
IEEE Symposium on Visual Languages, Seattle, ashington, Sept. 2001

Using the Cognitive Walkthrough to
Improve the Design of a Visual Programming Experiment

T. R. G. Green†, M. M. Burnett*, A. J. Ko*, K. J. Rothermel*, C. R. Cook*, and J. Schonfeld*
†Computer-Based Learning Unit *Department of Computer Science

University of Leeds, Leeds LS2 9JT, U.K. Oregon State University, Corvallis, OR 97331

Abstract
Visual programming languages aim to promote

usability, but are rarely examined for it. One reason is the
difficulty of designing successful experimental
evaluations. We propose the Cognitive Walkthrough as an
aid to improve experimental designs. This is a novel
application of an HCI-derived technique designed for
evaluating interfaces rather than experiments. The
technique focuses on the potential difficulties of novice
users and is therefore particularly suited for evaluating the
programming situation, which is knowledge-based and
non-routine. We describe an empirical study performed
without benefit of a walkthrough and show how the study
was improved by a series of walkthroughs. We found the
method to be quick to use, effective at improving the
experimental design, and usable by non-specialists.

1. Introduction
The professed raison d’être of most visual

programming languages (VPLs) is usability [2]. Yet, until
recently it has been regrettably rare to see any but the
most cursory test of whether a VPL is usable. One reason
may be the difficulty of designing well-controlled
experiments. This paper describes an approach to helping
with this task.

Designing a valid usability experiment is difficult, not
so much because advanced knowledge of experimental
design is needed, but because the results can easily be dis-
turbed by extraneous problems. For example, the partic-
ipants might not understand the instructions, or they
might not be able to find the right button to press. These
factors can create so much experimental noise that even a
well-designed VPL being used in a well-designed
environment can appear to be quite poor.

Essentially, for an empirical evaluation to be effective,
everything must work smoothly. The participants must
have very few problems in understanding their task and in
using the VPL; otherwise the results will be contaminated
by random delays or errors. Technically, such random
perturbations come under the heading of uncontrolled
sources of variation.

The scale and pervasiveness of the problem is shown

by Gurka and Citrin’s review [9] of empirical studies of
the effectiveness of algorithm animation. They list six
variables that are often uncontrolled. Although these
variables are specific to algorithm animation, such as
animation quality and the difficulty of the algorithms
being animated, the implication is clear. Designing valid
experiments involving humans is difficult.

How can designers of experiments detect potential
problems at an early stage, before performing the actual
experiments? There is a parallel here to evaluating a design
for a user interface, where as many usability problems as
possible should be detected and eliminated before
performing actual user testing. This paper draws on that
parallel, by using the HCI technique of the Cognitive
Walkthrough [12] as a means to reduce uncontrolled
variables in experimental designs.

The Cognitive Walkthrough (CW) is familiar in HCI
as a tool to improve interface usability. But improving an
evaluation is not the same as improving an interface.
Interface details are only part of the issue, as we shall see.
Use of the CW for improving an evaluation has not
hitherto been reported in the literature.

We report a case study in which, following a VPL
evaluation experiment with mediocre results, a CW was
used to refine the experiment, and the experiment was then
re-run. Questions of interest are whether the CW possesses
advantages over more traditional approaches to improving
experiments; whether it was effective in improving the
experiment; whether specialist training was required; and
what general lessons could be learnt.

2. The Cognitive Walkthrough
2.1 Background: the walkthrough process

The Cognitive Walkthrough [12] was primarily
designed as a ‘desktop’ evaluation tool for usability
engineering, aimed at predicting potential difficulties for
novice users. Its strengths are that it does not require a
functioning model of the product or a group of users for
extensive testing, and that it rests on an acceptable cogni-
tive model of user activity during the phase of exploratory
learning. That model describes four phases of activity:
• The user sets a goal to be accomplished;
• The user searches the interface for available actions;

IEEE Symposium on Visual Languages, Seattle, ashington, Sept. 2001

• The user selects an action that seems likely to make
progress toward the goal; and

• The user performs the action and checks to see
whether the feedback indicates that progress is being
made towards the goal.

First, the evaluation team must define the expected
users and estimate their prior knowledge (because users
who come with knowledge of many related or similar in-
terfaces will have fewer problems than those who come
with little knowledge). Next the team must prepare a de-
tailed description of one or more tasks, and a list of action-
steps comprising the optimal sequence of execution.

During the actual walkthrough the team works through
each step of the execution sequence, following a printed
form to answer pre-set questions relevant to the four
phases of activity:
• Will the user form the right goal?
• Is an appropriate action readily available?
• Will the user find that action?
• Will the user know that progress has been made?

The team notes steps where the user may not take the
correct action. At the end of the walkthrough, they will
have identified a set of problems associated with the
system.

Subsequent revisions and refinements to the original
CW procedure have addressed criticisms about the
difficulty of determining the required level of granularity,
the tightly-specified procedure, and the problem of
choosing appropriate tasks [13, 16].

2.2 Relevance to empirical studies of VPLs
Surveying the development of evaluation methods in

HCI in general, it is clear that the field has not yet settled
down, making difficult the choice of an evaluation method
for experimental designs. Unfortunately, attempts to
compare the efficacy of evaluation methods were partially
vitiated by weaknesses in the design of the comparisons
[6]. The choice must therefore be determined by apparent
suitability, not by demonstrated superiority. The CW
appears particularly suitable for evaluating a VPL
experiment for two reasons.

2.2.1 Focus on ‘finding the way’. VPLs include
user interfaces; the CW method focuses on users who are
new to a given interface and who are trying to find out
how to use it. It does not focus on speed and accuracy, but
on reasoning. Programming tasks are non-routine and
require reasoning. These factors make it particularly
suitable for evaluations of people’s ability to perform
programming tasks in a VPL. Further, the creators of the
CW approach have previously successfully applied it to a
VPL [1].

Other evaluative methods derived from HCI typically

operate at a more surface level, paying less attention to
reasoning and knowledge. Heuristic Evaluation [11], for
example, addresses a very mixed bag of questions, none of
which deal with the participants’ prior knowledge. In a
very different style, but equally much concerned with
surface issues, the Keystroke Level Model [5] is good for
predicting how fast a user can perform a well-learnt routine
task, but has no relevance to non-routine tasks with a high
element of reasoning.

2.2.2 Potential for non-specialist use . The CW
method also shows potential for being usable by computer
scientists without the assistance of an HCI or cognitive
science expert. Once again, that is in contrast to many
HCI approaches, which explicitly assume HCI or
cognitive science expertise. (Heuristic Evaluation is an
exception, but as we have seen, that approach is not
relevant to our needs.)

However, evidence for this potential is scanty and
mixed. On one hand Wharton, Bradford, and Franzke [17],
after evaluating three user interfaces, identified a few
important weaknesses of the process, and claimed “it will
be difficult to eliminate the need for a cognitive science
background both to make sense and to take full advantage
of the technique.” However, John and Packer [10] reported
a case study in which “the Cognitive Walkthrough
evaluation technique [was] learnable and usable for a
computer designer with little psychological or HCI
training.” Their single-user case study is encouraging but
can hardly be considered a definitive demonstration, and
further evidence is required, which we aim to supply.

3. The WYSIWYT feature being evaluated
The experiments described below evaluate a visual

testing methodology, applicable to commercial spreadsheet
systems as well as some VPLs [14]. The methodology
incrementally analyzes, behind the scenes, the
relationships among spreadsheet cells and how thoroughly
tested each relationship is. It provides immediate visual
feedback about the “testedness” of the spreadsheet, which
may change as the user edits formulas. We term this
methodology the “What You See Is What You Test”
(WYSIWYT) methodology. The experimental question to
be answered is whether users can benefit from employing
this methodology.

Our experiments used the research VPL Forms/3 [3,
4]. In Forms/3, ordinary formulas, contained in movable
cells, can be used for both numeric and graphical
computations. Figure 1 contains a spreadsheet, one of the
two used in the experiments. The WYSIWYT testing
methodology can be seen in several of the features of
Figure 1. Red cell borders (shown as light gray in this

IEEE Symposium on Visual Languages, Seattle, ashington, Sept. 2001

black-and-white paper) indicate that a cell is untested, blue
cell borders (black in this paper) indicate that a cell is fully
tested, and purples indicate partial “testedness”. Users
record decisions that values are correct by checking off the
checkboxes in the upper right corner of cells (some
currently containing ?’s in the figure). Users can also
invoke other visual devices, such as dataflow arrows
(between subexpressions or entire cells) colored in the
“testedness” colors.

4. Before and after the walkthroughs
Our first experiment with the WYSIWYT methodol-

ogy gave mediocre results. In this section we describe the
first experiment, discuss our use of the CW to refine it,
then describe the refined experiment.

4.1 Before: the first WYSIWYT study
The aim of this study was to determine whether, by

using the WYSIWYT technology, participants would
produce better-tested spreadsheets. The participants,
students from three computer science courses, were
randomly assigned to three treatment groups. The Ad Hoc
Group did not have access to the WYSIWYT testing
methodology. The other two groups, the WYSIWYT-No-
Training Group and the WYSIWYT-With-Training Group,
did have access to the WYSIWYT methodology. The

experiment started with a 25-minute interactive tutorial of
Forms/3, in which each participant actively participated by
working with the example spreadsheets on their
workstations as instructed by the lecturer. The tutorial
introduced all participants to language features and
environmental features. Both WYSIWYT groups’ tutorials
also included instruction on the testing interface, and the
With-Training Group received additional instruction on the
underlying testing theory. Following the tutorial, all
participants were given two spreadsheet problems to test,
one of which is shown in Figure 1. Problem order was
counter-balanced.

The statistical outcomes of this study were mixed. One
major hypothesis had significant results, and some minor
analyses showed or came close to showing significance,
but most hypotheses lacked significant results.
4.2 Three Cognitive Walkthroughs

We used the process described in Section 2.1 to
perform three walkthroughs of the experimental procedure.
In the first walkthrough, looking ahead to future studies,
we chose our anticipated user population to be end users,
even though our actual participants would initially be
computer science students (who presumably have greater
background knowledge). A portion of this walkthrough is
shown in Figure 2 and Figure 3.

Figure 1: A Forms/3 spreadsheet that calculates a student’s grade. Cell relation arrows in and out of formulas are
colored in the same way borders are colored: from red (untested) to blue (tested), light gray to black in this paper.

IEEE Symposium on Visual Languages, Seattle, ashington, Sept. 2001

The walkthrough revealed four types of experimental
design issues (see also Table 1):
• Problem Design: These were aspects of the testing

problems used in the experiment that could have
caused participants to puzzle about elements unrelated
to the WYSIWYT methodology, introducing
uncontrolled variables.

• Tutorial Design: Many of the assumptions we made
about the audience in the CW setup rested upon the
tutorial’s coverage of the necessary material and the
participants’ presumed mastery of the tutorial
material.

• Testing-Related User Interface: The user interface part
of the WYSIWYT methodology needed improvements
to make the action choices clear to the participants
and future users. This subset of issues is
approximately the same subset that would have been
identified by a classic use of the CW for evaluating
the user interface component of the methodology.

• Unrelated User Interface Distracters: Previous
evaluations of the non-testing part of the user
interface were never done in the context of testing
tasks. Since our first CW focused on our participants’
ability to do the task (test this spreadsheet), it turned
up ways this mature interface could distract
participant’s attention away from testing, leading to

more uncontrolled variables.
Some of the Problem Design issues can be seen in

Figure 1. Note that each issue introduces distractions: the
ErrorsExist? cell in the upper-left contains extensively
nested parentheses, requiring participants to expend extra
energy on parsing; cell LetterGrade on the right exhibits
several nested conditionals, requiring participants to focus
on the flow of logic; and cells min, min1, and min2,
contain conditionals that would normally be handled by a
minimum operator. Since the redesigned study would first
be administered on computer science students, who are
familiar with such complexities, Problem Design changes
were not made. However, the end user study for which we
are now preparing makes these changes a priority.

A second walkthrough was subsequently performed, to
test an interface detail’s redesign that resulted from the first
walkthrough. This second walkthrough addressed solely
that one issue (the undo feature in Table 1), but it took
into account a range of possible testing strategies that
participants might adopt (note the divergence from the
typical HCI usage, which focuses on a single method for a
single task).

After implementing the revisions in Table 1, we
performed a third walkthrough. The revisions to the
experiment design could have themselves introduced new
variables. For example, during each of the previous
Walkthroughs, a number of questions on the Walkthrough
forms were answered positively under the assumption that
the user would retain all of the knowledge

Cognitive Walkthrough Form: Start up sheet.
Experiment: WYSIWYT experiment
Task: Validate the output corresponding to a set of inputs on the

Grades spreadsheet

Task Description. Describe the task from the point of view of the first
time user. Include any special assumptions about the state of the system
assumed when the user begins to work.

The task is to test the spreadsheet (this is what they’ll be told). The sys-
tem will be in a state such that someone could immediately start testing.

Action Sequence. Make a numbered list of the atomic actions that the
user should perform to accomplish this task.

The optimal sequence of actions: Change an assignment grade to a
different value by (1) double-clicking on the formula tab, (2) changing
the window focus, (3) entering a value, and (4) accepting, (5) checking
the final output box (hopefully the user will choose the “final grade”
cell), and (6) repeat for different inputs.

Anticipated Users. Briefly describe the class of users who will use this
system. Note what experience they are expected to have with systems
similar to this one, or with earlier versions of this system.

People who have experience with spreadsheet basics, but limited
experience inventing spreadsheet formulas. They should have basic
algebra skills, and will have gone through the oral tutorial, but will not
have had other Forms/3 training.

User’s Initial Goals. List the goals the user is likely to form when
starting the task. If there are likely goal structures list them.

We think it’s going to be “test the spreadsheet,” rather than something
more concrete like “change an input value.”

Figure 2: A Cognitive Walkthrough startup sheet.
Italicized text represents a summary of the notes the
evaluators took during the walkthrough.

Cognitive Walkthrough Form: A Single Step
Task: Validate output of a set of inputs on the Grades

spreadsheet
Action #: 5
…
2. Choosing and executing the action.
2.1 Availability. Is it obvious that the correct action is a choice here? If
not, what percentage of users might miss it? (0, 25, 50, 75, 100)

There’s nothing obvious about the checkbox. Our anticipated users
should, however, understand the concept of the checkbox (which is
fairly common in user interfaces these days) and realize that the box in
the upper right of each cell is exactly that. Furthermore, the correct
action lies on a continuum: if they click on a cell in the middle of the
flow of data, it’s not as great as if they’d clicked on the final output cell.
Does that matter though, as long as they make progress?
…
2.2 Label. What label or description is associated with the correct
action?

There is an empty box, which unfortunately doesn’t indicate much:
possibly no label?
…
2.5 No Label. If there is no label associated with the correct actions,
how will users relate to this action to the current goal? What
percentage of users might have trouble with this? (0, 25, 50, 75, 100)

The users will have the oral tutorial and the Forms/3 quick reference
sheet. The checkbox is also a common user interface concept. A fairly
small percentage will have a problem if the tutorial is good enough.
Maybe we should have a better indicator to ensure this.

Figure 3: Excerpts from our first walkthrough, showing
the accumulation of ideas resulting in the last sentence.

IEEE Symposium on Visual Languages, Seattle, ashington, Sept. 2001

contained within the tutorial. Yet, we had since made
changes to the tutorial. Furthermore, some of the changes
identified in the first walkthrough, which were expected to
solve certain problems with the experimental design, were
not implemented (such as dataflow arrows in the
background, and the problem design issues) because they
either had no practical solution, or were not considered
necessary for the audience of computer science students.
The third walkthrough was intended to catch any problems
that our changes might have introduced.

Recalling difficulties doing the first walkthrough
without having the VPL present, we performed the third
walkthrough while actually performing each action on a
computer running Forms/3, to be sure we had included all
the options that would actually be available to the
participants. This is not traditional in the use of CWs for
user interfaces, since they are normally used at a stage of
user interface design in which there is no executable user
interface to use. However, it is viable in the design of an
experiment involving an existing system, and we found

that doing so added accuracy and completeness to our
responses to the questions.

4.3 After: the redesigned WYSIWYT study
We administered the redesigned study on new

participants with two goals: to obtain clearer results about
effectiveness of the WYSIWYT methodology, and to
evaluate the benefits we had obtained through the use of
the CW. Table 2 compares the original and refined
(“before” and “after”) experiments.

5. Results
Table 3 presents a summary comparison of statistical

analyses of the “before” and “after” WYSIWYT studies. In
general, as the summary shows, whereas the “before”
study produced mixed results, the “after” study supported
all our major hypotheses with strong statistical results.
Although there was one measure—the number of
edits—that moved from significance “before” to non-
significance “after,” this measure was dependent on the

ISSUE POTENTIAL SOLUTION

PROBLEM DESIGN ISSUES
Nested “if” conditionals might confuse participants Alter the problems so that nested conditionals are not required.
Overabundant nested parentheses might confuse participants. Change the parsing engine to allow for fewer parentheses or else alter the

problem formulas.
“Min” and “max” operators are absent, introducing additional “if”

conditionals.
Either implement “min” and “max” operators or design problems that do not

need them.
Indentation is often lacking, reducing readability Indent cell formulas in a consistent and readable manner.

TUTORIAL DESIGN ISSUES
Length of tutorial may be too long to hold the participants’ attention,

thereby invalidating our assumption about what the participants
know.

Eliminate unnecessary details and integrate methodology into the explanation
of test feedback, for reduction of length.

Eliminate the With-Training Group and therefore the training section of the
tutorial.*

Absorption of tutorial material may not be complete because of lack
of participant practice.

Attempt to balance the practice period time for all groups after the tutorial
and before the problems. (The previous experiment provided a longer
practice period for the Ad Hoc than the WYSIWYT groups, to equalize the
treatment length.)

TESTING-RELATED USER INTERFACE ISSUES
While there is significant feedback when users validate a set of

inputs, there is no feedback indicating long-term progress.
Implement a “testedness” indicator, showing the percentage that the user has

tested a spreadsheet.
Participants may not be able to determine what ranges of inputs to try

in order to test different parts of the program.
Show cell relation arrows in the background of the spreadsheet.*

Participants do not have a way to undo validations in the event that
they want to repeat validations or compare them to other options.

Implement an undo feature.*

UNRELATED USER INTERFACE ISSUES
Cell formula tabs do not suggest the action “edit this cell's formula.” Bring up the formula edit window whenever a cell is selected.
The formula edit window contains labeling problems with associating

goals to appropriate actions.
Add instructions at the top of the formula edit window, describing to the user

what action is required next in order to change the formula.
Editing a formula contains an “and-then” structure, suggesting that

participants may forget to click the accept button.
Add a reminder the top of the formula edit window once a formula is entered

in the field.
Formula edit windows can get lost behind other windows. Attach the formula edit window to the bottom of the main spreadsheet window.
The system generates fractions in ratio format, which can be

misinterpreted as bugs.
Change the format of fractional output to decimal format.

The system is often slow to respond, due to multiple client
applications on one server and frequent garbage collection.

Reduce the number of client applications per server and implement better
garbage collection timing.

Table 1: Specific issues identified during our first walkthrough. Italicized text represents changes that were made as a
result. Solutions marked with an asterisk (*) indicate changes that were discussed before the CW was done, but were also
revealed by the CW.

IEEE Symposium on Visual Languages, Seattle, ashington, Sept. 2001

participants’ relative success. That is, in the “before”
experiment, the WYSIWYT groups achieved
approximately the same coverage as did the Ad Hoc Group
in significantly fewer edits (more coverage per edit),
whereas in the “after” experiment, the WYSIWYT Group
achieved more coverage than did the Ad Hoc Group in
approximately the same number of edits (which is still
more coverage per edit). Thus, this drop in significance
does not imply a drop in efficiency.

Bare comparisons of main-effect significance levels in
Table 3 hide a great deal of information that further
supports the differences in results; for instance, in the first
row, the power computed for the test of the simple main
effect, WYSIWYT versus Ad Hoc, was improved from
0.11 to 0.84. Space forbids extensive statistical discussion
here; details of the “after” version are given elsewhere [15].
6. Discussion

In this section we return to the questions posed in the
introduction.

HYPOTHESIS “BEFORE” “AFTER”

WYSIWYT participants
more effective

NS **

WYSIWYT participants
more efficient:
- Number of edits to

achieve coverage
** NS

- Number of redundant
tests

NS ***

WYSIWYT participants less
overconfident

NS *

Training in testing theory not
necessary to achieve
better effectiveness and
efficiency

NS WYSIWYT Group
was given no testing
theory training, so
results support this
hypothesis

Table 3: Major results from the “before” and “after”
experiments. *** indicates p < 0.001; **, p < 0.01; * ,
p < 0.05. NS indicates p > 0.1. (No significance levels
between 0.05 and 0.1 were found in the major hypothesis
results.)

VARIABLE “AFTER” VERSION COMPARED TO “BEFORE” VERSION

WHO: PARTICIPANTS
Participant Count Before: 61, After: 69.
Participant Grouping Before: WYSIWYT-No-Training (23), WYSIWYT-With-Training (21), Ad Hoc (17)

After: WYSIWYT Group (39), Ad Hoc Group (30).
Participant Pool No change (computer science students in CS 381, CS 411, CS 511).

WHAT: CONTENT AND MATERIALS
Tutorial

Length Before: about 25 minutes, After: about 20 minutes.
Content Added explanations of new features and removed explanations about moving and resizing cells.
Examples Two tutorial examples kept, one replaced.

Spreadsheet Problems
Grades Spreadsheet Boundary condition bug fixed.
Clock Spreadsheet Graphical clock output altered slightly because it could be perceived as incorrect.
Both Problems Cell in which participants entered reports of bugs they found was renamed from “OutputErrors” to

“BugRecorder”.
Handout Materials

Forms/3 Quick Reference Sheet Name changed from “Forms/3 Notes” to “Forms/3 Quick Reference Card.” Notes regarding moving
and resizing cells were removed, and notes regarding new testing tools were added.

Problem Descriptions Added descriptions of expected inputs, error messages, and simplified the program descriptions.
Questionnaires

Background Added the question “is English your native language?”
After First Problem Self-rating question scale was changed from ambiguous wording like “very well” to an A-F grading

scale. Question asking participants the length of time needed to complete the task was rephrased
with more options.

After Second Problem Added questions regarding the meaning of the user interface features in the Forms/3 environment,
such as “what does a blue arrow mean?”, to get more accurate information.

Rephrased questions about perceived usefulness of the methodology feedback.
Hardware and Software

Hardware Same computers on the front end; backend was restructured so that there was less load on each
server, meaning faster system response.

Software User interface changes as enumerated in Table 1.

WHEN
Time of Day of Experiment No change (evening).

WHERE
Location of Experiment No change (computer lab).

Table 2: Comparison between the design of the “before” and “after” experiments.

IEEE Symposium on Visual Languages, Seattle, ashington, Sept. 2001

6.1 CWs in the domain of VPL experiments
Our experimental design required participants,

prompted by the VPL interface display, to explore and
reason. Understanding such behavior is the strong point
in the CW’s evaluative abilities. This may explain why
the technique was so useful in this type of VPL
experiment.

Still, the CW method has some limitations. For
example, although the CW does focus on the individual
user steps, it has little to say about the cost of making
an error. Other issues that the method does not address
include whether the user is compelled to look ahead
before choosing an action or whether changing one value
in the system is likely to require further changes to
restore an internally consistent state, neither of which
were issues in our experiment. Designers of VPL
experiments for which these are potential issues might
need to supplement the CW with other evaluative
techniques, such as Green’s Cognitive Dimensions [7-8].

Thus, while the results of our case study can be taken
as strong support within a circumscribed area, the exact
definition of its boundaries require further study. Also,
outside that circumscribed area, other techniques may and
probably will be needed.

6.2 Advantages
We observed several advantages of evaluating the

experiment with the CW, as opposed to pilot studies and
protocol analyses, which are other experiment evaluation
mechanisms we have used.
• It was relatively quick; with a small group of

evaluators, the walkthrough spanned a total of about
four hours. This is much faster than preparing an
“almost polished” version of the experiment, as is
required for a pilot or protocol analysis.

• It focused on possible problems with each specific
subtask, which led to a list of specific design issues.
In contrast, a pilot does not provide this level of
subtask detail.

• The wording of the CW’s questions, while not
prescriptive, was relatively constructive, pointing
out where better information would help participants
to perform their task. For example, in Figure 3,
question 2.5 suggested either user interface or
tutorial changes.

However, the CW should not be viewed as a
replacement for other VPL experiment design devices,
but rather as an additional tool. For example, we have
recently used both a pilot and “think aloud” analyses to
help prepare for our upcoming end-user version of the
experiment.

6.3 Effectiveness
Any experiment can be improved with hindsight. Our

observations with the CW suggest that it moves the
hindsight to where it belongs—before the experiment.

In hindsight, it is easy to think of reasons for the
improvement from “before” to “after”. Reducing the
number of participant groups from 3 to 2 increased
power-effectiveness of statistical tests. Improving the
tutorial increased the likelihood that all participants
understood what to do and how to do it. Improving
details of the experimental interface increased the likeli-
hood that participants would form correct goals, be able
to achieve them, and be aware that they had made
progress. All these were obvious—afterwards. However,
it is not clarity of hindsight that is needed for better
experimental designs, it is clarity of foresight. It is this,
improved clarity of foresight, that is the benefit we
gained from use of the CW.

It would be natural to ask why the experimental
deficiencies relating to the user interface deficiencies had
not been noticed before the experiment. In fact, the team
had already been aware that there were imperfections in
the user interface. However, the CW helped ascribe
importance to user interface problems that the team had
noticed but had considered unimportant in designing a
successful experiment. For example, the team had always
realized that editing a cell formula was unintuitive and
physically tricky. Because Forms/3 is a research
prototype, these types of imperfections were expected,
and presumed unrelated to a successful experiment
design. The walkthrough dispelled this idea by
illustrating their impact on the experiment task.

The improvement of our WYSIWYT experiment
from the “before” version to the “after” version was not
limited to sharpening the statistical significance levels;
we also gained a better understanding of what we really
wanted to know and how to obtain the answers, allowing
us to use two experimental groups instead of three.

6.4 Specialists not needed
With one exception (the first author, an HCI expert)

our team consisted of computer scientists, with no
previous experience using the CW. At the start of the
project, the first author briefly taught the team the
method (in about 90 minutes), introducing the ideas
behind it and presenting example walkthroughs. The
walkthroughs of the experiment were made by the rest of
the team, with the first author acting as observer during
the first walkthrough only.

Although a team of HCI experts might have extracted
more from the walkthroughs, our team certainly used it
successfully enough to obtain useful results.

IEEE Symposium on Visual Languages, Seattle, ashington, Sept. 2001

6.5 General lessons
With the use of the CW, four types of uncontrolled

variables emerged (given in Section 4.2). Rephrasing
them as “four helpful maxims” may be useful to
designers of other empirical studies aimed at evaluating
benefits of VPL features:
• Design the problems given to participants so that

their attention remains on the experimental task,
rather than on extraneous elements such as syntax
oddities or nested logic.

• Design the tutorial with close scrutiny to
participants’ ability to master the material,
considering not only content, but also length and
practice time.

• If there is a user interface component in the feature
under evaluation, make sure it has helpful action
choices and labeling.

• If there is a user interface component present in the
experiment but unrelated to the feature under
evaluation, eliminate distracters that could impact
ability to perform the experiment’s task.

We propose the above maxims derived from our
experience with applying the CW to this VPL evaluation
experiment as a partial answer to the last question posed
in the introduction.

7. Conclusion
Like John and Packer [10], we found that the CW

could be used successfully by a computer science team,
even without the presence of an HCI expert or cognitive
scientist. In our case, we did learn the technique via a
short training session from such a person, but he did not
participate in the walkthroughs per se.

We also found that the use of the CW can improve
the design of a VPL-focused empirical study. It was
effective: it exposed uncontrolled variables and prompted
us to think of solutions. It was easy to learn, needing
just one training session with an HCI expert; it was
quick, taking about 4 hours for a walkthrough in front of
a VPL; it was concretely focused, requiring very little
working out how an abstract theory or model could be
applied to the specific situation; and it was constructive,
leading directly to suggestions for improving the
experiment design.

References
[1] B. Bell, W. Citrin, C. Lewis, J. Rieman, R. Weaver, N.

Wilde and B. Zorn. Using the Programming
Walkthrough to Aid in Programming Language Design.
Software Practice and Experience, 24, 1994, 1-25.

[2]A. Blackwell, Metacognitive Theories of Visual
Programming: What Do We Think We Are Doing? 1996
IEEE Symp. Visual Languages, Boulder, CO, Sept.
1996, 240-246.

[3] M. Burnett and H. Gottfried. Graphical Definitions:
Expanding Spreadsheet Languages through Direct
Manipulation and Gestures. ACM Trans. Computer-
Human Interaction 5(1), Mar. 1998, 1-33.

[4] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J .
Reichwein and S. Yang. Forms/3: A First-Order Visual
Language to Explore the Boundaries of the Spreadsheet
Paradigm. J. Functional Programming, (to appear).[5]

S. Card, T. Moran and A. Newell. The Keystroke-
Level Model for User Performance Time With
Interactive Systems. Comm. ACM 23(7), 1980, 396-
410.

[6] W. Gray and M. Salzman. Damaged Merchandise? A
Review of Experiments that Compare Usability
Evaluation Methods. Human-Computer Interaction,
13(3), 1998, 203-261.

[7] T. R. G. Green. Cognitive Dimensions of Notations. In
A. Sutcliffe and L. Macaulay (Eds.) People and Compu-
ters V. Cambridge Univ. Press. 1989, 443-460.

[8] T. R. G. Green and M. Petre. Usability Analysis of
Visual Programming Environments: A 'Cognitive
Dimensions' Framework. J. Visual Languages and
Computing, 7, 1996, 131-174.

[9] J. Gurka and W. Citrin. Testing Effectiveness of
Algorithm Animation. 1996 IEEE Symp. Visual
Languages, Boulder, CO, Sept. 1996, 182-189.

[10] B. John and H. Packer. Learning and Using the
Cognitive Walkthrough Method: A Case Study
Approach. ACM CHI ’95, Denver, CO, May 1995, 429-
436.

[11] J. Nielsen and R. Molich. Heuristic Evaluation of User
Interfaces. ACM CHI '90, Seattle, WA, Apr., 1990,
249-256.

[12] P. Polson, C. Lewis, J. Rieman and C. Wharton.
Cognitive Walkthroughs: A Method for Theory-Based
Evaluation of User Interfaces. Intl. J. Man-Machine
Studies 36, 1992, 741-773.

[13] J. Rieman, M. Franzke and D. Redmiles. Usability
Evaluation with the Cognitive Walkthrough. ACM CHI
’95, Denver, CO, May 1995, 387-388.

[14] G. Rothermel, L. Li, C. DuPuis and M. Burnett. What
You See is What You Test: A Methodology for Testing
Form-Based Visual Programs. 20th Intl. Conf. Software
Engineering, Kyoto, Japan, Apr. 1998, 198-297.

[15] K. J. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T.
R. G. Green and G. Rothermel. WYSIWYT Testing in
the Spreadsheet Paradigm: An Empirical Evaluation.
Intl. Conf. Software Engineering, Limerick, Ireland,
June 2000, 230-239.

[16] A. Sears and D. Hess. The Effect of Task Description
Detail on Evaluator Performance with Cognitive Walk-
throughs. ACM CHI ’98, Los Angeles, CA, Apr. 1998.

[17] C. Wharton, J. Bradford, R. Jeffries, M. Franzke. Ap-
plying Cognitive Walkthroughs to More Complex User
Interfaces: Experiences, Issues, and Recommendations.
ACM CHI ’92, Monterey, CA, 1992, 381-388.

[18] M. Williams and J. Buehler. Comparison of Visual and
Textual Languages via Task Modeling. Int. J. Human-
Computer Studies, 1999, 51, 89-115.

