
To appear in 1996 IEEE Symposium on Visual Languages, Boulder, Colorado, USA; Sept. 3-6, 1996

-1-

STEERING PROGRAMS VIA TIME TRAVEL

J. W. Atwood, Jr., M. M. Burnett*, R. A. Walpole, E. M. Wilcox, and S. Yang

Department of Computer Science, Oregon State University
Corvallis, Oregon 97331-3202 USA

E-mail: {atwoodj,burnett,walpolr,wilcoxer,yang}@research.cs.orst.edu

Abstract
The environments programmers traditionally use for

problem-solving—with separate modes and tools for writ-
ing, compiling, testing, visualizing, and debugging—
derive their basic structure from historical accident, and
take little advantage of Human Computer Interaction
(HCI) research into the cognitive issues of programming.
We believe that neglect of these issues impedes
programmers' ability to produce reliable, maintainable
software. Visual programming languages (VPLs) have
begun to address this problem by creating more flexible,
less modal programming environments, and we have taken
a step further in this direction. In this paper, we describe a
VPL in which programmers can modelessly steer as they
specify, visualize, explore, and alter the behavior of a
program while traveling through the program’s logical
time. This approach supports two often-neglected
cognitive principles that HCI research shows can help
programmers in their problem-solving.

1. Introduction

Historically, programming environments were
structured around the evolution of programming tools.
Programmers in these environments worked in highly
modal fashion, memorizing results and repeating steps as
they switched among separate tools for editing, compiling,
testing, debugging, and visualizing. Today's integrated
approaches improve on this to some degree, but they still
integrate only a few of these tools. For example, syntax-
directed editors integrate part of compilation with editing;
visual debuggers integrate part of visualization with
debugging; interpreters integrate compiling with testing;
and integrated programming environments retain the
modality but allow the functionalities to be invoked via
windows and menus and to access shared information.
Recent VPL research is leading the effort to change the
way programming environments are structured, and in this
paper we take a step further in this direction.

This paper shows an approach to VPLs that follows
the direction pointed out by part of Thomas Green’s
research into cognitive dimensions [Green 1991, Green and
Petre 1996]. Cognitive dimensions are a set of terms
describing the structure of a programming language’s

components as they relate to cognitive issues in
programming. They provide a framework for assessing
the cognitive attributes of a programming system and for
understanding a programming device’s cognitive benefits
and difficulties to programmers. Two of the dimensions,
progressive evaluation and viscosity, are of particular
relevance in the realm of problem solving.

Progressive evaluation is the ability for a programmer
to execute a portion of a program immediately, even
before the program is complete. In a study comparing the
comprehension differences in debugging between novice
and expert programmers [Gugerty and Olson 1986], it was
shown that evaluating their progress frequently was
essential for novice programmers and that, while it was
not essential for experts, the experts actually use
evaluation of partially-completed programs even more
frequently while debugging than novices do. To maximize
the availability of progressive evaluation is thus to reduce
the amount of effort a programmer must exert in order to
evaluate an unfinished program.

Viscosity is programmer effort required to make a
change to the program. As Green and Petre point out
[Green and Petre 1996], studies show that programmers
iteratively create their programs, making change after
change throughout the entire process. If the VPL does not
allow these changes to be easily inserted, the programmer
must exert considerable extra effort devoted solely to the
mechanics of change. Minimizing viscosity will thus
minimize this extra effort.

Our goal was to address these two cognitive issues,
maximizing both the availability and the quality of
progressive evaluation and feedback, and minimizing
viscosity. Our strategy for doing so is termed steering.

The term steering has not been used consistently in the
literature. Our use of the term comes from the scientific
visualization community, which describes steering as the
ability to receive a continuous visualization of data as the
program executes, coupled with the ability for the
programmer to interactively modify any aspect—not just
the visualization or the input parameters—of a program at

 * This work is supported in part by Hewlett-Packard
Corporation and by the National Science Foundation under
grant CCR-9308649 and a Young Investigator Award.

-2-

any time and immediately see the effects without restarting
the computation [McCormick et al. 1987].

Essential to our support for steering is an explicit
notion of time and time travel. We use the term time
travel to mean the ability of a programmer to return to a
previous step of a computation. Our approach of com-
bining time travel with steering supports problem-solving
as a flexible, modeless process, removing barriers among
traditionally separated programming tasks. For example:

• Specification: A programmer specifies program
behavior (code) in the same way that data is entered;
this is the same way that visualizations and all other
kinds of programming are specified.

• Exploration: The programmer can use time travel to
explore causes and effects of a program’s behavior; the
VPL keeps all output synchronized and consistent.

• Alteration: If the programmer alters the behavior of a
program or visualization, the change is reflected not
only in the present and future computations but also
in all past computations.

• Visualization: The programmer has capabilities for
visualization to aid in understanding a program. Low
level visualizations are automatically produced
whenever a new snippet of program is entered.
Facilities for higher level algorithm animations are
also an integral part of the VPL.

These features allow the programmer to review the past
to understand behavior and find problems, attempt to fix
the problem, and immediately see if the changes solve the
problem or introduce any new problems.

2. Related Work

Our ideas about steering were inspired in part by the
work on steering from the field of scientific visualization,
as defined by the NSF Panel on Graphics, Image
Processing and Workstations [McCormick et al. 1987] and
surveyed in [Burnett et al. 1994]. Researchers in scientific
visualization have achieved some steering capabilities
through command-driven interfaces or special-purpose GUI
visualization tools that are used in combination with
traditional programming languages such as C,
FORTRAN, and Smalltalk. In such tools, the scientist
instruments the application and adds visualization and
graphics routines to achieve the desired visual feedback and
steerability. Examples of these works include AVS
[Upson et al. 1989], Vista [Tuchman et al. 1991], VASE
[Haber et al. 1992], and SCENE [Walther and Peskin
1991]. The primary differences between scientific steering
systems and ours are that our approach is aimed toward
understanding and correcting program behavior without
requiring the programmer to insert instrumentation, pre-
plan how and where steering can be done, or use different
sets of mechanisms for steering and for programming.

The most highly interactive VPLs provide some of the
features of steering. The visual object-oriented language
Prograph [Cox et al. 1995], the visual dataflow language
VPL [Lau-Kee et al. 1991], the by-demonstration language
KidSim [Cypher and Smith 1995], and most spreadsheets
are examples. Visibility of the data in these interactive
VPLs is higher than in traditional programming systems,
and allows the programmer to spot some kinds of
programming errors as soon as they are entered and to
inspect values one at a time during program execution.
Even in these VPLs, there is little support for efficiently
exploring previous states in a program that has gone mys-
teriously awry. However, there is currently emerging
work from Yale University [Freeman et al. 1995] and by
Lehrenfeld et al. at the University of Paderborn to begin to
support such exploration in VPLs.

Research into reversible execution has mostly been
concerned with imperative languages, but our approach is
more closely related to work in the declarative and
functional communities. The debugger for Tolmach and
Appel’s concurrent extension of Standard ML has
reversible “program time” [Tolmach and Appel 1991].
Baker introduced a reversible Lisp [Baker 1992]. Systems
such as these are focused toward reversible time itself and
do not address the issues of progressive evaluation and
viscosity.

Several visual debugging systems have supported both
time travel and visualization for the purposes of error
detection. PROVIDE [Moher 1988] was a pioneering
visual debugging and visualization environment for a
simplified C-like language. PROVIDE supported a
number of capabilities for programmers to observe and
control program execution and to interactively create data
visualizations. The Transparent Prolog Machine
[Brayshaw et al. 1991] provides graphical visualizations of
Prolog queries that can be viewed at variable speeds
forward and (if viewed post-mortem) in reverse. ZStep 94
[Lieberman and Fry 1995], a visual debugger for a subset
of Common Lisp, provides support for time travel, for
viewing how values and code are related, and for live
graphical stepping. Debuggers such as these provide for
visualization of program execution and location of errors,
but they do not address the issue of viscosity, because
many kinds of program changes require a restart of the
entire computation.

Our incorporation of the high-level form of
visualization known as algorithm animation during
problem-solving is similar in philosophy to the Lens
system [Mukherjea and Stasko 1993] in that both systems
support algorithm animation as a problem-solving
technique for programmers. Other algorithm animation
systems such as Balsa [Brown 1988], Zeus [Brown and
Najork 1993], Trip [Miyashita et al. 1992, Takahashi et
al. 1994], and Animus [Duisberg 1986] are oriented more

-3-

Figure 1a: The thermometer application, shown from the
user’s point of view. A tab () indicates where the user is
expected to provide an input formula.

Figure 1b: The thermometer application shown from the
programmer’s point of view. The F <-> C button references
eventReceptor, shown in Figure 2.

toward instruction and do not support algorithm animation
for incremental problem-solving.

3 . A Programmer’s View of Steering

To show concretely how steering can be used to
maximize progressive evaluation and minimize viscosity,
we introduce the Forms/3 [Burnett and Ambler 1994,
Pandey and Burnett 1993] approach to steering from the
programmer’s view.

3 . 1 . Specifying a Program

Specifying a program in Forms/3 is very similar to
specifying a program in a spreadsheet—the programmer
creates cells and gives each cell a formula. In Forms/3,
however, unlike spreadsheets, the source code (formulas)
and accompanying values can be shown together. For
example, in Figure 1, the programmer has placed some
cells on the screen and given them formulas to specify a
program to display a thermometer, toggling between
Celsius and Fahrenheit at the press of a button. As soon
as she enters a formula, it is immediately evaluated and the
result displayed, as in a spreadsheet. There is no compile
phase, no need to mouse (i.e., to click on or point at)
individual cells to see their values. The effects of each
addition or change to a program are immediately reflected
on the screen. The immediate feedback about the effects of
her changes is the way Forms/3 provides progressive
evaluation. Important aspects of this approach are that the
feedback is immediate, incremental, and automatic, im-
posing no effort on the programmer.

Figure 2: A programmer has access to mouse and keyboard
events via this event receptor form. Tabs indicate modifiable
cells.

3 . 2 . Exploring and Time Travel

Now suppose that there is a bug. The button
sometimes works, but sometimes doesn’t: some mouse
clicks don’t cause the Scale value to toggle. The
programmer decides to explore this strange behavior.

The formulas for Scale and the F<->C button are
hidden from end users, but the programmer can shift-click
to unhide the formulas. She examines the two formulas,
and sees that the Scale cell depends on a hidden cell, named

-4-

Figure 3: The slider used for time travel in Forms/3.
Programmers can navigate using the stepper arrows, dragging
the time indicator triangle, or by clicking directly at the
desired point along the time slider.

Figure 4: An annotated sequence of screen shots depicting
the sequence of values in time for cells on the eventReceptor
form. The programmer travels through time by manipulating
the time slider.

clicked?, and that both clicked? and the button reference an
eventReceptor, shown in Figure 2. Adding this form to
the screen, the programmer travels backward and forward
through time using the slider shown in Figure 3 to
explore how the behavior of the eventReceptor might be
affecting the Scale cell. She looks at the various cells on
the eventReceptor form along with the clicked? and Scale
values, and eventually notices that the bug occurs
whenever there is an unusual sequence of values for the
whatEvent? and whichButton? cells.

Hmmm... a click is defined in the formula of clicked?
as the whichButton? cell having leftUp and an earlier
leftDown, but the sequence of values she sees is leftDown,
None, leftUp, as shown in Figure 4. This sequence seems
to be where the clicks are being missed. When the
whichButton? value is None, the whatEvent? value is
motionNotify. Looking at the eventsOfInterest cell, the
programmer sees that an irrelevant event type—
motionNotify—is being attended to by this button,
separating leftDown, the first half of a click, from leftUp,
the other half. Here’s the bug! It seems that the
programmer didn’t remove this event type from the default

eventsOfInterest specifications. She edits the formula of
eventsOfInterest to remove motionNotify.

3 . 3 . Altering Behavior Redefines History

Does the change the programmer just made actually fix
the bug? To find out, the programmer explores the now-
redefined history via time travel. It is inherent for the
program’s entire history to be redefined according to this
change because cells’ histories are defined solely by their
formulas. This is another way progressive evaluation is
used—as soon as a change is made, all affected histories
are automatically redefined and all affected on-screen values
are automatically recomputed and redisplayed. This allows
the programmer to explore the program, reviewing how
values changed, to determine whether the values changed
as expected. In the example, the programmer sees that the
clicks are now all recognized, and the bug is fixed.

The viscosity level of this approach is lower than
modal approaches because, with the ability to time travel,
the programmer is spared the usual effort of mode
switching: re-running the program repeatedly, instru-
menting the program with breakpoints or diagnostic
statements, and recompiling. Furthermore, the program-
mer’s context is preserved and the programmer can even
return to a previous context by traveling backward in time.

3 . 4 . Re-creating a Bug

Now suppose that the programmer who experiences the
buggy behavior is not the program’s author and doesn’t
have access to the source code. Thus, if she wants the
problem fixed, she must seek help from the technical
support programmer at the company that created the
program. The first task of the technical support
programmer will be to re-create the buggy behavior.
Unfortunately, often a bug proves elusive; it happens only
sporadically under a poorly understood combination of
events, and cannot be demonstrated at will. When this
situation arises, it adds difficulty to the process of finding
and fixing bugs.

In Forms/3, any situation can easily be re-created.
This is possible because most values are defined
declaratively, and can therefore be recalculated to produce
exactly the same history. For the only non-declarative
values—user events—Forms/3 has a mechanism to save
the relevant mouse and keyboard events to a file. These
events are located in one place, the System form. The
programmer reporting the bug would save the System
form’s values to a disk, and send the data to the technical
support programmer. In turn, he could then re-create the
bug by loading the saved System form into his
environment. Loading the saved System form restores the
current context and the complete history, because the
events are restored and all other values can be recomputed.

-5-

He can then explore the program using the same approach
described in the previous section. Thus, he does not have
to use trial and error in an attempt to re-create sequences
that led to bugs.

3 . 5 . Visualization and Animation

Consider another scenario where the first programmer
decides to investigate the bug, but wants to see the
behavior better by creating a visualization. She decides
that a good representation would be a line graph with a
buttonDown event as a line down, and a buttonUp event
as a line going up, and mouse motion as a jagged line.
She creates a form to produce the visualization shown in
Figure 5. This allows her to see in a graphical way why
the clicks are being missed.

Figure 5: A visualization of mouse events.

Figure 6: An example of programming the appearance of data
to enhance progressive evaluation.

Figure 7: A sort animation shows the elements of the
unsorted group being moved one at a time to the sorted
group.

A critical part of a programmer’s job is understanding
the program under scrutiny. A programmer can be easily
overwhelmed by the low-level complexity of a program
and not see the big picture. Green and Petre [1996] point
out “The mental representation of a program is at a higher
level than pure code... Spohrer and Soloway [1989] report
that... [for novice programmers] ‘many bugs arise as a
result of plan composition problems—difficulties in
putting the pieces of a program together.’”

Forms/3 has several visualization mechanisms to aid
the programmer in comprehending the program. Firstly, a
formula’s current value is displayed when the formula is
entered. Secondly, abstract data types have a default
appearance, which is defined in the formula of a cell called
an image cell. The programmer can alter this formula and
thus specify the appearance of an abstract data type as
desired. For example, an employee record could show the
name in one application, and the pay grade, work site, and
number of years of service in another application, as
shown in Figure 6. By including aspects of the
components of a data type in the image formula during
testing and debugging, the appearance of the cell will help
to visually communicate details of its current value.

Thirdly, Forms/3 supports algorithm animation, the
ability to animate the abstract operations of a program
[Carlson et al. 1996]. For example, the programmer may
wish to highlight the “move” portion of a selection sort
so each element steps across the screen to its new
location. In the initial, unaugmented program, the ele-
ments simply appear in their new positions. To specify
an animation, the programmer uses a built-in form to
define intermediate positions through which the elements
travel. The animation is shown in Figure 7.

Such a mechanism can be important in programming
because algorithm animation can aid in understanding the
program. In Forms/3, animations are done entirely within
the language via animation primitive operators. The
programmer need not learn a separate language or tool.

The language’s evaluation engine guarantees that an
animation remains in synchrony with the program, even
when logical time is moved backward. Animations can be
run backward and steered just like any other Forms/3

-6-

program. Also, the animation is programmed in a non-
invasive manner using references to the program to be
animated. The original program is unaltered, so there is
no danger of inadvertently modifying the original
algorithm.

By making algorithm animation an integral part of the
VPL, mode switching is removed. This is another
example of low viscosity because the programmer can
change the algorithm animation at any time without the
effort of switching to a different tool and rebuilding
context.

4 . What Makes This Approach Work

While our examples are shown in Forms/3, the
approach is applicable to any declarative VPL that
contains 3 key features: temporal assignment, declarative
event handling, and responsiveness. In Forms/3, these
features are implemented by logical time, events as values,
and lazy marking, respectively.

4 . 1 . Logical Time

Forms/3’s concept of time is based on a notion of
logical time. In Forms/3, logical time is viewed as a
dimension, and each value in the environment has a fixed,
permanent position along that dimension’s axis. Thus, a
cell does not have a single value, but rather a sequence of
values positioned along that axis. Even a constant such as
a text string is formally defined as a one-element sequence
first defined at logical time 1, although the programmer
uses such constants in the conventional way.

Each sequence’s value is defined to start at the first
moment in logical time at which all its components’
values are defined, and to expire at the earliest time its
components’ values expire. For example, if X=Y+Z, then
X’s first value starts at the first position in logical time at
which both Y and Z have values defined, and expires as
soon as either Y or Z’s first value expires. Through this
global notion of relationships in time, all values in the
environment are automatically synchronized, and any
moment in time can be constructed, reconstructed, and
redefined in a straightforward manner. Because a value
might not expire for a long time, sequences may be
sparse—there is no repetition of the same value over and
over in a sequence just to reflect the fact that a value has
not expired. For example, if Y’s formula is the constant
“3”, then Y’s first value is defined at time 1 and never
expires (because it has no dependencies).

As this shows, logical time is about the progression of
sequences, not about how fast the clock on the wall is
ticking. Thus, logical time progresses much more slowly
than clock-on-the-wall time (unless clock-on-the-wall time
is one of the values referenced by the program). For
example, a user event advances time forward one step,

even though many values change on the eventReceptor
form (refer back to Figure 2). A button click moves time
forward two logical time steps—no matter how much time
elapses between the button press and the button release,
and no matter how many cells change as a result of the
click—because a click is not a low level event, but is
synthesized (in the formula of the clicked? cell) from a
sequence of two events, leftDown and leftUp.

4 . 2 . Events as Values

If the handling of user events had to be programmed
through event loops and polling devices, as is true in
traditional programming languages, then key features in
our support of steering, such as automatic synchronization
among related values and events as the programmer travels
through time, would be lost. However, in Forms/3, the
same formula-based programming style is used for event
handling as for value-based computations. Events are
reported in cells, and other cells’ formulas can refer to
them. Low-level polling is not needed because the evalua-
tion mechanism makes sure that all the formulas that refer
to events (or any other value) are kept up-to-date when
new data arrives. The programmer simply specifies via
formulas what, if anything, is to be done when events
arrive.

The details are as follows. Event detection is done by
instances of an abstract data type called an eventReceptor,
shown earlier in Figure 2. The programmer places the de-
sired specifications of event detection on a copy of the
eventReceptor form. The specifications include which
events are to be recognized by this eventReceptor and
which area of the screen is active for this eventReceptor.
The environment automatically adds event information
into the value sequences for cells on that form, such as the
whatEvent? cell. For example, the event of pressing the
left mouse button over the F<->C cell causes values to be
defined (at a new logical time) for the cells on the
eventReceptor form referenced by the F<->C cell.

This unified approach to events and values allows the
same mechanism that supports value-related programming
to fully support event-related programming, and thus the
time travel supported for ordinary sequences of values
works equally as well on event sequences. This use of a
single mechanism, when combined with the approach to
logical time described in the previous section, allows
automatic synchronization of user events with the values
they affect, facilitating debugging by allowing the
determination of exactly just what events led to the values
currently displayed by the program.

4 . 3 . Time Travel and Efficiency

A disadvantage to some other systems that allow
review of past program states is inefficiency, both space

-7-

and time. In particular, it would be a significant problem
if our approach were time-inefficient, because our direct-
manipulation approach to time travel demands a
responsive VPL. However, our approach is tunable; it can
be optimized for time or space efficiency, or a balance of
the two.

First consider space efficiency. Most other systems
that support review of a program’s history require
extensive amounts of space to do so because all prior
values must be stored. However, in our declarative VPL,
values need not be stored. All of a cell’s sequence
(history) is completely defined via its formula, making the
storage of the actual values superfluous. The only
information in addition to a cell’s formula that absolutely
must be stored are user events (mouse clicks, etc.) This
formula-based approach means that the history of a
program is much more compact than imperative systems,
as was illustrated in the example on re-creating a bug after-
the-fact.

Now consider time efficiency. Although the system
need not save histories, response time can be improved if
it does store some of them. When a programmer is
traveling through time, she may be forcing the program to
re-display values many times, generating many duplicate
computations. Our approach allows trading off as much
space as desired to reduce the number of duplicated
computations by using the well-known techniques of lazy
evaluation and lazy memoization (memoing is the saving
and reuse of computed values [Michie 1968]).

To further enhance time efficiency, our system adds a
new technique called lazy marking [Atwood and Burnett
1996] to efficiently ensure that all values on the screen are
automatically kept up-to-date as the program progresses
through time. Lazy marking’s improvement to the time
efficiency of the VPL comes from the way it “marks”
values with expiration times. By employing a lazy,
incremental approach to marking, it is able to mark a
value with a conservative view of its expiration time as
soon as the value is computed. When the next value in
the same sequence is computed, the first value’s expiration
time can be revised if it was too conservative. By
avoiding the marking of out-of-date dependent values, this
incremental approach improves response time and often
reduces total time spent.

5 . Current Status

The approach to steering described in this paper is
implemented in our research prototype, which runs on Sun
and Hewlett-Packard color workstations, using Lucid
Common Lisp and the Garnet user interface development
system [Myers et al. 1990].

6 . Conclusion

Forms/3 provides steering via time travel to maximize
progressive evaluation and minimize viscosity in
programming. Progressive evaluation in Forms/3
provides immediate feedback about the impact of each code
fragment, large or small, as soon as each new fragment is
entered. Further, programmers can explore a program’s
behavior over time with unusual flexibility—there are no
breakpoints, no re-compilations with debugging options,
and no switching from “running” to using a specialized
debugger. This kind of progressive evaluation through
time travel can be done on demand, simply by
manipulating the time slider bar.

Forms/3 programmers can make changes to the
program at any time. Doing so automatically adjusts the
past, present, and future, which programmers can explore
to see if the change had the desired effects. This flexible
ability to alter a program at any point results in low
viscosity and context preservation. Low-level
visualizations are automatically provided by the
environment, and programmers can modify them and add
high-level visualizations if desired, without switching to
another mode or tool. The visualizations are
automatically synchronized with the rest of the program,
and can be explored and altered along with the rest of the
program because there is no distinction between steering
visualizations and steering programs. Using these
mechanisms, the Forms/3 VPL dissolves the traditional
demarcations of programming tools to give the pro-
grammer a task-oriented development environment
supporting the HCI principles of progressive evaluation
and viscosity.

Acknowledgments

We thank Jonathan Cadiz, Paul Carlson, Maureen
Chesire, Herkimer Gottfried, Judith Hays, Rick Wodtli,
and Pieter van Zee for their comments, their help with the
implementation, and their testing of our environment.

References

[Atwood and Burnett 1996] Atwood, J. and Burnett, M. Cul-
prit Tracking: Improved Lazy Marking for Better GUI
Performance. Technical Report 96-60-1, Oregon State
University, Department of Computer Science, Dec. 1996.

[Baker 1992] Baker, H., NReversal of Fortune -- The Thermo-
dynamics of Garbage Collection, 1991 Int’l Workshop
on Memory Management, St. Malo, France, Sept. 1992,
507-524.

[Brown 1988] Brown, M. Perspectives on Algorithm Anima-
tion. Proc. CHI’88: Human Factors in Computing Sys-
tems, Washington, DC, May 15-19, 1988, 33-38.

[Brown and Najork 1993] Brown, M. and Najork, M. Algo-
rithm Animation Using 3D Interactive Graphics.

-8-

UIST’93, Proc. ACM Symp. on User Interface Software
and Technology, Atlanta, GA, Nov. 3-5, 1993, 93-100.

[Burnett and Ambler 1994] Burnett, M. and Ambler, A. Inter-
active Visual Data Abstraction in a Declarative Visual
Programming Language. J. of Visual Languages and
Computing, Mar. 1994, 29-60.

[Burnett et al. 1994] Burnett, M., Hossli, R., Pulliam, T.,
VanVoorst, B., and Yang, X. Toward Visual Program-
ming Languages for Steering in Scientific Visualization:
a Taxonomy. IEEE Computational Science and Engineer-
ing 1(4), Winter 1994, 44-62.

[Brayshaw and Eisenstadt 1991] Brayshaw, M. and Eisenstadt,
M.. A Practical Graphical Tracer for Prolog. Int. J. of
Man-Machine Studies, 35(5), 1991, 597-631.

[Carlson et al. 1996] Carlson, P., Burnett, M, and Cadiz, J.J.
A Seamless Integration of Algorithm Animation into a
Visual Programming Language. Advanced Visual Inter-
faces (AVI ‘96), Gubbio, Italy, May 1996, (to appear).

[Cox et al. 1995] Cox, P. T., Giles, F. R., and Pietrzykowski,
T. Prograph, in Visual Object-Oriented Programming:
Concepts and Environments, (M. Burnett, A. Goldberg,
T. Lewis, eds.), Prentice-Hall/Manning Pubs., 1995.

[Cypher and Smith 1995] Cypher, A. and Smith, D. KidSim:
End User Programming of Simulations, Proc. CHI’95:
Human Factors in Computing Systems, Denver, CO, May
7-11, 1995, 27-34.

[Duisberg 1986] Duisberg, R. A., Animated Graphical Inter-
faces using Temporal Constraints, Proc. CHI’86: Human
Factors in Computing Systems, Boston, MA, April 13-
17, 1986, 131-136.

[Freeman et al. 1995] Freeman, E., Gelernter, D., and Jagan-
nathan, S., In Search of a Simple Visual Vocabulary,
1995 IEEE Symposium on Visual Languages, Darmstadt,
Germany, Sept. 5-9, 1995, 302-309.

[Green 1991] Green, T. Describing information artifacts with
cognitive dimensions and structure maps, in People and
Computers VI, (D. Diaper and N. Hammond, eds.), Cam-
bridge University Press, 1991.

[Green and Petre 1996] Green, T. and Petre, M. Usability
Analysis of Visual Programming Environments: a
‘Cognitive Dimensions’ Framework, Journal of Visual
Languages and Computing, June 1996, (to appear).

[Gugerty and Olson 1986] Gugerty, L. and Olson, G. M.,
Comprehension Differences in Debugging by Skilled and
Novice Programmers. In Empirical Studies of Program-
mers, (E. Soloway and S. Iyengar, eds.), Ablex, Nor-
wood, NJ, 1986.

[Haber et al. 1992] Haber, R., Bliss, B., Jablonowski, D., and
Jog, C. A Distributed Environment for Run-Time Visual-
ization and Application Steering in Computational Me-
chanics. 1992 Symp. on High-Performance Computing
for Flight Vehicles, Washington, DC, Dec. 7-9, 1992.

[Lau-Kee et al. 1991] Lau-Kee, D., Billyard, A., Faichney, R.,
Kozato, Y., Otto, P., Smith, M., and Wilkinson, I. VPL:
An Active, Declarative Visual Programming System.
1991 IEEE Workshop on Visual Languages, Kobe, Japan,
Aug. 1991, 40-46.

[Lieberman and Fry 1995] Lieberman, H. and Fry, C. Bridging
the Gulf Between Code and Behavior in Programming.
Proc. CHI’95: Human Factors in Computing Systems,
Denver, CO, May 7-11, 1995, 480-486.

[McCormick et al. 1987] McCormick, B. H., DeFanti, T. A.,
and Brown, M. D. eds., Visualization in Scientific Com-
puting, Computer Graphics 21(6), Nov. 1987.

[Michie 1968] Michie, D., ‘Memo’ Functions and Machine
Learning, Nature 218, 19-22.

[Miyashita et al. 1992] Miyashita, K., Matsuoka, S., Taka-
hashi, S., and Yonezawa, A. Declarative Programming of
Graphical Interfaces by Visual Examples, Proc. of the
ACM Symp. on User Interface Software and Technology,
Monterey, CA, Nov. 15-18, 1992, 107-116.

[Moher 1988] Moher, T., PROVIDE: A Process Visualization
and Debugging Environment, IEEE Transactions on
Software Engineering. 14(6), June 1988.

[Myers et al. 1990] Myers, B. et al. Garnet: Comprehensive
Support for Graphical, Highly Interactive User Inter-
faces, Computer, Nov. 1990, 71-85.

[Mukherjea and Stasko 1993] Mukherjea, S. and Stasko, J.
Applying Algorithm Animation Techniques for Program
Tracing, Debugging, and Understanding. Proc. 15th Int.
Conf. on Software Eng., May 17-21, 1993, 456-465.

[Pandey and Burnett 1993] Pandey, R. and Burnett, M. Is It
Easier to Write Matrix Manipulation Programs Visually
or Textually? An Empirical Study. 1993 IEEE Symp. on
Visual Languages, Bergen, Norway, Aug. 24-27, 1993,
344-351.

[Spohrer and Soloway 1989] Spohrer, J. C. and Soloway, E.,
Novice Mistakes: Are the Folk Wisdoms Correct? In
Studying the Novice Programmer, (E. Soloway and J. C.
Spohrer, eds.), Erlbaum, Hillsdale, NJ, 1989.

[Takahashi et al. 1994] Takahashi, S., Miyashita, K., Mat-
suoka, S., and Yonezawa, A. A Framework for Construct-
ing Animations via Declarative Mapping Rules. 1994
IEEE Symposium on Visual Languages, St. Louis, MO,
Oct. 4-7, 1994, 352-357.

[Tolmach and Appel 1991] Tolmach, A., and Appel, A., De-
buggable Concurrency Extensions for Standard ML, 1991
ACM/ONR Workshop on Parallel and Distributed Debug-
ging, Santa Cruz, CA, May 20-21, 1991, 120-131.

[Tuchman et al. 1991] Tuchman, A., Jablonowski, D., and
Cybenko, G. Run-time Visualization of Program Data,
Proc. of Visualization ‘91, San Diego, CA, Oct. 22-25,
1991, 255-261.

[Upson et al. 1989] Upson, C., Faulhaver, T., Kamins, D.,
Laidlaw, D., Schlegel, D., Vroom, J., Gurwitz, R., and
Van Dam, A. The Application Visualization System: A
Computational Environment for Scientific Visualization.
IEEE Computer Graphics and Applications, 9(7), July
1989, 30-42.

[Walther and Peskin 1991] Walther, S. and Peskin, R. Object-
oriented Visualization of Scientific Data. Journal of Vi-
sual Languages and Computing, March 1991, 43-56.

