
In Proceedings of 1996 IEEE Symposium on Visual Languages, Boulder, Colorado, Sept. 3-6, 1996 (to appear)

- 1 -

Retire Superman: Handling Exceptions Seamlessly in a
Declarative Visual Programming Language

Pieter van Zee Margaret Burnett* Maureen Chesire

Hewlett-Packard Oregon State University Mentor Graphics Corporation
piet@cv.hp.com burnett@cs.orst.edu maureen@mentorg.com

Abstract
Exception handling is widely regarded as a necessity in

programming languages today, and almost every
programming language in current use supports some form
of it. Unfortunately however, most approaches to
exception handling involve constructs with unusual
powers, and even deviations from the language's
evaluation model. To avoid such devices in our declarative
visual programming language, we have devised a full-
featured approach to exception handling that fits
seamlessly into languages that are declarative and visual.
Using this approach allows designers of declarative visual
programming languages to provide the expressive power
previously available only through complex exception
handling techniques.

1. Introduction
The American folk hero Superman can be thought of as

the personification of programming language mechanisms
that have unusual powers. Superman bends steel in his
bare hands, runs faster than a locomotive, leaps tall
buildings in a single bound, and flies faster than the fastest
jet planes. Superman uses these attributes to handle
dangerous situations that arise in the city of Metropolis.
However, Superman is somewhat unpredictable—
sometimes he does not arrive to solve the problem. For
example, he cannot solve multiple problems at once, and
he cannot solve a problem that arises when he is working
on solving another problem. Thus, because it is not
possible to predict his problem-solving behavior
consistently, the disaster response plans for the city of
Metropolis do not rest upon a reliance on Superman.

Unfortunately, approaches to exception handling in
most programming languages do require reliance on
Superman-like mechanisms—mechanisms that are as

 *This work was supported in part by Hewlett-Packard and by
the National Science Foundation under grant CCR-9308649
and an NSF Young Investigator Award.

different from the other constructs of these languages as
Superman is from the other citizens of Metropolis. For
example, in imperative languages, ordinary imperative
constructs are only invoked via an explicitly defined
sequence, but exception handling constructs ("on
<exception>," "signal," etc.) allow sets of statements to
be implicitly invoked. The addition of these new
constructs and their deviation from the explicit order of
evaluation increase the complexity for a programmer to
reason about a program, because in order to do so, the
programmer must constantly take into account these
"Supermen" who may at any time wrest control from the
program's explicit control flow. Such inconsistencies are
not unique to exception handling in imperative languages;
significant inconsistencies are also present in approaches
to exception handling for functional languages.

We believe that exception handling is one of the
features needed for scalability in visual programming
languages (VPLs). We also believe that if VPLs are to
succeed in improving the usability of languages with
which people program, inconsistencies such as those
found in traditional approaches to exception handling must
be avoided. In this paper, we present a new approach to
exception handling that, while still providing the features
that are generally sought by researchers in the area of
exception handling, fits seamlessly into commonly used
declarative visual programming paradigms. The
contributions of the approach are that (1) it is the first
approach to provide full-featured exception handling in a
VPL, (2) it does so without an accompanying loss of
language simplicity, and (3) it demonstrates that the visual
characteristics of a VPL can make a significant difference
in the way exception handling can be supported in a
programming language.

2. Background and Related Work
Exception handling refers to the mechanisms that

support the detection, signaling, and handling of
exceptions. Sebesta defines an exception as any unusual

- 2 -

event, erroneous or not, that is detectable either by
hardware or software and that may require special
processing [10]. An exception is signaled when it is
detected. An exception handler is the special processing
code that is executed as a result of an exception being
signaled.

2.1 Two Models of Exception Handling

Most research on exception handling has been in
imperative, object-oriented, and applicative (especially
functional) languages. Since our approach is for
declarative VPLs, we focus here on applicative languages.
For an approach to exception handling to be usable by all
applicative languages (and not be restricted to only
functional languages), it cannot rely on higher-order
functions. Thus, approaches such as continuation-passing
style or monadic approaches, which require higher-order
functions, cannot be used by applicative languages that do
not support higher-order functions, such as most dataflow
languages and spreadsheet languages.

The two models of exception handling upon which our
approach builds are the error value model and the
replacement value model. In the error value model,
uniquely identifiable error values are used to indicate after
the fact that an exception has occurred. Some applicative
and functional languages follow this model (c.f. [5, 11]),
and it can be approximated in imperative languages via
distinguished values (e.g., procedure return values and
status flags). Most commercial spreadsheets also follow
the error value model.

The error value model is attractively simple, but it does
not support all of the generally accepted principles of
exception handling. For example, Goodenough's landmark
paper on exception handling [6] points out that exceptions
are not necessarily errors; this implies that support for
user-defined exception abstractions can expand the
generality of an exception handling mechanism.
Goodenough further observed that an exception's
significance is often known only outside the signaling
operation, and concluded that the invoker of the signaling
operation should have some control as to how the
exception should be handled. Investigating these
observations further, Yemini and Berry presented potential
software engineering advantages in the use of exception
handling, from which they derived a set of design
guidelines and introduced the replacement value model1 as
an approach that follows these guidelines [13]. The
guidelines were:

1Yemeni and Berry name it the "replacement model". We use
the phrase "replacement value model" in this paper because it
emphasizes the nature of the approach.

• Handlers should be allowed to have formal parameters.
This decreases coupling among different potential
signalers and potential invokers (no shared global
variables), and increases reusability of the handlers.

• To preserve information hiding, unhandled signals
should not automatically propagate along the chain of
invokers. If the details of an exception are
automatically propagated, information hiding is
violated; however, explicit propagation is permissible
because it supports information hiding by allowing
abstraction of exception information.

• Data and procedural abstractions should be able to
include exceptions in their definition. This improves
the fidelity of the definition of such abstractions.

• Exception handling should integrate fully with a
language's scope rules and type system.

• Exception handling features should be designed so that
their addition to a language does not reduce the
language's suitability for formal verification.

The context of Yemini's and Berry's view of the
replacement value model was in the imperative world.
The replacement value model has since been adapted to
functional languages [1], and forms the basis of much
recent work in exception handling in the functional
language community.

However, researchers have identified several problems
that can arise when replacement value exception handling
is introduced into functional and other applicative
languages [1, 9, 14]. For example, modern applicative
programming languages treat same-level arguments as if
they are evaluated in parallel; no order of evaluation is
specified. But if two or more same-level exceptional
points exist within a function call, unless an order of the
signals is asserted referential transparency will not be
maintained. Although this problem and other related
problems can be addressed by changing the evaluation
model to avoid the problems or by adopting specific
semantic conventions to resolve them, doing so does not
address the true cause of these difficulties, which lies in
the fact that adding special-purpose constructs to
applicative languages to support exception handling
usually results in incompatibilities with the evaluation
models of those languages.

2.2 Exception Handling in VPLs

To date, there has been little support for exception
handling capabilities in VPLs. The few VPLs that do
support exception handling provide only low-level support
with no abstraction capabilities for exceptions. For
example, Fabrik [7], a dataflow VPL, supports system-
level errors only, under the error value model. In Fabrik,
if a component cannot compute, the values on the output

- 3 -

pins are invalid and this invalidity is propagated to the
connected input pins. Connections carrying invalid values
appear as dashed lines.

Commercial spreadsheet programs, which share many
characteristics of VPLs, also follow the error value model.
For example, in Microsoft™ Excel® [8], when a
primitive operation detects an exception, it returns one of
seven possible error values. Operations are provided that
test for error values and can discriminate among them and
also generate them. Using these mechanisms, a
programmer can detect when an exception has occurred and
provide the desired exception handling.

The description of Prograph2 [4], a version of
Prograph, includes the only detailed discussion on
exception handling we have been able to locate in VPL
literature. Prograph2 combines the dataflow, object-
oriented, and imperative paradigms. Exception handling is
provided through constructs that allow the programmer to
explicitly signal exceptions and to handle exceptions
through termination and transfer of control to other
sections of the program.

3. A New Approach to Exception
Handling

In this paper, we combine the error value model and the
replacement value model and show that, given suitable
abstraction mechanisms, this combination can fit
seamlessly with a declarative VPL. We had two goals: to
support full-featured exception handling, and to do so
seamlessly. To be more precise about what we mean by
seamlessness, we state a seamlessness constraint:

For an approach to fit seamlessly with a language,
it must be implementable simply by appending (0
or more) new operators to the language's dictionary.
No other changes to the language or its operators
are allowed, and no deviations from the language's
normal evaluation model to support the new
operators are allowed.

3.1 A Brief Introduction to Forms/3

Forms/3 [2], the language in which we have prototyped
our approach to exception handling, is a general purpose,
declarative VPL. Its goal is to provide computational and
expressive power in a language featuring a simple,
concrete programming style with immediate feedback.
Programming in Forms/3 follows the spreadsheet
paradigm; the programmer uses direct manipulation to
place cells on forms, and then defines a formula for each
cell. Forms are the basic organizational units, and cells
are the computational units. Because each cell’s value is
determined by its formula, a program's behavior is entirely
determined by the cells' formulas. Forms/3 is fully live,

which means that it automatically re-evaluates on-screen
values whenever a formula is changed or new data arrives.
As will be discussed later, liveness in a VPL provides
both opportunities and problems for exception handling.

3.2 Error Value Exception Handling

The foundation of our approach lies in the error value
model. The analog clock program in Figure 1
demonstrates this model of exception handling in
Forms/3. The clock program takes two integers,
representing the time of day in hours and minutes, and
displays the corresponding analog clock. The x- and y-
positions of the clock’s hands are computed by cells
minutex, minutey, hourx, and houry. Cell theClock
references the results of the cells minuteHand, hourHand,
face and pivot to assemble the clock components into one
unit. The cell references were indicated by pointing, and
the formula arranging the clock components was
demonstrated by dragging the components together and
rubber banding the result. (The clock components were
then separated for readability of their formulas.) The
combination of lazy evaluation with liveness in Forms/3
causes execution of formulas to be automatically scheduled
for every cell that is currently on the screen, as well as for
any other cells needed to compute those on-screen cells.

Because the programmer has not provided any
exception handling code in the formulas in Figure 1, the
program defaults to the exception handling automatically
provided by the system under the error value model. The
error value exception handling model is implemented in
Forms/3 using a distinguished error type. For example, if
a character is entered as the formula for the minute cell
instead of an integer, the operators invoked by formulas in
the cells minutex and minutey will detect and signal
exception conditions by returning values of type error.

3.2.1 If-then-else + declarative semantics + output = rules

The example so far shows the system signaling
exceptions by generating error values. (These values can
also be generated explicitly by programmers via the error
operator.) Programmers can capitalize upon the presence
of error values by specifying their own exception handling
"rules": ordinary if-then-else formulas defining calculations
predicated on exceptions arising. For example, suppose
we rename theClock to goodClock, add a badClock cell
containing a sketch of a broken clock (drawn using an
ordinary X-Windows bitmap editor), and create a new
theClock cell with formula:

if (error? (minuteHand) or error? (hourHand))
then badClock else goodClock

(The operation error? tests whether a value is of type
error.) Figure 2 shows the result of these three changes.

- 4 -

(a)

(b)

(c)

Figure 1: The user's view of the clock program does not include the formulas or the cells the programmer has chosen to
hide. Here two user views are shown (a) with correct input, and (b) with erroneous input. The tabs indicate where users can
enter input formulas. (c) The programmer's view: There is no exception handling code in this program; it simply defaults to
the error value exception handling automatically provided by the system.

Figure 2: The user's view of a clock program for which
the programmer has specified an exception handling "rule".

This example illustrates the key characteristic of
declarative languages that can be exploited to allow
seamless exception handling under the error value model:
The ordinary if-then-else conditional construct in a
declarative language, when paired with a demand for
output, provides the same functionality as rule-based
semantics. This is because (1) the declarative nature of the
language says that the variables' definitions (in Forms/3,
these are the cells' formulas) entirely define all the
relationships in the program, and (2) wherever output is
produced in such a language, the system must
automatically maintain all values contributing to the
output. This combination provides exactly the evaluation
model needed for exception handling, because programmer-

supplied exception handlers are the equivalent of rules that
must be followed whenever the associated exceptions arise.

3.2.2 Exception Composition and Abstraction

In programming languages, one technique often
employed for scalability is abstraction. Abstraction
allows composition of related information into a single
package, thereby providing programmers the ability to
abstract low-level details away into higher-level concepts.
In Forms/3, abstraction of exceptions is inherent in both
the if-then-else and in our approach to data abstraction [2].

Since Forms/3 treats all instances of the error type just
like any other value, any combination of values—errors or
not—can be combined to identify an exception using the
ordinary if-then-else construct. For example, if the clock
program referenced the system's clock rather than user
input, we might add an 8:10 alarm using an alarm cell:

if (hourHand = 8) and (minuteHand = 10)
then TRUE else FALSE

Other cells in the program could then refer to this cell in
their own formulas (e.g., "if alarm then ..."). Such uses
of if-then-else can involve arbitrarily complex
combinations, and can result in values of any type, not
just Booleans. This way of composing low-level details
into higher-level exceptions is almost invisible, since it

- 5 -

Figure 3: Type error's attributes can be set and queried
using copies of this form. Here the programmer has
inserted a string into an error by defining cell errorDetails'
formula to be the string "CLOCK-ERROR".

Figure 4: A recursive factorial program with default error
value exception handling. An inappropriate value for N
would cause Answer to return an error. Even a negative N
would result in an error value, since stack overflow
recovers and produces an error value.

uses only the ordinary if-then-else construct, and works
with any kind of exceptions, whether errors or not.

However, for some situations, what is needed is the
ability to compose new kinds of exceptions that are still
of type error. This would allow the programmer to
differentiate between exceptions that are errors versus those
that are not. Forms/3 provides this capability because it
supports composition of abstract data types.

Like every type in our system, type error is an abstract
data type. To signal an exception with an instance of this
type, the Forms/3 programmer may use the error operator
(if minuteHand > 60 then error else...). The error operator
is actually a shortcut for a reference to cell newError on a
copy of the primitive error form that defines type error.
This form allows programmers to insert arbitrarily
complex data into instances of the error type to define their
own kinds of errors. See Figure 3.

3.3 Replacement Value Exception Handling

While the variation of the analog clock that references
the system clock is a real-world software application, it
represents only the small class of software in which a
module is a standalone program. To support more
reusable software, such as library routines to be used in a
variety of present and future programs, an approach that
supports information hiding and structured communication
between the callee and caller is required. This was the
basic point made by Yemini and Berry when they first
introduced the replacement value model.

In this section we show how the error value model and
abstraction mechanisms, when combined with visual
techniques, can achieve the functionality of the
replacement value model. Achieving replacement value
model functionality in this way has two advantages over
traditional approaches to exception handling. First, it
maintains the simplicity and seamlessness of the error
value model. Second, it provides full-featured exception
handling suitable for software such as library routines,
without encountering the problems (given in Section 2)

that arise in other approaches to replacement value
exception handling.

3.3.1 The replacement value model in a library routine

Figure 4 displays a factorial program that includes only
default error value exception handling. The error value
model is often sufficient for small standalone programs,
but to improve this form's functionality as a general-
purpose library routine, we will add replacement value
exception handling.

Abstraction is a key element needed to support
replacement value error handling. In Forms/3, a form is
the unit of procedural abstraction. In Forms/3's concrete
programming style, parameterized calls are defined by
copying a form and providing formulas (the arguments) for
cells that are modifiable (the formal parameters), thereby
modeling the form's actual invocation. An example is cell
N on form Fact1 in the figure. The system automatically
generalizes the relationships specified in this concrete way
[12], allowing invocation of other calls such as the
additional recursive calls in the factorial example.

In Figure 5, cells have been added that provide
replacement value exception handling. (Note that the
formulas contain only the same ordinary operators as in
the error value model examples.) In replacement value
exception handling, handlers are defined inside the callee,
as the figure shows; this promotes cohesion. The caller
sets up the parameters that dictate the handlers' behavior;
this is because the caller (the application) knows more
than the callee (the library routine) about the significance
of the exception to the application.

The handler parameters are cells replacementValue and
Mode. Cell replacementValue specifies the expression to
be used as a substitute value if an exception is signaled.
Future programmers who use the factorial library routine

- 6 -

Figure 5: The cells in the input, output, and parameter areas (top and mid-left) are the interface to this routine.
Replacement value exception handling (right half) is accomplished with formulas containing ordinary operators. Because
there are no operators with "special powers," no deviations from the language's evaluation model are needed.

will provide a formula for input cell N, and will set the
replacementValue parameter by entering the desired
formula on their copy of the Fact form. Cell Mode is a
radio button group used to specify the exception handling
mode. (A radio button group in Forms/3 is a robust
shortcut for a cell whose formula is intended to be one of
an enumerated set of constants). A programmer sets the
mode parameter simply by pushing one of these buttons.

Except for the above input/parameter cells and the
output cell Answer, all the other cells on the form will
eventually be hidden; they are internal, and thus of concern
only to the programmer developing the factorial library
routine. These include the exception signalers
(localException and unusualFactorial) and handlers
(handledInput and handledOutput). (Note that these
exceptions are not error values.) The underlying error
value model will automatically handle any exceptions that
are not covered by the explicit signalers and handlers.

3.3.2 Exception handling modes supported

In programming language literature, an exception
handler's behavior after it takes corrective action is
typically categorized into one of five modes: terminate
execution, resume execution, retry execution, propagate

the exception, or transfer control to a new location. Our
approach explicitly supports the first three of these. The
fourth, propagation, is superseded because the handler can
itself signal an exception. The fifth, transfer of control, is
not applicable to declarative approaches. The behaviors of
the three explicitly-supported modes are:

Terminate: If an exception is signaled, use the
replacement value as a substitute for the final output
cell(s) on the form.

Resume: If an exception is signaled, use the
replacement value as a substitute for the cell that
caused the exception.

Retry: If an exception is signaled, use the replacement
value as a substitute for the initial input cell(s) on
another invocation of the form.

Table 1 shows example behavior of the factorial
routine under each exception handling mode.

4. Unusual Features of the Approach
The three characteristics needed for a declarative

language to effectively support this approach to exception
handling are (1) there must be language-level support for
the error value model to consistently provide the broad
"safety net" that deals with all exceptions not explicitly

- 7 -

Handler
parameters

Initial invocation Recursive calls

Terminate,
replacement
value of
error

N = 7/4
Next-N = 3/4
Answer = *Error*

N = 3/4
Next-N = -1/4:
exception signaled.

Answer = *Error*

Resume,
replacement
value of 1

N = 7/4
Next-N = 3/4
Answer =
7/4 * 3/4 *1

N = 3/4
Next-N = –1/4:
exception signaled.

Answer = 3/4 * (a
call to Fact with
N=1) = 3/4

Retry,
replacement
value of

N = 7/4
Next-N= 3/4

N = 3/4
Next-N = –1/4:
exception signaled

(round N) Try N=2:
Next-N= 1
Answer = 2

N = 1:
Next-N = 0
Answer = 1

Table 1: The behavior of library routine FACT under
different exception handling modes. Internal calculations
are shaded; interface cells (parameters and results) are
unshaded. The use of an error value in terminate mode
shows a combined use of the error value model and
replacement value model.

handled by the programmer; (2) the language must have
suitable abstraction facilities to enable the modularity and
parameter-passing functionality that characterize
replacement value model semantics; and (3) the language
should be visual. We have already illustrated the first two
points; in this section we will discuss the third, as well as
other aspects of the approach that are unusual.

4.1 What Visualness Adds to the Approach

What advantages do a language that is visual provide
this exception handling mechanism? Perhaps most
important is the fact that, without the visual aspects, the
structure needed for proper support of the replacement
value model would be hard to create. For example, use of
descriptive labels like “Exception handler” and lines to
partition the form into conceptual regions separating
exception handling cells from program logic cells helps
create a stylized interface to the form to promote
modularity/cohesion of related cell groups on the form.
(In our system, such decorative devices are just borderless,
nameless cells that have been arranged as desired.) In
textual languages, such structure is instead achieved using
specially empowered handling and signaling operations,
handler specification sections, and the like.

In addition, the advantages that come to other kinds of
programming through visual mechanisms also impact
exception handling programming. For example, the use

of widgets like radio buttons can promote robustness in
parameterizing the handlers. When calling a form with
replacement value exception handling, the programmer
need not memorize or look up the codes for the different
exception handling modes; he or she simply needs to push
the appropriate button. Interactive visual characteristics
and liveness can also add testing and documentation
functionality. For example, in Forms/3, the programmer
of the library routine can test exception handling behavior
interactively while developing it. Later, programmers of
calling forms can learn about the library routine's
exception handling behavior by trying it with sample
inputs, without having to refer to separate documentation
or the routine's implementation details to understand it.

A debugging challenge in textual exception handling
approaches is to identify the original source of an error,
but visual mechanisms can help with this task. For
example, Forms/3 provides tiny glyphs, general purpose
dataflow arrows, and (soon) special error arrows, to help
programmers track down sources of errors. Tiny glyphs
can be made to appear in cells' formulas, showing the
values of referenced cells along with the cell names
referenced, to save the programmer the effort of searching
for them. As in some other systems, in Forms/3 dataflow
arrows to the selected cell can be automatically drawn. We
are currently working on a new feature in which a different
mouse button, when clicked on any cell, draws a red arrow
directly from the original source of the error (the first cell
in the selected cell's dependency chain with an error value).

4.2 What the Approach Adds to VPLs

As more VPL designers look toward scalability, the
software engineering characteristics of their languages
become increasingly important [3]. The replacement value
model promotes these characteristics in several ways. For
example, it allows implementation details for detecting,
signaling, and handling exceptions to be hidden from
callers. At the same time, it enhances the generality of a
library routine, because the routine need not define the
application-specific course of action to be taken when
exceptions are signaled, since the desired exception
handling behavior is specified by the callers.

The factorial example demonstrates how our approach
follows all of Yemini's and Berry's software engineering
guidelines (listed in Section 2). The most unconventional
of the ways the guidelines are satisfied are in the support
for parameterized handlers, and in the compatibility with
the language's scope/type/verifiability characteristics. For
parameterized handlers, a programmer specifies the desired
parameters on a copy of the routine's form and refers to
that copy's final answer from the "caller" form. For
scope/type/verifiability compatibility, our strategy is

- 8 -

simply to satisfy the seamlessness constraint, which
avoids any new scope, type, or verifiability issues.

The combination of the replacement value model with
the error value model also adds robustness, because the
latter model provides default error handling for conditions
not handled explicitly by programmer-provided handlers.
This is an unusual feature; it is more usual for
programming languages to simply abort to the O/S if an
exception is left unhandled or if a handler itself generates
an unhandled exception.

4.3 Return Values and Exception Notifications

One inconvenience with traditional approaches to
exception handling in declarative languages is that when
exceptions are raised during function evaluation, the
handled result is the function’s only return value. In some
situations, it may be useful to have both the handled
answer and an exception notification returned as outputs of
a function. This functionality can be simulated in various
ways, such as with by-reference parameters in imperative
languages, or with multiple return values packaged into a
list in functional languages, but these ways often detract
from the convenience and consistency of a program.
However, in Forms/3 a procedure (form) can have multiple
outputs (cells). For example, we could add to the clock
form in Figure 2 two additional visible cells, minuteError
and hourError, whose visibility would notify the user
whenever an exception arises; also, these cells could be
referenced, just like other visible cells, by other formulas
in the program.

4.4 Liveness Versus Termination

The fact that our language is fully live introduced an
interesting challenge. Forms/3 uses lazy evaluation,
which means that values are only computed if they are
needed to produce a program's output. However, in a live
environment, everything on the screen is needed for
output. As a result, when the program is being developed,
extra exceptions can occur simply because all the
program's calculations, even the intermediate values, are
being displayed. This can lead to non-termination. For
example, intermediate calculations of recursive programs
that will be averted by exception handling logic in the
final program will be executed during program
development simply because they are on the screen.

The problem stems from the fact that the edit-time
feedback provided by liveness's continuous execution does
not wait until the program is completed. To solve this
problem, the system needed to be able to detect a non-
terminating calculation and return an error value. To
approximate a solution to this, we decided to simply
return an error value in the event of stack overflow. This

solution need not impact the program's runtime efficiency
after program development is complete, since explicit
exception handling logic can prevent non-terminating
calculations from ever being demanded, as in the Factorial
example seen in Figure 5.

5. Conclusion
By seamlessly integrating replacement value exception

handling into the simple error value model approach as
found in spreadsheets, we have shown that exception
handling need not add new factors that would compromise
the ease of reasoning about a declarative VPL. Rather, we
have exploited such a language's declarative and visual
characteristics to produce the following new features for
exception handling in VPLs:

• programmers use only ordinary language operators,
such as if-then-else, for all exception signaling and
handling;

• visual aspects of the language are exploited to allow
full-featured exception handling without employing
complex, Superman-like mechanisms; and

• the approach is entirely compatible with liveness.
Most important of all, because the approach to

replacement value exception handling simply combines
error value exception handling with abstraction, a
programmer can use either model or both together with
complete flexibility. In fact, as the examples show, error
value exception handling is enough to provide an
acceptable level of exception handling without the
programmer writing any exception handling code at all in
some cases. What adding the replacement value model via
the error value model contributes is software engineering
characteristics that are important for scalability, without
the increase in language complexity that usually
accompanies the introduction of exception handling
capabilities into a language.

Acknowledgments
We would like to thank the members of the Oregon

State University VPL Research Group for their work on
the Forms/3 implementation and for their feedback on the
exception handling approach.

References
1 . Bretz, M. and J. Ebert, "An exception handling construct

for functional languages", 2nd European Symposium on
Programming , Nancy, France, LNCS 300, Springer-
Verlag, March 1988.

2 . Burnett, M. and A. Ambler, "Interactive Visual Data
Abstraction in a Declarative Visual Programming
Language", Journal of Visual Languages and Computing
5(1), March 1994, 29-60.

- 9 -

3 . Burnett, M., M. Baker, C. Bohus, P. Carlson, S. Yang,
and P. van Zee, "Scaling Up Visual Programming
Languages", Computer, March 1995.

4 . Cox, P. and T. Pietrzykowski, "Using a Pictorial
Representation to Combine Dataflow and Object-
Orientation in a Language Independent Programming
Mechanism", International Computer Science
Conference, 1988, 695-704.

5 . Feo, J., D. Cann, and R. Oldehoeft, "A Report on the
Sisal Language Project", Lawrence Livermore Nat. Lab.
Report UCRL-102440 Rev. 1, 1990.

6 . Goodenough, J., "Exception Handling: Issues and
Proposed Notation", Communications of the ACM
18(12), 1975, 683-696.

7 . Ludolph, F., Y. Chow, D. Ingalls, S. Wallace, and K.
Doyle, "The Fabrik Programming Environment", 1988
IEEE Workshop on Visual Languages, Pittsburgh, PA,
Oct. 10-12, 1988, 222-230.

8 . Microsoft Excel 4.0 User's Guide 1 and Microsoft Excel
4.0 Function Reference, Microsoft Corporation, 1992.

9 . Reeves, A., D. Harrison, A. Sinclair, and P. Williamson,
"How to Make a Lazy Functional Language Exceptional",
IEEE TENCON '89 , Bombay, Nov. 1989, 179-185.

10. Sebesta, R., Concepts of Programming Languages, 3rd
ed., Addison-Wesley, Reading, MA, 1996.

11. Wadler, P., "How to Replace Failure by a List of
Successes: A Method For Exception Handling,
Backtracking, and Pattern Matching in Lazy Functional
Languages", in Functional Programming Languages and
Computer Architecture, Nancy, France, LNCS 201,
Springer-Verlag, Sept. 16-19, 1985, 113-128.

12. Yang, S. and M. Burnett, "From Concrete Forms to
Generalized Abstractions through Perspective-Oriented
Analysis of Logical Relationships," 1994 IEEE
Symposium on Visual Languages, St. Louis, MO, Oct. 4-
7, 1994, 6-14.

13. Yemini, S., D. Berry, "A Modular Verifiable Exception-
Handling Mechanism", ACM TOPLAS 7(2), Apr. 1985,
213-243.

14. van Zee, P., M. Burnett, "Exception Handling in the
Visual Programming Language Forms/3", TR 95-60-1,
Oregon State Univ. Computer Science Dept., Mar. 1995.

