
Scaling Up a “What You See Is What You Test” Methodology
to Spreadsheet Grids

Margaret Burnett, Andrei Sheretov, and Gregg Rothermel
Department of Computer Science

Oregon State University, Corvallis, Oregon 97331
{burnett, andrei, grother}@cs.orst.edu

Abstract

Although there has been considerable research into
ways to design visual programming environments to
improve the processes of creating new programs and of
understanding existing ones, little attention has been
given to helping users of these environments test their
programs. This feature would be particularly important for
systems aimed at end users, since testing is the primary
device they use to determine whether their programs are
correct. To help address this need, we introduce two visual
approaches to testing large grids in spreadsheet systems.
This work scales up a visual testing methodology we
previously developed for individual cells. The approaches
are tightly integrated into Forms/3, a visual spreadsheet
language, and communication with the user happens
solely through the use of checkbox devices and coloring
mechanisms. The intent of this work is to bring to end
users at least some of the benefits of formalized notions of
testing, without requiring knowledge of testing beyond a
naive level.

1. Introduction

Testing is an important activity, used widely by
professional and end-user programmers alike in locating
errors in their programs. In recognition of its importance
and widespread use, there has been extensive research into
effective testing in traditional programming languages in
the imperative paradigm. However, there are few reports in
the literature on testing in other paradigms, and no reports
that we have been able to locate on testing in visual
programming languages (VPLs). This lack is especially
critical for VPLs aimed at end users, because it is not
reasonable to expect end users to have the background
needed to master formalized notions of testing that have
been devised for professional programmers.

Perhaps the most widely used of all end-user
programming languages are spreadsheet systems. The
spreadsheet paradigm includes not only commercial
spreadsheet systems, but also a number of research lan-

guages that extend the paradigm with explicitly visual
features, such as support for gestural formula specification
[1, 7], graphical types [1, 17], visual matrix manipulation
[14], high-quality visualizations of complex data [2], and
specifying GUIs [8]. In this paper, we use the term
spreadsheet languages to describe all such systems
following the spreadsheet paradigm.

Unfortunately, despite the perceived simplicity of
spreadsheet languages, and even though spreadsheet
creators devote considerable effort to finding and correcting
their errors [9], errors often remain. In fact, a recent survey
of spreadsheet studies [10] reports spreadsheet error rates
ranging from 38% to 77% in controlled experiments, and
from 10.7% to 90% in “production” spreadsheets—those
actually in use for day-to-day decision making. A possible
factor in this problem is the unwarranted confidence
creators of spreadsheets seem to have in the reliability of
their spreadsheets [16].

To help solve this problem, in previous work [11], we
presented a testing methodology for spreadsheets. The
methodology provides feedback as to “testedness” of cells
in simple spreadsheets in a manner that is incremental,
responsive, and entirely visual. However, scalability
issues were not addressed in that previous work. In this
paper, we present two ways to scale up the approach to
support large grids of cells with shared or copied formulas.

2. Background: Testing individual cells

The underlying assumption in our work has been that,
as the user develops a spreadsheet incrementally, he or she
is also testing incrementally. We have integrated a
prototype implementation of our approach to incremental,
visual testing into the spreadsheet VPL Forms/3 [1], and
the examples in this paper are presented in that language.
In our prototype, every cell in the spreadsheet is
considered to be untested when it is first created, except
“input cells” (cells whose formulas may contain constants
and operators, but no cell references and no if-
expressions), which are considered trivially tested. For the
non-input cells, testedness is reflected via border colors on

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 27, 2009 at 19:58 from IEEE Xplore. Restrictions apply.

Figure 1: Forms/3 grades spreadsheet. The user has
validated four of the cells. Then, to test further, the user
entered a new input for Farnes’s HwAvg, and this changed her
Average and Course cells’ √s to ?s. The Course formulas (not
shown) have an if-expression; since only one branch of it
has been tested, the borders for the two validated Course cells
are between red and blue (gray and black, in this paper).

a continuum from untested (red) to tested (blue).
The process is as follows. During the user’s spread-

sheet development, whenever the user notices a correct
value, he or she lets the system know of this test
(decision) by validating the correct cell (clicking in the
checkbox in its right corner), which causes a checkmark to
appear, as in Figure 1. This communication allows the
system to track successful tests, to propagate the implica-
tions of the successful test to cells that contributed to it,
and to reflect this increase in “testedness” by coloring
borders of the checked cell and its contributing cells more
“tested” (more blue). On the other hand, whenever the user
notices an incorrect value, rather than checking it off, he
or she eventually finds the faulty formula and fixes it.
This formula edit means that affected cells will now have
to be re-tested; the system is aware of which ones those
are, and re-colors their borders more “untested” (red).

But, what is “testedness” and what does it mean to be
fully tested? Most spreadsheets can have an infinite num-
ber of inputs; hence, not all possible inputs can be tested.
Test adequacy criteria are criteria used to decide whether a
program has been tested “enough.” In our previous work,
we developed an abstract model for simple spreadsheets1

and used it to define several test adequacy criteria [11]. The
strongest criterion we defined, du-adequacy, is the criterion
we use in this paper to define when a spreadsheet has been
tested “enough”. We describe the model and du-adequacy as
they relate to spreadsheet grids in Section 5. The border
colors described above are a mapping from n, a percent
tested according to the du-adequacy criterion, to the color
at n+Kn% past the start of a red-blue continuum, where
each Kn adjusts to ensure that 100% tested is considerably

1By “simple spreadsheets” we mean those with a collection of cells with

conventional expression-based formulas. The model does not address “power”

features such as macros, cyclical dependencies, or recursion.

more blue than 99% tested, and that 0% tested is
considerably more red than 1% tested.

Thus, if the user manages to turn all the red borders
blue, the test adequacy criterion has been satisfied. In our
empirical work on simple spreadsheet cells, several
measurements of users’ testing effectiveness and efficiency
were significantly higher for subjects using Forms/3
supplemented by this scheme than for those using
Forms/3 without the testing supplement [12].

3. Problems raised by large grids

The methodology for testing spreadsheets described
above worked at the granularity of individual cells.
However, most large grids in spreadsheets are fairly
homogeneous, i.e., consist of many cells whose formulas
are identical except for some of the row/column indices.
For example, suppose the spreadsheet in Figure 1 were
expanded to calculate student grades for a class containing
300 students. There were two problems with the previous
testing system for this kind of grid:

Problem 1: For the user, the problem was that each of the
300 course grade cells would have to be explicitly
validated for the spreadsheet to appear completely
tested (blue). The user is unlikely to go to this much
trouble for essentially-identical cells, which would
mean the user would be burdened with keeping track
of which cells “really” need testing and which ones do
not because of their similarities to other cells.

Problem 2: For the system, the problem was that the per-
formance of the testing subsystem depended on the
number of cells. Hence, responsiveness was impaired
by the presence of large grids.

For both the user and the system, these burdens seem
inappropriate, given that the Grades spreadsheet’s logic
with 300 students is exactly the same as in the same
Grades spreadsheet with only 5 students. In order to solve
these problems, the previous methodology needed to be
extended to explicitly support homogeneous grids.

4. Attributes of grids

4.1 Homogeneity

A grid is a two-dimensional matrix of cells. Most
commercial spreadsheet systems are entirely grid-based.
The grids of particular interest to us are largely homoge-
neous—i.e., many of their cells have identical formulas
except perhaps for row/column indices. Thus, in this pa-
per, the term grid implies some homogeneity, and a
region means a subgrid in which every cell has the same
formula, except perhaps for row/column indices.

A spreadsheet language needs knowledge of the

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 27, 2009 at 19:58 from IEEE Xplore. Restrictions apply.

homogeneity of a grid region’s formulas as a necessary
first step in taking advantage of the approach presented in
this paper, but this knowledge is easily obtained. It is
already present in those spreadsheet languages in which
the user is allowed to explicitly share a single formula
among several cells (e.g. Lotus™, Forms/3 [1],
Formulate [14], Prograph spreadsheets [13], and Chi et
al.’s visualization spreadsheet language [2]). If not already
present, it can easily be gathered “behind the scenes” by a
spreadsheet system, such as by maintaining knowledge of
the relationships among copied formulas as in [3].

4.2 Static versus dynamic

There are two attributes of grids and regions that are
static in some spreadsheet languages and dynamic in
others, and these attributes significantly impact the man-
ner in which “testedness” of grid cells can be tracked. The
first is whether a grid’s size (number of rows and
columns) is specified statically or dynamically. Static
specification of grid size is the norm for commercial
spreadsheet systems, but some research systems use dy-
namic size specifications (e.g., Forms/3 and Formulate).

The second of these two attributes is whether
determination is static or dynamic as to exactly which
cells are being referenced in a formula. The most common
approach in commercial spreadsheet systems is static,
restricting cell row/column references to be based only on
static position, optionally offset by a constant.

Traditional imperative languages—for which most
research in testing has occurred—typically support stati-
cally-sized, dynamically-referenced grids via arrays.
Approaches for reasoning about the testedness of array
elements have been suggested [4, 5, 6]; in general,
however, the problem of precisely treating array references
at the element level is unsolvable for the dynamic refer-
encing that is the norm in imperative programs. Thus, the
prevalence of static referencing in the spreadsheet paradigm
affords unusual opportunities for reasoning about
testedness.

In summary, for viable application to commercial
spreadsheet systems, a testing methodology must at least
support statically-sized, statically-referenced grids. The
two approaches presented in this paper do support this
type of grid, and also support the dynamically-sized,
statically-referenced grid type.

4.3 Grids in Forms/3

Our work was prototyped using a grid called a matrix
in Forms/3. To define values for a Forms/3 grid’s
(matrix’s) cells, the user statically partitions the grid into
rectangular regions and, for each region, enters a single
formula for all cells in it. To statically derive a cell’s

formula from its shared region formula, any “pseudo-con-
stants” i and j in the formula are replaced by the cell’s
actual row and column number. Each grid has two addi-
tional cells, its row dimension cell and column dimension
cell, to specify its number of rows and columns. These
cells can have arbitrarily complex formulas. Figure 2a
shows a spreadsheet similar to that in Figure 1 rewritten
with the use of grids. The row and column dimension for-
mulas (not shown) are simply constants in this example.

5. Testing grids

5.1 The cell relation graph model

We have defined an abstract model called a cell relation
graph (CRG) to reason about testedness, and the
approaches described here for testing grids are based upon
this model. A CRG is a pair (V, E), where V is a set of
formula graphs, and E is a set of directed edges called cell
dependence edges connecting pairs of elements in V. Each
element of V represents the formula for a cell, and each
edge in E depicts dataflow between a pair of cells. A
formula graph models flow of control within a cell’s
formula, and is comparable to a control flow graph
representing a procedure in an imperative program. There
is one formula graph for each cell in the spreadsheet.

For example, Figure 2b shows a portion of the CRG
for Figure 2a; each formula graph is delimited by a dotted
rectangle. In the formula graphs, nodes labeled E and X are
entry and exit nodes respectively, and represent initiation
and termination of the evaluation of formulas. Rectangular
nodes are predicate nodes. Other nodes are computation
nodes. Edges within formula graphs represent flow of
control between expressions, and edge labels indicate the
value to which conditional expressions must evaluate for
particular paths to be taken.

Using the CRG model, we define du-adequacy, the
criterion we use in this paper to define when a spreadsheet
has been tested “enough”. Under this criterion, a cell X
will be said to have been tested enough when all of its
definition-use associations (abbreviated du-associations)
have been covered (executed) by at least one test. In this
model, a test is a user decision as to whether a particular
cell contains the correct value, given the input cells’
values upon which it depends. Thus, given a formula
graph for a cell X that references Y, du-adequacy is
achieved with respect to the interactions between X and Y
when each of X’s uses (references to Y)1 of each definition
in Y (node directly connected to the exit node in Y’s
formula graph) has been covered by a test.

1 A reference in a computation node is one use. A reference in a predicate node

is two uses: one for the predicate’s then-edge and one for its else-edge. (This

explanation of “use” is informal; formal definitions are given in [12].)

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 27, 2009 at 19:58 from IEEE Xplore. Restrictions apply.

(a) (b)
Figure 2: (a) A version of the Grades spreadsheet using Forms/3 grids. The user can enter a formula via a formula tab (). The
input cells will each have their own formulas (one cell per region), but note that the rightmost column (region) has a single
shared formula, as does the Average grid. The user is in the process of selecting 4 Course cells by stretching the dotted rectangle.
(b) A portion of the CRG for this spreadsheet.

For example, the du-associations involving Abbott’s
Final cell (Grades[1,3]) and his Course cell (Grades[1,4])
are (2,5)T, (2,5)F, (2,6), and (2,7), using the node num-
bers in Figure 2. Hence, under the du-adequacy criterion,
Grades[1,4] is tested enough when there has been a
successful test in which Grades[1,3] was greater than
Grades[1,2]—covering du-associations (2,5)T and (2,6),
—and another test in which Grades[1,3] was not greater
than Grades[1,2]—covering du-associations (2,5)F and
(2,7). (We are simplifying this discussion by ignoring the
uses of Abbott’s Midterm and HwAvg, since their formula
graphs are not included in Figure 2).

It is not always possible to test all du-associations.
For example, one of Y’s definitions might depend on
some cell Z being less than 0, with X’s use of Y
occurring only if Z is greater than 0, and this particular X-
Y du-association can never execute. Such du-associations
are said to be infeasible. Dealing with the untestability of
infeasible du-associations is a difficult research problem
[5, 15], and we do not offer a solution. However, we will
at least guard against exacerbating the problem in the
approaches presented in this paper.

5.2 A straightforward approach

One approach to explicitly supporting grid testing is to
let the user validate all or part of an entire region in one
operation, but to have the system maintain testedness
information about each cell individually. We term this
approach the “Straightforward” approach. Because all
information is kept individually for each cell, the user has
the flexibility to validate any arbitrary group of cells, or

even any cell individually. For example, the user has
chosen to rubberband most of the Course column of
Figure 2 and validate that group in one click, since all of
those cells use the “else” part of the formula, but to attend
individually to the bottom cell, which uses the “then”
part. This approach does not address Problem 2, but it
provides a highly flexible solution to Problem 1.

We implemented the Straightforward approach as
follows. Like other spreadsheet languages, our system can
retrieve or update any cell efficiently, accomplished via a
hash table in our system. For each cell C (whether or not
C is a grid cell), the system collects and stores the
following information. We have also indicated when the
information is collected, statically or dynamically.

C.DirectProducers, the cells that C references (static);
C.Defs, the (local) definitions in C’s formula (static);
C.Uses, the (local) uses in C’s formula (static);
C.DUA, a set of pairs (du-association, covered) for each

du-association (static, dynamic);
C.ValTab, C’s validation status (dynamic);
C.Trace, trace of C’s formula graph nodes executed in

the most recent evaluation of C (dynamic).

It is reasonable to rely upon the formula parser and the
evaluation engine to provide the first three of these items,
because they are already needed to efficiently update the
screen and the saved values after each formula edit.

To support the testing of grids, the system needs to
perform four tasks: (1) whenever the user edits a formula
for C’s region, static du-associations are collected in
C.DUA (Figure 3); (2) whenever C is executed, the most
recent execution trace of nodes is stored in C.Trace (via a

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 27, 2009 at 19:58 from IEEE Xplore. Restrictions apply.

algorithm CollectAssocSF(C)
for each cell D ∈ C.DirectProducers do

if D is a grid cell reference then
D = StaticallyResolve(C, D)

AddAssoc(C, D)
algorithm AddAssoc(C, D)

for each use (of D) ∈ C.Uses do
for each definition (of D) ∈ D.Defs do

C.DUA = C.DUA ∪ {((definition, use), false)}
Figure 3: Collecting du-associations in the Straightforward
approach for some cell C. The difference between this
algorithm and an optimized version of the original algorithm
for simple cells [11] is highlighted.

algorithm ValidateSelectedCells(setOfSelectedCells)
for each C ∈ setOfSelectedCells do

ValidateCoverage(C)
Figure 4: The algorithm for validating an entire region (or
other group) of n cells simply calls the single-cell version of
ValidateCoverage n times, where n is the number of cells in
the region (group). ValidateCoverage marks the cell’s
relevant du-associations covered, as well as those of its
producers, and shows the increased testedness via colors.

probe in the evaluation engine); (3) whenever the user
validates C by clicking on it, C.Trace is used to mark
some of the pairs in C.DUA covered (Figure 4); and (4)
whenever the user edits some formula for a producer of C,
C.DUA’s pairs need to be marked “not covered” (via an
algorithm similar to CollectAssocSF). For example, the
result of gathering du-associations for cell Grades[1,4] in
Figure 2 would be as given in Section 5.1; the result of
tracing its execution would be {5,7}; the result of
validating it would be that du-associations (2,5)F and
(2,7), as well as some involving Grades [1,1] and Grades
[1,2], would be marked “covered”; and the result of editing
it would be that any “covered” marks in its consumer,
Average[1,4], would be removed.

Referred to in Figure 3, StaticallyResolve is an O(1)
routine that returns the actual cell to which a reference
with relative indices resolves. For example, if M[1,3]
refers to P[i,j-1], StaticallyResolve(M[1,3],P[i,j-1])
returns P[1,2]. Hence, only du-associations involving the
actual grid cells to which C refers are gathered by the
system. This desirable property is due to the static
referencing common in spreadsheet languages. Given
static referencing, StaticallyResolve works even in the
case of dynamically-sized grids, because in that com-
bination each region size except one must be static.

The worst-case time costs of the Straightforward
approach for tasks 1, 3, and 4 approach, not surprisingly,
at least n * the cost of testing an individual cell, where n
is the number of cells in the region. This dependency on
region size can be a significant detriment to

responsiveness for large grids. However, the approach does
provide the expressive power to allow the user to easily
and flexibly validate all or part of an entire region in a
single operation.

6. Region Representative approach

The “Region Representative” approach aims directly at
Problem 2 (system efficiency) by working at least par-
tially at the granularity of entire regions rather than at the
granularity of individual cells in those regions. This is
accomplished by sharing most of the testedness data struc-
ture described in Section 5 among all cells in a region.
This improves system efficiency over the Straightforward
approach and provides some conveniences to the user that
are greater than in the Straightforward approach, but it
does not provide quite as much flexibility.

6.1 What the user does

The visual devices are the same as in the Straight-
forward approach (Figure 2), but the implications of the
user’s actions are different: the user’s validation of one
grid cell X now propagates—to every cell in its region—
the du-associations covered by executing X. For example,
if no cells in Figure 2 were validated yet and then the user
validated the top Course cell, which executes the predicate
and the else-expressions in the formula, all of the Course
column’s cells would be shown in purple (partially
tested). If the user subsequently validated the bottom
Course cell, which executes the then-expression, the entire
column’s borders would become blue (fully tested).

The Region Representative approach offers several
problem-solving advantages and one disadvantage from the
user’s perspective. The advantages stem from the fact that
the user does less test generation manually: a large grid
already provides a variety of input data. The first
advantage, obviously, is that the user may not need to
conjure up new test inputs. For example, in the Grades
spreadsheet, the user tested the top Course cell in part by
selecting another cell for validation—the bottom Course
cell—because it had a useful set of test inputs already
contributing to it. In contrast to this, in the
Straightforward approach the user could only achieve
coverage on the top Course cell by forcing execution of
both branches in that particular cell. This leads to a
mechanical advantage as well: the Region Representative
approach requires fewer physical actions, i.e. edits and
validation clicks, to achieve full coverage. The third
advantage is that, when the user does not provide a new
test input, he or she does not need to modify the “real”
input data and then remember to restore it. Fourth, the
user’s job as “oracle” (decider of the correctness of values)
may be a little easier with the Region Representative

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 27, 2009 at 19:58 from IEEE Xplore. Restrictions apply.

Figure 5: (Top): Each grid’s single formula produces the
circles and circle-box values shown. The user has not
validated any of the values yet.
(Bottom): In the Region Representative approach, a region’s
shared formula is modeled by the formula graph of one
representative of that region. (Recall that j is a pseudo
constant meaning “my column,” not a cell reference.)

algorithm CollectAssocRR(Rij)
for each D ∈ Rij.DirectProducers

if D is an ordinary cell then AddAssoc (Rij, D)
if D is a region cell then

for each use (of D) ∈ Rij.Uses do
regReps = StaticallyResolveRegion(Rij, D)
for each defRij ∈ regReps do

for each definition ∈ defRij.Defs do
Rij.DUA ∪ {((definition,use),false)}

Figure 6: Collecting a region’s du-associations in the Re-
gion Representative approach. The external difference from
CollectAssocSF is that this routine is called once per region
rather than once per cell. The internal difference (high-
lighted) is that if region representative Rij refers to grid M’s
cell D, then the representative of every region in M to which
D could possibly belong must be included as a use of Rij.

approach, because with so many inputs from which to
choose, it may be possible to notice one that produces
obvious answers, such as a row with identical inputs in
the first 3 columns in the Grades example.

The disadvantage is loss of flexibility: the user has no
way to prevent the propagation of testedness to all the
cells in the region. Hence, some functionality is lost. For
example, the user cannot exclude a cell from group tests
in favor of individualized testing, such as a cell that refers
to an out-of-range value.

6.2 Implications for the CRG model

The Region Representative approach requires changes
to the CRG model. Instead of a formula graph for each
cell in a region R, R’s cells are modeled by a single
formula graph of a region representative cell Rij in that
region, as in Figure 5. Further, we introduce a special
region that includes all input cells. This special region
collapses all input values into one shared definition
without losing the “use” circumstances. Hence uses in the

CRG can now contain both “ordinary” cell references (for
cells not in a region) and/or references to region represen-
tatives to represent references to all cells inside the region.

6.3 Algorithms

We implemented the Region Representative approach
as follows. Five data structure components corresponding
to those presented in the Straightforward approach are now
stored for each region representative instead of for each
cell: Rij.DirectProducers, Rij.Defs, Rij.Uses, Rij.DUA,
and Rij.ValTab. Only one component is still stored for
each cell: C.Trace.

Given this data structure, the algorithm for collecting
Rij.DUA is shown in Figure 6. Recall that the
Straightforward approach collected 4 du-associations
involving Abbott’s Course and Final cells; hence for the
5-student region, 20 would be collected, and for a 300-
student region, 1200 would be collected. In contrast to
this, CollectAssocRR produces only 4 du-associations to
represent interactions between Course and Final cells for
all students, whether region size is 5 or 300.

CollectAssocRR uses StaticallyResolveRegion, which
is essentially StaticallyResolve changed to the granularity
of regions. Given a region R and its representative Rij
whose formula includes the reference P[i,j],
StaticallyResolveRegion returns a list of representatives
for regions to which P[i,j] could belong, at a cost of O(r)
where r is the number of regions in P. Similarly to
StaticallyResolve, Rij provides the context. For example,
if Rij, a representative of a region covering row 1 from
columns 2 to 4, refers to P[i,j-1], where P is a grid with
regions at the same positions, then StaticallyResolve-
Region(Rij,P[i,j-1]) returns two representatives: one for
the region of P containing only row 1 column 1, and one
for the region of P containing row 1 columns 2 to 4.

The algorithm for region validation is shown in Figure

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 27, 2009 at 19:58 from IEEE Xplore. Restrictions apply.

algorithm ValidateRegionRR(R)
for each cell ∈ R do

ValidateRepRR(R, cell)
algorithm ValidateRepRR(R,cell)

let Rij = R’s region representative
for each use ∈ cell.Trace do

if use is an ordinary cell reference then
MarkCovered (Rij, use)
ValidateCoverage(use)

if use is a reference to a region cell then
use = StaticallyResolve(cell, use)
MarkCovered (Rij, use)
let useR = use’s region
ValidateRepRR(useR, use)

algorithm MarkCovered (C, use)
definition = the current definition of use in use.Trace
C.DUA = C.DUA ∪ {((definition,use),true)}

– {((definition,use),false)}
Figure 7: Unlike the Straightforward approach,
ValidateRegionRR calls ValidateRepRR, a specialized
validator for region representatives. ValidateRepRR is
similar to ValidateCoverage for simple cells; the essential
differences (highlighted) are its use of StaticallyResolve and
its recursive call to ValidateRepRR.

7. (The mechanism to prevent duplicated recursive calls
has been omitted for brevity).

6.4 Cost savings

As the example involving student grades demonstrates,
the Region Representative approach can produce sub-
stantial time cost savings. More generally, the number of
cells visited provides one measure of time costs. Table 1
gives a comparison of the two approaches on this basis.

6.5 The road not taken

Table 1 shows significant efficiency benefits from this
sharing of testedness information across a large region.
But recall, the execution traces are still kept individually
for each cell. A natural question then is, why not achieve
even more savings by sharing the execution traces too?

Suppose the execution trace were shared. That is,
suppose C.DUA is replaced by Rij.DUA, which contains
the trace of the most recent execution of the region. The
two extremes of the possibilities of what Rij.DUA
contains are: Rij.DUA would contain either the nodes
covered by the most recently-executed cell executed in the
region, or the union of nodes covered by the most recent
execution of all cells in the region. Unfortunately, either
possibility makes support of du-adequacy as the test
adequacy criterion impossible.

The problem with the first possibility comes from the

System
Task

Cells Visited:
Straightforward
Approach (SF)

Cells Visited: Region
Rep. Approach (RR)

1: Collect
du’s for
region R.

SF1 =
|{R’s Direct
Producers}| + n

RR1 = SF1
- n + 1

2: Track
execution
traces.

SF2 =
Number of cells
executing.

RR2 = SF2

3: Vali-
date all of
region R.

SF3 =
|{R’s Producers}| +
n

RR3 = SF3
- |{R’s Producers}| +
|{R’s Producers’
reps}|

4: Adjust
testedness
for R.

SF4 =
|{R’s Consumers}|
+ n

RR4 = SF4
- |{R’s Consumers}|
+ |{R’s Consumers’
reps}|

Table 1: Number of cells visited in reasoning about region
R containing n cells. The RR column shows the efficiency
advantages of the Region Representative approach; the
visits RR adds to and subtracts from SF’s visits are
highlighted. (For simplicity of this table, we defined an
“ordinary” non-region cell to be a representative of itself.)

fact that the user has no control over which cell is
scheduled last for execution. In the execution tracking
task, Rij.Trace would accumulate the formula graph nodes
that were covered by the most recent evaluation of any cell
in region R; yet, in the validation task, the Rij.Trace
information would treat this information as representative
of the most recent evaluation of every cell in region R.
For example, if the last cell to execute in Figure 5 were
P[1,1], then validating any cell in P would not record
coverage of du-association (7,12), even though it executed,
because the stored trace would be the one reflecting
P[1,1]’s execution of (6,11). Hence, depending upon the
evaluation’s scheduling strategies, some du-associations
that are feasible may never be included in a validation.

The second possibility has more than one problem, but
the worst is that even infeasible du-associations could be
validated. Here, the trace stored for P’s single region
would be {10,11,12} and for M’s would be {5,6,7},
implying that (6,11), (7,11), (6,12), and (7,12) have been
covered. Yet two of these—(7,11) and (6,12)—are infea-
sible, because j cannot be both less and greater than 3.

Hence, it is not possible in either case to share
execution traces at the granularity of regions while still
maintaining du-adequacy as the test criterion.

7. Current status and future work

We have included research prototypes of both the
Straightforward and Region Representative approaches in

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 27, 2009 at 19:58 from IEEE Xplore. Restrictions apply.

the Forms/3 implementation. Because of its scalability,
we have selected the Region Representative approach as
the basis upon which to build future improvements.
However, we are considering adding a partial
Straightforward feature to it, in which the default approach
for testing regions would be Region Representative, but if
the user somehow indicated an interest in individually
testing some cell in a region, an individualized testedness
data structure would be created for that cell. This would
allow the user to control the granularity at which
testedness reasoning is done. We are beginning
investigation of several other aspects of this research as
well, including test input generation, further easing of the
user’s oracle task, integration of explicit assistance for
debugging, and further empirical work.

8. Conclusion

In this paper, we have presented two entirely visual
approaches to testing spreadsheet grids. The approaches
presented incorporate the homogeneity of spreadsheet grids
into the system’s reasoning and the user’s interactions
about testedness, leading to two advantages important to
scalability:

First, both the Straightforward and the Region
Representative approaches allow a user validation action
on one cell to be leveraged across an entire region. This
reduces user actions, and also requires less manual test
generation in the case of the Region Representative
approach. Second, the Region Representative approach
reduces the system time required to maintain testedness
data, so that it removes the dependency of system time on
grid region size. This is key in maintaining the high
responsiveness that is expected in spreadsheet languages.

Both approaches to testing are designed for tight
integration into the environment, with the only visible
additions being checkboxes and coloring devices. There are
no testing vocabulary words such as “du-association”
displayed, no CRG graphs displayed, no dialog boxes
about testing options, and no separate windows of testing
results. This design reflects the goal of our research into
testing methodologies for this kind of language, which is
to bring at least some of the benefits that can come from
the application of formal testing methodologies to
spreadsheet users.

Acknowledgments

We thank the members of the Visual Programming
Research Group at Oregon State University for their help
with the implementation and their feedback on the testing
methodology. This work was supported in part by NSF
under CCR-9806821, CAREER Award CCR-9703108,
and Young Investigator Award CCR-9457473.

References

[1] M. Burnett and H. Gottfried, “Graphical Definitions:
Expanding Spreadsheet Languages through Direct
Manipulation and Gestures,” ACM Trans. Computer-
Human Interaction 5(1), 1-33, March 1998.

[2] E. Chi, J. Riedl, P. Barry, and J. Konstan, “Principles for
Information Visualization Spreadsheets,” IEEE Computer
Graphics and Applications, July/Aug. 1998.

[3] R. Djang and M. Burnett, “Similarity Inheritance: A New
Model of Inheritance for Spreadsheet VPLs,” 1998 IEEE
Symp. Visual Languages, Halifax, Canada, 134-141,
Sept. 1-4, 1998.

[4] P. Frankl and E. Weyuker, “An Applicable Family of
Data Flow Criteria,” IEEE Trans. Software Engineering
14(10), 1483-1498, Oct. 1988.

[5] D. Hamlet, B. Gifford, and B. Nikolik, “Exploring
Dataflow Testing of Arrays,” Int. Conf. Software
Engineering, 118-129, May 1993.

[6] J. Horgan and S. London, “Data Flow Coverage and the C
Language,” Proc. Fourth Symp. Testing, Analysis, and
Verification, 87-97, Oct. 1991.

[7] J. Leopold and A. Ambler, “Keyboardless Visual
Programming Using Voice, Handwriting, and Gesture,”
1997 IEEE Symp. Visual Languages, Capri, Italy, 28-35,
Sept. 23-26, 1997.

[8] B. Myers, “Graphical Techniques in a Spreadsheet for
Specifying User Interfaces,” ACM Conf. Human Factors
in Computing Systems, New Orleans, LA, 243-249,
April 28 - May 2, 1991.

[9] B. Nardi and J. Miller, “Twinkling Lights and Nested
Loops: Distributed Problem Solving and Spreadsheet
Development,” Int. Journal of Man-Machine Studies 34,
161-194, 1991.

[10] R. Panko and R. Halverson, “Spreadsheets on Trial: A
Survey of Research on Spreadsheet Risks,” Hawaii Int.
Conf. System Sciences, Maui, Hawaii, Jan. 2-5, 1996.

[11] G. Rothermel, L. Li, C. DuPuis, and M. Burnett, “What
You See Is What You Test: A Methodology for Testing
Form-Based Visual Programs,” Int. Conf. Software
Engineering, 198-207, April 1998.

[12] K. Rothermel et al., “An Empirical Evaluation of a
Methodology for Testing Spreadsheets,” TR 99-60-04,
Oregon State University, March 1999.

[13] T. Smedley, P. Cox, and S. Byrne, “Expanding the
Utility of Spreadsheets Through the Integration of Visual
Programming and User Interface Objects,” ACM Proc.
Workshop on Advanced Visual Interfaces, Gubbio, Italy,
148-155, May 27-29, 1996.

[14] G. Wang and A. Ambler, “Solving Display-Based
Problems,” 1996 IEEE Symp. Visual Languages,
Boulder, Colorado, 122-129, Sept. 3-6, 1996.

[15] E. Weyuker, “The Cost of Data Flow Testing: An
Empirical Study,” IEEE Trans. Software Engineering
16(2), Feb. 1990.

[16] E. Wilcox, J. Atwood, M. Burnett, J. Cadiz, and C.
Cook, “Does Continuous Visual Feedback Aid
Debugging in Direct-Manipulation Programming
Systems?” ACM Conf. Human Factors in Computing
Systems, 258-265, March 22-27, 1997.

[17] N. Wilde and C. Lewis, “Spreadsheet-Based Interactive
Graphics: From Prototype to Tool,” ACM Conf. Human
Factors in Computing Systems, 153-159, April 1990.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 27, 2009 at 19:58 from IEEE Xplore. Restrictions apply.

