragging will automatically define elements in its
own temporal vector whenever an element occurs in dragging’s temporal vector. As
with all values under the lazy evaluation model, each element in these temporal
vectors is defined at the appropriate position, but not actually evaluated unless it is
demanded.

Similarly, flicking becomes true if the button is released while there is motion and
dragging’s previous value is true. It becomes false if there is a Button-Press event on
the object, or its x—y position collides with a border.

false fby
if whatEvent? = Button-Release and
((x?<<> earlier x?) or (y?<{> earlier y?)) and prev dragging then true
else if whatEvent? = Button-Press or earlier azA Border then false

Even ‘normal’ data can be combined and filtered to define higher-level events. To
define the event of an even number being calculated, the user simply defines the
formula of some cell X to be:

if answer /2 = truncated (answer/2)

then ‘Even’

Since all cells whose calculations directly depend on X reference it, whenever
another even number is calculated for cell answer, cell X will by its definition generate
a new value. This will cause all cells dependent on X to generate new values, and in
turn all cells dependent on those cells, and so on. Since there is no ‘else’ in the
formula, no new value will be generated in X and no related calculations will be
generated unless answer is even. This uniform treatment of data as events and events
as data provides the user the flexibility to write programs using an event-driven
philosophy even when no events (in the traditional sense) are involved.

56

M. M. BURNETT & A. L. AMBLER

6.3. Moving the Objects Around on a Window

The window itself is also defined as

around as desired.

Ob jects to be
iplaced on the
nev windou->

fomnney

g e g A

a new VADT, as in Figure 14. Its formulas are
very simple. Its image cell (bottom of the figure) is simply the composition of a box
with all the objects at their computed x- and y-positions. The objects are references to
instances of type ImageMover (or of other types in which ImageMovers have been
composed), and the x- and y-positions are references to cells x and y on the
corresponding instances of form ImageMover. Because all instances of type window

are displayed via the formula in the image cell, the objects can be dragged and flicked

T ¥ ¢

<= Objects

T

¥

v

T

5 s0 30 <~ X-Positions

10 65 35 {= ¥Y-Positions
|

alli ndou

i i . i PR 0 L T

Compose Box:aBox at(0,0)

e e S e

g

¥

00 SO —
pirig o L e

E

¢
H
¥
!
¥
H
t
i
s

S

Figure 14. Three ImageMovers in a window

INTERACTIVE VISUAL DATA ABSTRACTION 57

6.4. Evaluation, Laziness and Referential Transparency

The behavior of event receptors is lazy. To see why this is true, recall that the only
calculations that are demanded are those required to compute the images on the
screen. Since it is impossible for the user to click on or otherwise interact with
something that isn’t on the screen, this evaluation rule serves interactive event
processing well. An event receptor whose image is not on the screen will rest lazily in
the background. When it is on the screen, it will continuously respond to user
interactions within the confines of its image. All objects on the screen, following the
demand-driven evaluation model, generate new demands’ for their image cells
whenever a change occurs because they are needed for output.

The Name parameter on the event receptor’s definition form, in addition to its
informal documentation purpose, also plays a necessary role in maintaining referential
‘transparency. Recall that under referential transparency, if all incoming parameter-like
values to a form are the same (which are reflected in the form ID), then they describe
exactly the same calculation. Now, suppose the user wants to construct two different
event receptors (one to be composed with a button and one to be composed with a
menu), both shaped identically and both responding to only Button-Press and
Button-Release events. If there are no differing formulas, the two seemingly identical
requests for such an event receptor (i.e. two requests with identical IDs) would have
to have identical event sequences by the principle of referential transparency. This
apparent difficulty arises because there is another ‘parameter’ which is needed to
describe the calculation completely—namely its input stream of events. From a
theoretical standpoint, then, it is necessary to include the event sequence as part of the
internal description of the calculation. From a practical standpoint this is not possible
since the values of the events are not known in advance. The Name cell allows the
user to identify the forthcoming sequence of screen interactions in a concrete fashion,
just as filenames in traditional languages allow naming of forthcoming external values
and updates. In the example above, the user might choose to formulate one event
receptor’s Name cell as ‘ButtonEvents’ and the other as ‘MenuEvents’, forcing a
difference in the description of the two calculations.

6.5. Evaloation of an ImageMover and Window

Suppose that an ImageMover exists and that 1ts 1mage is on the screen in an instance
of type Window. This means that the image of an event receptor is on the screen too
(since it is part of the ImageMover’s image). If the user generates mouse events on the
ImageMover, the event receptor will receive that information via its image.

Suppose the uset’s interaction so far has been a button press, motion and button
release while moving the mouse. Each of these events adds an element to the temporal
vector that 1s defined by the cell whatEvent?, which in turn affects the event receptor.
Since the event receptor is part of the ImageMover, a cascade of new values are
defined for aMover, its image cell, changeX, changeY, x,v, the window and the
window’s image cell. Figure 15 depicts the effects of such manipulations to the left
ImageMover in the window over time. The window form shows the values that would
be displayed on the screen as of the most recent moment in time, and the values along

fIn practice, heuristics and re-use optimizations are used to minimize the number of demands and
calculations, respectively.

58 M. M. BURNETT & A. L. AMBLER

6 60 30 11 65 35 '
?

10 31 L2 3

Window
% 10 60 30 31 65 35 W'
Objects X-Positions Y-Positions Image

Figure 15. The movement of the left ImageMover causes the generation of 2 new left ImageMover in the
temporal vector, along with new x- and y-positions for it. Unchanged data does not cause new values to be
generated in the temporal vectors

the arrow show their progression over time. Notice that the only values that are
defined along the time dimension are those affected by the user’s interaction with the
first object. Since that object includes an event receptor (with an event history), new
values for that object, as well as its x- and y-position and the final image, are defined.

Note that since an event receptor includes in its definition a mask of events to
which it should respond, only relevant events will cause any new value definitions—
events not of interest to that event receptor do not affect its temporal vector. Also, the
user program can obscure an event receptor with some other object or cease
displaying its image if the event receptor is no longer useful. When the event receptor
is not vistble, interaction with it cannot occur, and its temporal vector cannot acquire
new elements.

6.6. Multiple Active Images of an Event Receptor

Now suppose that, in addition to the ImageMover’s image on the screen in some
cellX, the form defining the particular ImageMover instance is also on the screen. This
provides a more detailed view of the same object, which in particular has the same
event receptor as one of its parts. This is an example of a single-event receptor which
has multiple active images on the screen—ImageMover :image and cel{X both display
an image of the same event receptor. The issue is what effects there are on the other if
there is an event in one of the two images.

The answer becomes clear when we recall that an event is a value in the
system-maintained event queue temporal vector for the event recepror. Because the
event receptor contains a reference to that queue, any event in that event queue affects
the event receptor, and resultantly the cells on form ImageMover and cellX. Since the
event receptor’s image is the conduit from the user to the event queue, and since these
wo event receptor images on the screen are both conduits to the same event queue,

INTERACTIVE VISUAL DATA ABSTRACTION 59

then an event in either of the two images affects the event queue and all the objects
that depend on it.

7. Conclusion

In this paper we have presented a declarative approach to visual data abstraction.
Significant features are:

* A data type’s appearance is an integral part of its definition, and is controlled by
a user-defined formula which can be based upon the value of the data itself. For
example, the appearance of type person could be formulated to be dependent on
a person’s age, hair color, gender, etc.
A data type’s interactive behavior is an integral part of its definition. In other
declarative VPLs, although interactivity plays a major role in the process of
programming, most have not fully supported interactivity in the programs
produced. We have addressed that problem by presenting a declarative approach
to interactive event handling that can be incorporated into a data type, defining
the way it behaves under user interaction. The approach is consistent with the
high-level, visual process of programming, it is fully declarative, and it is equally
suited to non-interactive and user-defined events,

* Information hiding is supported through visibility. When a value can be made
visible on the screen, it is accessible logically as well. This visual mechanism
replaces the approach 10 information hiding found in textual languages, which
generally rely on a combination of declarations and behind-the-scenes scope
rules.

+ Concreteness is used to provide immediate visual feedback during the program-
ming process. By using sample values, each calculation is able to produce an
answer as soon as it 1s defined based on sample inputs. Through the static
approach to polymorphism the user can concretely create flexible VADTs
without the disadvantages of dynamic typing. These concrete features provide the
user with an immediate source of error feedback, allowing him or her to notice
and correct simple logic errors as soon as they are entered.

The most important feature is that programming with abstract data types is no
different than any other kind of programming. The approach to visual data abstraction
13 simple and small, requiring a minimum number of concepts to use it. Everything is
accomplished using declarative formulas in cells and groups of cells. The user does not
need to think about variables, declarations, sequencing, control flow, pointers, state
modification, event loops, inheritance trees or hierarchical scope rules in order to
program. This allows a high-level, declarative, visual approach to programming.

Acknowledgments

We would like to thank Marla Baker, Sherry Yang, Pieter van Zee and the anonymous
referees for their helpful suggestions on earlier versions of this paper, and Sherry Yang
for her assistance with the figures. This work was supported in part by the National
Science Foundation under grants CCR-9215030/CCR-~9396134 and CCR-9308649.

60

M. M. BURNETT & A. L. AMBLER

10.

11.

12.

13,

14.

15,

16.

17.

18.
19.
20.
21.

22,

References

. S. H. Gudreund (1990} Maniplicons in ThinkerToy. In: Visual Programming Environ-

ments: Applications and Issues (E. Glinert, ed.) IEEE Computer Society Press, Los
Alamitos, California.

. A. Borning (1986) Defining constraints graphically. In: ACM Proceedings of CHI’86, pp.

137-143.

. C. E. Hughes &]. M. Moshell (1990} Action Graphics: a spreadsheet-based language for

animated simulation. In: Viswal Languages and Applications (T. Ichikawa, E. Jungert and R.
Korthage, eds) Plenum Press, New York, pp. 203-236.

. M. Hirakawa, M. Tanaka & T. Ichikawa (1990) An iconic programming system,

HI-VISUAL. IEEE Transactions on Software Engineering 16, 1178-1184.

. G. Rogers (1990) The GRClass visual programming system. In: 1990 IEEE Workshop on

Visual Languages. Skokie, Illinois, pp. 48--53.

. F. Penz (1991} Visual programming in the Object World. Journal of Visual Languages and

Computing 2, 17-41.

. P. T. Cox, F. R. Giles & T. Pietrzykowski (1989) Prograph: a step towards liberating

programming from textual conditioning. In: 1989 [EEE Workshop on Visual Languages.
Rome, Italy, pp. 150-156.

. TGS Systems (1989) Prograph Reference The Gunakara Sun Systems, Ltd., Halifax, Nova

Scotia, Canada.

. D. N. Smith (1990) The interface construction set. In: Viswal Languages and Applications

(T. Ichikawa, E. Jungert and R. Korfhage, eds) Plenum, New York.

P. Haeberli (1988) ConMan: a visval programming language for interactive graphics.
Computer Graphics 22(4), 103-111,

D. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph & K. Doyle (1988) Fabrik, a visual
progtamming envitonment. In: Proceedings of OOPSLA 88 San Diego. Also ACM
SIGPLAN Notices 23(11), 176-190.

F. Ludolph, Y.-Y. Chow, D. Ingalls, S. Wallace & K. Doyle (1988) The Fabrik
programming environment. In: 1988 IEEE Workshop on Visual Langnages. Pittsburgh,
Pennsylvania, pp. 222-230.

N. Wilde & C. Lewis (1990) Spreadsheet-based interactive graphics: from prototype to
tool. In: ACM Proceedings of CHI*90, pp. 153-159.

A. A. Schoberth (1990) Event handling in a demand-driven visual language preserving
single assignment. Master’s thesis. Department of Computer Science, University of
Kansas.

A. L. Ambler & M. M. Burnett (1990} Visual forms of iteration that preserve single
assignment. fowrnal of Visual Languages and Computing 1, 159-181.

M. M. Burnew (1991) Abstraction in the demand-driven, temporal assignment, visunal
language model. Ph.D. thesis. Department of Computer Science, University of Kansas,
Lawrence, Kansas.

S. L. Tanimoto (1990) Towards a theory of progressive operators for live visual
programming environments. In: 1990 IEEE Workshop on Viswal Languages. Skokie,
lilinois, pp. 80-85.

M. M. Burnew & A. L. Ambler (1990) Efficiency issues in a class of visual languages. In:
1990 IEEE Workshop on Visual Languages. Skokie, Illinois, pp. 209-214.

W. Wadge & E. Ashcroft (1985) Lucid, the Dataflow Programming Language Academic
Press, London.

M. M. Burnett (1993) Types and type inference in a visual programming language. In: 1993
IEEE Symposium on Visual Languages. Bergen, Norway, pp. 238-243.

Y.-T. Hsia & A. L. Ambler {(1988) Construction and manipulation of dynamic icons. In:
1988 IEEE Workshop on Visual Languages. Piusburgh, Pennsylvania, pp. 78-83.

G. Vichstaedt & A. Ambler (1992) Visual representation and manipulation of matrices.
Journal of Visual Languages and Computing 3, 273-289.

