
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing, Rome, Italy, Sept. 26-29, 2004 (to appear)

- 1 -

Rewarding “Good” Behavior: End-User Debugging and Rewards

Joseph R. Ruthruff, Amit Phalgune, Laura Beckwith, Margaret Burnett, and Curtis Cook
Oregon State University, Corvallis, Oregon, 97331, USA
{ruthruff, phalgune, beckwith, burnett, cook}@cs.orst.edu

Abstract
Emerging research has sought to bring effective

debugging devices to end-user programmers. This
research has largely focused on how well such devices
bring genuine “functional” rewards to end users. How-
ever, emerging models of programming behavior indi-
cate that another, often ignored, type of reward—per-
ceivable rewards—can play an equally vital role in how
well debugging devices serve end users. Using an
empirically evaluated fault localization device, this
paper investigates the impact such perceivable rewards
can have on end-user debugging. Our results indicate
that perceivable rewards alone can significantly improve
the effectiveness and understanding of end users per-
forming debugging tasks.

1. Introduction
Is it possible to bring some of the benefits of software

engineering practices to end-user programmers? In pur-
suit of this goal, we have been developing a vision called
end-user software engineering, whose aim is to bring
some of the benefits of software engineering methods to
end users—without requiring knowledge, or even inter-
est, in software engineering itself. Some of the aspects of
our end-user software engineering work include
WYSIWYT, a visual testing methodology to help end
users perform systematic testing [6, 22]; assertions to
continually monitor values [8]; and visual fault localiza-
tion [19, 23]. Fault localization, which aims to help end
users debug, is the aspect of interest in this paper.

A problem with our fault localization device, which
helps locate faults (erroneous source code) during the
debugging process, has been that users do not choose to
use it very often. In contrast to this, our other end-user
software engineering devices have been very successful
[9]. In trying to understand why our fault localization
device has not shared in these successes, we focused our
attention on the rewards offered by the device.

First, we empirically investigated rewards in the form
of functional effectiveness. Empirical data reassured us
on this point, showing that the device effectively pin-
pointed program points containing faults [23], and
guided end users to effective debugging strategies [19].

Since the problem was not rooted in functional rewards,
we began to suspect that the problem lay in perceivable
rewards, and perhaps in their negatives as well, perceiv-
able punishments. Perceivable rewards are those that a
user may perceive to be a reason to use the device, yet do
not directly reflect the device’s functionality. (Similarly,
perceivable punishments are those that a user may per-
ceive to be a reason not to use the device.) The difference
between perceivable and functional rewards is that
perceivable rewards (1) are not tied to how effectively
the device performs its purpose, and (2) potentially
appeal to the user’s emotions, such as by contributing to
a user’s sense of making progress toward their goal.

To investigate whether perceivable rewards play a
significant role in end-user debugging, we conducted an
experiment in which two experimental groups had envi-
ronments with exactly the same functionality; the only
difference being the perceivable reward structure of the
fault localization device. Specifically, we set out to
investigate the following research questions:

RQ1: Effectiveness: Do perceivable rewards impact end
users’ abilities to fix faults?

RQ2: Usage: Do perceivable rewards impact end users’
usage of a debugging device?

RQ3: Understanding: Do perceivable rewards impact
end users’ understanding of a debugging device?

This paper is, to our knowledge, the first to
differentiate functional rewards from perceivable
rewards, and to isolate the impact of the latter.

2. Background and Related Work

2.1 Rewards in End-User Computing
The concept of rewarding users is an important com-

ponent of a strategy we have been using called Surprise-
Explain-Reward [26]. Our empirical results have shown
that this strategy can be quite effective in promoting the
use of end-user software engineering devices. Drawing
from research on curiosity [16], “surprises” are used to
arouse users’ curiosity, enticing them to investigate items
related to the surprise. For example, in our research
prototype (Forms/3 [7], which is a member of the spread-
sheet paradigm), as soon as a cell is given a formula, it is
decorated with a checkbox containing a “?”. If a curious

- 2 -

user investigates, the “explain” component, which is
based on minimalist learning theory [10, 21], produces
explanations via popup tooltips that communicate the
meaning of the object, suggested action(s) if any, and the
potential rewards for taking the action(s). For example,
the explanation for a “?” is “Left click if cell’s value is
correct. Right click if it is wrong. These decisions help
test and find errors.” The “reward” component of the
strategy, based on the Attention Investment model [5],
consists of both interactive feedback and the potential for
genuine improvements in the program. For example, a
user’s right click provides visual fault localization feed-
back (described in Section 3.2). If the feedback leads the
user directly to an erroneous formula, he or she has
received a clear reward for using the device.

The “reward” component of Surprise-Explain-Reward
is grounded in Blackwell’s Attention Investment model
[5], an economic model to predict user behaviors in the
realm of programming-like activities. According to this
model, users take into account perceived benefits, per-
ceived payoffs, perceived costs, and perceived risks
when making cost-benefit decisions about whether to
pursue an activity requiring an investment of attention
(roughly the same as time). For example, a user deciding
whether to use fault localization will consider the savings
expected if the device identifies the fault(s) quickly
(perceived benefit), the cost of learning to use the device
and then invoking it (perceived cost), the expected future
savings from using the device (perceived payoff), and
possible losses or penalties such as being led to wrong
cells by the device (perceived risk). (We will refer to
these unexpected “after-the-fact” penalties as punish-
ments, even though Blackwell’s model does not explic-
itly label them as such.) This model suggests that
perceivable rewards can impact users’ abilities to benefit
from devices such as our fault localization device.

A conceptual neighbor of the Attention Investment
model is the model of Information Foraging [18]. This is
a model to predict human activities in the domain of
information access technologies. Although Information
Foraging is based on a biological model rather than an
economic one, it parallels Blackwell’s model regarding
costs and rewards. The costs of obtaining information are
analogous to Blackwell’s costs, and the information for
which users “forage” can be viewed as a reward.

2.2 End-User Debugging
Work aimed specifically at aiding end users with

debugging is beginning to emerge. Woodstein [25] is a
software agent that assists e-commerce debugging. Ko
and Myers present the Whyline [14], an “interrogative
debugging” device for the event-based programming
environment Alice. Users pose questions in the form of
“Why did…” or “Why didn’t…” that the Whyline
answers by displaying visualizations of the program.

This work builds on their model of programming errors
[15], which classifies errors and their causes. Other
strategies are statistical outlier finding [17] and anomaly
detection [20], which use statistical analysis and interac-
tive techniques to direct end-user programmers’ attention
to potentially problematic areas during automation tasks.

There has been a particularly large variety of work
supporting program comprehension and debugging by
end users in the spreadsheet paradigm. Igarashi et al.
present devices to aid spreadsheet users in dataflow visu-
alization and editing tasks [12]. S2 [24] provides a visual
auditing feature in Excel 7.0: similar groups of cells are
recognized and shaded based upon formula similarity,
and are then connected with arrows to show dataflow.
This technique builds upon the Arrow Tool, a dataflow
visualization device proposed by Davis [11]. Ayalew and
Mittermeir present a method of fault tracing based on
“interval testing” and slicing [4] that has some similari-
ties to our own work on assertions to help users auto-
matically guard against faults [8]. There is also recent
work to automatically detect certain kinds of errors, such
as errors in spreadsheet units [1] and types [2].

Our work focusing on end-user testing and debugging
support includes a visual testing methodology [6, 22],
assertion support [8], and visual fault localization [19,
23]. Our previous empirical studies of these devices have
focused on each device’s functional effectiveness. This
paper is the first to investigate the impact of perceivable
rewards, and uses fault localization as a vehicle to
accomplish this.

3. Rewards in Fault Localization
To investigate perceivable rewards in the realm of

end-user debugging, we identified the perceivable
rewards and punishments in our end-user programming
environment. This section discusses those rewards as
they pertain to our fault localization device. We then
build upon this discussion to present two implementa-
tions with varying quantities of perceivable rewards and
punishments.

3.1 WYSIWYT’s Rewards
Our approach to fault localization is integrated into

the “What You See Is What You Test” (WYSIWYT)
visual testing methodology [22]. We have prototyped
WYSIWYT in the spreadsheet paradigm, and it has also
been extended to the screen transition paradigm [6] and
to the dataflow paradigm [13]. In this section, we
consider how the user interacts with WYSIWYT in terms
of its rewards.

The underlying assumption behind WYSIWYT is that
as a user incrementally develops a program, he or she
can also be testing incrementally. Figure 1 presents an
example of WYSIWYT in Forms/3 [7]. In WYSIWYT,

- 3 -

untested cells have red borders (light gray in this paper).
Whenever users notice a correct value, they can place a
checkmark (√) in the decision box at the corner of the
cell they observe to be correct: this testing decision con-
stitutes a successful test. Such checkmarks increase the
“testedness” of a cell according to a test adequacy crite-
rion detailed in [22], and this is reflected by adding more
blue to the cell’s border (more black in this paper).

The systematic colorings of these cell borders may be
perceived as rewards by the user (at the cost of making a
testing decision) because they show progress, and that
the system is helping the user keep track of what still
needs to be tested. A genuine functional reward may also
ensue: as a result of attempting to turn every cell blue,
the user’s testing may reveal an incorrect value—in
software engineering terminology, this value is a failure.

In addition to the cell granularity, testedness is
depicted at two other granularities. First, at the subex-
pression granularity, dataflow arrows depict not only
dataflow but also testedness. In Figure 1, the user has
triggered arrows for the Min_Midterm1_Midterm2
cell, showing flow from/to the subexpressions of
Min_Midterm1_Midterm2’s formula. Each arrow’s

color depicts the testedness of its relationship, which
helps explain to users why a cell’s border is not com-
pletely blue. Second, at the spreadsheet granularity is an
“overall testedness” progress bar, residing at the very top
of the spreadsheet. For example, Figure 1’s spreadsheet
has an overall testedness of 30%. In past experiments,
users have commented upon their efforts to reach 100%
according to this bar: reaching 100% appears to be per-
ceived as a reward worth attaining.

3.2 Fault Localization’s Rewards
Instead of noticing that a cell’s value is correct, the

user might notice that the value is incorrect. In this case,
instead of checking off the value, the user can put an X-
mark in the cell’s decision box. X-marks trigger fault
likelihood calculations for each cell that might have con-
tributed to the incorrect value [23]. Cells suspected of
containing faults are colored in shades according to a
yellow-orange continuum (shades of gray in this paper),
with darker orange shades given to cells with increased
fault likelihood. (Figure 2 presents an example of this
behavior in the fault localization implementation of one
experimental group.) The intended functional effective-
ness reward is that the user might be led directly to the
faulty cell (colored the darkest orange). Our empirical
work has shown promising results in this regard [19].

3.3 Reward/Punishment Issues
When we carefully considered fault localization’s

perceivable reward structure, several issues were
revealed. For each issue, there were trade-offs and/or
side effects involved in deciding which of two apparently
reasonable solutions to choose. We implemented both
solutions in each case, putting one of the two into a

Figure 2. The user notices an incorrect value in Course_Avg—the value is obviously too low—and places an X-
mark in the cell’s decision box. All cells that could have dynamically contributed to this incorrect value have
been colored in shades of yellow and orange (gray in this paper), with darker shades corresponding to increased
fault likelihood (known as bug likelihood to users). In this example, three cells have an estimated fault likelihood
of “Low” and five cells have a fault likelihood of “Very Low”.

Figure 1. An example of WYSIWYT in Forms/3.

- 4 -

“Low-Reward” implementation and the other into a
“High-Reward” implementation. We emphasize that
there are rational reasons for both implementations, and
the categorization was done strictly based on quantity of
potentially perceivable rewards. There were five
differences between the Low-Reward and High-Reward
implementations. These differences are described next.

3.3.1 Mixed Message vs. “Loss” of Testedness

The first issue arose from previous users sometimes
describing cells with blue borders as “correct” instead of
tested. (Since end users are not likely to have software
engineering background, this misunderstanding is not
surprising.) If a tested cell has fault likelihood, this belief
can lead to confusion due to a “mixed message” from
seemingly conflicting testing and fault localization feed-
back, which indicates that a tested cell may still be
“wrong” (i.e., have a fault in its formula).

We devised two solutions. One solution was to elimi-
nate the mixed messages by removing the testing feed-
back—thereby removing the conflict with the fault
localization feedback, but reducing the quantity of per-
ceivable rewards—and the other was to allow testing
feedback to remain. The first solution went into the
“Low-Reward” implementation, and the second solution
went into “High-Reward” for the following reasons.

In our first solution, changing the testing borders (and
associated arrows) of colored cells back to red removes
any indication that the cell is “tested”—this constitutes
the first two differences in the reward structure. For
consistency with the cell borders, which may have gone
from “tested” to “untested”, the overall testedness
progress bar must also decrease—this is the third
difference. (The underlying testing information in the
system remains unchanged, and so removing the X-mark
causes the colors and progress bar to revert to their
previous state.) Because these differences might be
perceived as a sign that past successful tests involving
the colored cells have been discarded—in fact, a past
empirical subject remarked that she had just lost all her
work when this happened—this solution was assigned to
the Low-Reward implementation due to the potential
perception of punishment.

Our second solution (allowing the mixed messages to
remain) is not necessarily “better”. However, the solu-
tion does not contain the perceivable punishment of a
loss of testedness information, and therefore has a
greater quantity of rewards (less punishment) for using
fault localization. For these reasons, the solution was put
in the High-Reward implementation.

3.3.2 Explaining the Solutions

The removal of some testing feedback in the Low-
Reward solution raised another issue—how to explain

the red cell borders and arrows. For example, if a cell
was 100% tested before it became colored, since the
system hasn’t discarded tests, the (now red-bordered)
cell would still be 100% tested. Because there was no
simple message to explain this, we chose not to display
explanation tooltips at all for colored cells’ (red) borders
or their associated arrows, relying instead on the expla-
nation tooltips describing colored interiors. This keeps
with the common practice of conceptually “eliding
away” information deemed too complex for end users.

Removal of the explanations for borders and arrows
of colored cells could be perceived as a punishment (loss
of information), which necessarily results in a smaller
quantity of rewards—thus this solution was assigned to
the Low-Reward implementation. This was the fourth
reward/punishment difference in our study.

3.3.3 Competing with WYSIWYT

WYSIWYT had a greater quantity of perceivable
rewards than the fault localization device. In addition to
the cell-by-cell colorings, it also had the testedness pro-
gress bar, which in the past has seemed quite motivating
to our users. Since fault localization did not have a pro-
gress bar of its own, this reward imbalance may have
encouraged users more toward “positive” tests (checking
off valid values) than toward “negative” tests (X’ing out
invalid values).

For the High-Reward implementation, we instituted
an additional reward of a “bug likelihood” progress bar
(top of Figure 2). This bar summarizes the percentage of
cells in the spreadsheet with each fault likelihood color
intensity. In striving for the “reward” aspect, we included
all the color intensities that are represented on the screen
in the bar; this often has the effect of indicating overall
“progress” in localizing one or more faults, as a smaller
subset of cells grow darker (with higher “bug likeli-
hood”) due to increased testing information. For exam-
ple, in Figure 2, the number of cells with higher likeli-
hood is at 15%. This was the fifth and final
reward/punishment difference in our study.

4. Experiment
We emphasize that the differences we have just

described are not contrived differences. Rather, both
groups’ implementations had solid reasons. However, the
High-Reward implementation always contained an
implementation choice that was quantitatively greater in
terms of perceivable reward, even if it had disadvantages
from other perspectives.

To investigate the impact of the reward differences
via the research questions enumerated in Section 1, we
conducted a controlled laboratory experiment. The de-
sign of the experiment was such that both groups had
environments with exactly the same functionality; the

- 5 -

only differences were those described in Section 3.3,
which could affect users’ perceptions of rewards and
punishments associated with fault localization.

4.1 Procedures
Participants from the same experimental group were

seated one per computer during six separate sessions.
The participants (mostly business students) were ran-
domly divided into two groups: a group of 24 partici-
pants with the Low-Reward implementation from Sec-
tion 3.3 and a group of 30 participants with the High-
Reward version. (The differences in group size are due to
some participants not showing up for sessions.)
Statistical tests on the background of participants—
obtained from a background questionnaire—showed no
significant differences between the groups in terms of
grade point average, spreadsheet experience, or pro-
gramming experience.

After completing the background questionnaire, we
administered a 35-minute “hands-on” tutorial to familiar-
ize participants with the environment. The participants
were then given two tasks. We captured their actions in
electronic transcripts, as well as their final spreadsheets.

At the conclusion of each task, we administered post-
task questionnaires in which participants self-rated their
performance on the task. The last (post-session) ques-
tionnaire also included questions assessing participants’
comprehension of fault localization and their attitudes
toward the features they had used.

Prior to the experiment, we conducted a four-partici-
pant pilot study to test our experimental procedures and
materials.

4.2 Tutorial
In the tutorial, participants performed actions on their

own machines with guidance at each step. The tutorial
taught the use of WYSIWYT (checkmarks and associ-
ated feedback), but did not include any debugging or
testing strategy content. Most importantly, we did not
teach use of fault localization. Instead, participants were
simply introduced to the mechanics of placing X-marks

and given time to figure out any aspects of the feedback
that they found interesting. To ensure that no influences
would arise from tutorial differences, we presented the
same tutorial to both groups.

4.3 Tasks
The experiment consisted of two tasks termed

Gradebook and Payroll (shown in Figures 2 and 3,
respectively). To make our tasks representative of real
end-user spreadsheets, Gradebook was derived from
an Excel spreadsheet of an (end-user) instructor, which
we ported into an equivalent Forms/3 spreadsheet. (To
accommodate Forms/3 features, a minor change was
made to two minimization operators.) Payroll was a
spreadsheet designed by two Forms/3 researchers using a
payroll description from a real company.

These spreadsheets were seeded with five faults cre-
ated by real end users. To obtain these faults, we pro-
vided three separate end users with the following: (1) a
“template” spreadsheet for each task with cells and cell
names, but no cell formulas; and (2) a description of how
each spreadsheet should work, which included sample
values and correct results for some cells. Each person
was given as much time and he or she needed to design
the spreadsheet using the template and the description.

From the collection of faults left in these end users’
final spreadsheets, we chose five according to Allwood’s
classification system [3]. Under Allwood’s system,
mechanical faults include simple typographical errors or
wrong cell references. Logical faults are mistakes in rea-
soning and are more difficult than mechanical faults. An
omission fault is information that has never been entered
into a cell formula, and is the most difficult [3]. We
seeded Gradebook with three of the users’ mechanical
faults, one logical fault, and one omission fault, and
Payroll with two mechanical faults, two logical faults,
and one omission fault. Payroll was deemed the more
difficult task due to its larger size, greater level of data-
flow and intertwined dataflow relationships, and more
difficult faults.

The participants were provided these Gradebook

Figure 3. The Payroll task.

- 6 -

and Payroll spreadsheets and descriptions, with time
limits of 22 and 35 minutes, respectively. (The debug-
ging tasks necessarily involved time limits to ensure par-
ticipants worked on both spreadsheets, and to remove
possible peer influence of some participants leaving
early.) The experiment was counterbalanced with re-
spect to task order so as to distribute learning effects
evenly. The participants were instructed, “Test the
spreadsheet thoroughly to ensure that it does not contain
errors and works according to the spreadsheet descrip-
tion. Also, if you encounter any errors in the spreadsheet,
fix them.”

4.4 Fault Localization Strategy
To calculate fault likelihood values, this experiment’s

fault localization strategy was the “Test Count Tech-
nique” in [23]. (We modified the strategy to support five,
rather than four, color intensities.) We chose this strategy
because it was the most robust strategy in the presence of
user mistakes [23], which our previous research has
shown to be an important issue [19].

5. Results

5.1 RQ1: Effectiveness
To evaluate participants’ debugging performance, we

measured the number of faults fixed by each group. As a
statistical vehicle for investigating the number of faults
fixed by the Low-Reward and High-Reward participants,
we state the following null hypothesis:
H1: There will be no difference in the number of faults
fixed by Low-Reward and High-Reward participants.

Figure 4 summarizes the number of faults fixed for
each task by each group. Although there was no signifi-
cant difference in the number of faults fixed in the
Gradebook task (two-sided t-test: t=0.3936, df=53,
p=0.696), the High-Reward group participants fixed sig-
nificantly more faults in the Payroll task (t=-2.31,
df=53, p=0.025). (A two-sided t-test, rather than repeated
measures ANOVA, was selected because the two

experimental tasks were distinctly different—for
example, in types of faults and task times—and because
the experiment was counterbalanced with respect to task
order.) Therefore, we reject H1.

Recall that the functionality of the Low-Reward and
High-Reward environments was exactly the same: the
same cells were colored as likely to contain faults, using
the same coloring scheme, same calculations, etc. Thus
the same functional effectiveness reward potentially
existed in both environments. The only changes were in
aspects that might affect users’ perception of rewards.
The significant difference in debugging effectiveness
suggests that these aspects may have a powerful impact
on users’ effectiveness.

5.2 RQ2: Usage
One possible explanation for the effectiveness differ-

ence could be that the High-Reward participants used X-
marks more. We consider this using two metrics: (1)
“Persistent” X-marks that, once placed, persist until
changes in the program’s source code (spreadsheet for-
mulas) cause those X-marks to become obsolete (at
which point the system removes them), and (2) “Total”
X-marks, which include all X-marks placed, even tran-
sitory ones that are placed only for a moment and then
removed (such as if a user is experimenting with X-
marks to see what they do, or changes his/her mind about
whether a value is really incorrect). The latter metric
accounts for even brief feedback that the user saw before
removing the X-mark, as even the brief presence of such
feedback could prove constructive to a debugging effort.
H2: There will be no difference in the usage of fault
localization by Low-Reward and High-Reward partici-
pants.

The number of “Persistent” and “Total” X-marks per
spreadsheet task by each group can be found in Table 1.
A two-sided t-test on these results showed no significant
differences between the groups for either “Persistent” X-
marks (Gradebook: t=0.3436, df=53, p=0.7325; Pay-

0

1

2

3

Gradebook (p=0.696) Payroll (p=0.025)

Figure 4. The average number of faults fixed by each
participant. The High-Reward (dark bars) group
fixed significantly more faults than the Low-Reward
group (light bars) on the more difficult Payroll
task.

 Metric 1:
“Persistent”

Metric 2:
“Total”

Gradebook:
 Low-Reward (n=24) 1.58 (2.98) 4.67 (5.77)
 High-Reward (n=30) 1.52 (2.26) 4.13 (5.74)
Payroll:
 Low-Reward (n=24) 1.96 (3.07) 8.67 (13.88)
 High-Reward (n=30) 2.00 (2.68) 5.98 (7.34)

Table 1. Mean (standard deviation) number of X-
marks placed. The number of “Total” X-marks that
participants placed ranged from 0 to 60 for each task,
with large variations in the data. None of the differ-
ences are significant.

- 7 -

roll: t=0.9292, df=53, p=0.357) or “Total” X-marks
(Gradebook: t=0.1629, df=53, p=0.8712; Payroll:
t=–0.0078, df =53, p=0.9938). Therefore, we cannot
reject H2.

We were surprised by these results because, when
combined with those of Section 5.1, they tell us that
High-Reward participants fixed more faults despite no
difference in the amount of usage of the fault localization
device!

The lack of difference in usage rate was corroborated
by one of the post-session questions, which solicited the
users’ opinions on the helpfulness of various aspects of
the system. Specifically, we asked for functionality
“helpfulness ratings” (regarding finding and fixing
faults) on the WYSIWYT, explanation, and fault local-
ization devices. They rated the helpfulness of each item
on a 5-point Likert scale. The mean ratings scored
WYSIWYT the highest, then explanations, and finally
fault localization. However, none of the differences were
significant. The lack of difference between the two
groups’ ratings reaffirms the usage data: fault localiza-
tion was not deemed any more functionally helpful by
the High-Reward group than by the Low-Reward group,
leading to similar usage patterns.

5.3 RQ3: Understanding
From the previous section, it is clear that the greater

effectiveness of the High-Reward group cannot be ex-
plained by mere usage of the fault localization device. In
this section, we consider an alternative explanation—that
the High-Reward group had more understanding of the
feedback’s implications than the Low-Reward group did.
H3: There will be no difference in the ability to under-
stand fault localization feedback by Low-Reward and
High-Reward participants.

We consider two types of comprehension: the shallow
level of being able to interpret feedback received, and the
deeper level of being able to predict feedback under
various circumstances. Two questions on the post-ses-
sion questionnaire were used to evaluate interpretation
(e.g., “What does it mean when the color in the interior
of one cell is darker than the others?”). Six questions
measured prediction, such as asking participants to
determine what would happen to a particular cell
(whether it would turn darker, lighter, or remain the
same color) if an X-mark was placed in a specified cell.

High-Reward participants provided more correct
responses than did the Low-Reward participants on all
but one question (although not always significantly). The
difference in correct responses between the two groups
was significant at the 0.05 level (two-sided t-test: t=
-2.01, df=53, p=0.0496). Most of this difference was
accounted for by the prediction scores (t=-2.05, df=53,

p=0.0454). Figure 5 shows the mean scores question-by-
question. Clearly, H3 is rejected.

It is actually quite remarkable that the High-Reward
participants understood the feedback better, since it is
this group who experienced the “mixed messages”
described in Section 3.3.1. To investigate whether these
“mixed messages” were really mixed, we had included a
four-part question in the post-session questionnaire for
the High-Reward group (since only they had the mixed
message). Given a cell with a blue border and an orange
interior, the first three parts of the question asked about
the correctness of the value, the cell’s testedness, and the
cell’s fault likelihood; and the fourth part asked whether
the combination of a blue border and an orange interior
made sense. The results were mixed. The percentages
answered correctly by the participants on the first three
parts varied, ranging from 50% to 87%. More to the
point, only about half (54%) said the mixed message
made sense. The other 46% either said it did not make
sense, they did not know, or did not answer the question.
Clearly, the mixed message introduced confusion in
many of the High-Reward participants.

It would be reasonable to expect that the confusion
they reported would seriously hamper understanding of
the feedback. Despite this confusion, however, the per-
ceivable rewards still drew significantly better overall
understanding.

5.4 Interpreting the Results
We designed this experiment to increase the perceiv-

able rewards of using fault localization, without chang-
ing the device’s functional rewards, in order to investi-
gate the research questions outlined in Section 1. How-
ever, there are other interpretations that could explain
our results. For example, the curiosity that may have
resulted from seemingly inconsistent feedback (e.g.,
mixed messages) could have caused users to better debug
the more difficult Payroll task, and to better under-

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

q1 q2 q3 q4 q5 q6 q7 q8

Figure 5. Participants who answered each question
correctly: Low-Reward participants (light bars) and
High-Reward participants (dark bars). Questions 1-6
are prediction questions, and 7-8 are interpretation
questions.

- 8 -

stand the device’s feedback. Alternatively, providing
additional feedback, even if it conflicts with preexisting
feedback, may have in fact bettered users’ debugging
efforts. Further investigation is needed to tease apart the
impact directly due to perceivable rewards from other
factors, such as curiosity, that may be involved.

6. Conclusions
Research often focuses on improving programming

environments and devices without taking perceivable
rewards and punishments into consideration. Our results
indicate that perceivable rewards alone may significantly
improve the effectiveness and understanding of end users
performing debugging tasks. This finding is important
for a number of reasons. First, it indicates that the tradi-
tional approach of addressing functional rewards, while
valuable, may not be the only means of improving end-
user debugging. Second, it suggests the need for further
work in this area. Finally, our results add to the emerging
body of evidence validating the importance of rewards in
end-user programming. This study is especially unique in
that it is the first to differentiate the importance of
functional rewards from perceivable rewards in end-user
debugging.

Acknowledgments

This work was supported in part by NSF under ITR-
0082265 and the EUSES Consortium via NSF grant ITR-
0325273.

References

[1] R. Abraham and M. Erwig, “Header and Unit Inference
for Spreadsheets Through Spatial Analyses”, Proc. IEEE
Symp. Visual Langs. and Human-Centric Computing,
2004 (to appear).

[2] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishna-
murthi, “A Type System for Statically Detecting Spread-
sheet Errors”, Proc. IEEE Conf. Auto. Soft. Eng., 2003.

[3] C. Allwood, “Error Detection Processes in Statistical
Problem Solving”, Cognitive Science 8, 4, 1984, 413-437.

[4] Y. Ayalew and R. Mittermeir, “Spreadsheet Debugging”,
Proc. European Spreadsheet Risks Interest Group, 2003.

[5] A. Blackwell, “First Steps in Programming: A Rationale
for Attention Investment Models”, Proc. IEEE Symp.
Human-Centric Computing Langs. and Envs., 2002, 2-10.

[6] D. Brown, M. Burnett, G. Rothermel, H. Fujita, and F.
Negoro, “Generalizing WYSIWYT Visual Testing to
Screen Transition Languages”, Proc. IEEE Symp. Human-
Centric Computing Langs. and Envs., 2003, 203-210.

[7] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J.
Reichwein, and S. Yang, “Forms/3: A First-Order Visual
Language to Explore the Boundaries of the Spreadsheet
Paradigm”, J. Func. Prog. 11, 2, 2001, 155-206.

[8] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J.
Summet, and C. Wallace, “End-User Software

Engineering with Assertions in the Spreadsheet Para-
digm”, Proc. Int. Conf. Soft. Eng., 2003, 93-103.

[9] M. Burnett, C. Cook, and G. Rothermel, “End-User Soft-
ware Engineering”, Comm. ACM, Sept. 2004 (to appear).

[10] J. Carroll, The Nurnberg Funnel: Designing Minimalist
Instruction for Practical Computer Skill, MIT Press,
Cambridge, MA, 1990.

[11] J.S. Davis, “Tools for Spreadsheet Auditing”, Int. J.
Human-Computer Studies 45, 1996, 429-442.

[12] T. Igarashi, J.D. Mackinlay, B.-W. Chang, and P.T. Zell-
weger, “Fluid Visualization of Spreadsheet Structures”,
Proc. IEEE Symp. Visual Langs., 1998, 118-125.

[13] M. Karam and T. Smedley, “A Testing Methodology for a
Dataflow Based Visual Programming Language”, Proc.
IEEE Symp. Human-Centric Computing Langs. and Envs.,
2001, 280-287.

[14] A.J. Ko and B.A. Myers, “Designing the Whyline: A
Debugging Interface for Asking Questions about Program
Failures”, Proc. ACM Conf. Human Factors Computing
Systems, 2004, 151-158.

[15] A.J. Ko and B.A. Myers, “Development and Evaluation of
a Model of Programming Errors”, Proc. IEEE Symp.
Human-Centric Computing Langs. and Envs., 2003, 7-14.

[16] G. Lowenstein, “The Psychology of Curiosity”,
Psychological Bulletin 116, 1, 1994, 75-98.

[17] R.C. Miller and B.A. Myers, “Outlier Finding: Focusing
User Attention on Possible Errors”, Proc. ACM Symp.
User Interface Soft. Technology, 2001, 81-90.

[18] P. Pirolli and S. Card, “Information Foraging in Informa-
tion Access Environments”, Proc. ACM Conf. Human
Factors Computing Systems, 1995, 51-58.

[19] S. Prabhakararao, C. Cook, J. Ruthruff, E. Creswick, M.
Main, M. Durham, and M. Burnett, “Strategies and
Behaviors of End-User Programmers with Interactive
Fault Localization”, Proc. IEEE Symp. Human-Centric
Computing Langs. and Envs., 2003, 15-22.

[20] O. Raz, P. Koopman, and M. Shaw, “Semantic Anomaly
Detection in Online Data Sources”, Proc. Int. Conf. Soft.
Eng., 2002, 302-312.

[21] M. Rosson and C. Seals, “Teachers as Simulation Pro-
grammers: Minimalist Learning and Reuse”, Proc. ACM
Conf. Human Factors Computing Systems, 2001, 237-244.

[22] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A.
Sheretov, “A Methodology for Testing Spreadsheets”,
ACM Trans. Soft. Eng. Meth. 10, 1, 2001, 110-147.

[23] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S.
Prabhakararao, M. Fisher II, and M. Main, “End-User
Software Visualizations For Fault Localization”, Proc.
ACM Symp. Soft. Visualization, 2003, 123-132.

[24] J. Sajanieme, “Modeling Spreadsheet Audit: A Rigorous
Approach to Automatic Visualization”, J. Visual Langs.
Computing 11, 1, 2000, 49-82.

[25] E.J. Wagner and H. Lieberman, “Supporting User
Hypotheses in Problem Diagnosis on the Web and Else-
where”, Proc. Int. Conf. Intelligent User Interfaces, 2004,
30-37.

[26] A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L.
Casburn, C. Cook, M. Durham, and G. Rothermel, “Har-
nessing Curiosity to Increase Correctness in End-User
Programming”, Proc. ACM Conf. Human Factors
Computing Systems, 2003, 305-312.

