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Abstract  
Emerging research has sought to bring effective 

debugging devices to end-user programmers. This 
research has largely focused on how well such devices 
bring genuine “functional” rewards to end users. How-
ever, emerging models of programming behavior indi-
cate that another, often ignored, type of reward—per-
ceivable rewards—can play an equally vital role in how 
well debugging devices serve end users. Using an 
empirically evaluated fault localization device, this 
paper investigates the impact such perceivable rewards 
can have on end-user debugging. Our results indicate 
that perceivable rewards alone can significantly improve 
the effectiveness and understanding of end users per-
forming debugging tasks. 

 

1. Introduction 
Is it possible to bring some of the benefits of software 

engineering practices to end-user programmers? In pur-
suit of this goal, we have been developing a vision called 
end-user software engineering, whose aim is to bring 
some of the benefits of software engineering methods to 
end users—without requiring knowledge, or even inter-
est, in software engineering itself. Some of the aspects of 
our end-user software engineering work include 
WYSIWYT, a visual testing methodology to help end 
users perform systematic testing [6, 22]; assertions to 
continually monitor values [8]; and visual fault localiza-
tion [19, 23]. Fault localization, which aims to help end 
users debug, is the aspect of interest in this paper.  

A problem with our fault localization device, which 
helps locate faults (erroneous source code) during the 
debugging process, has been that users do not choose to 
use it very often. In contrast to this, our other end-user 
software engineering devices have been very successful 
[9]. In trying to understand why our fault localization 
device has not shared in these successes, we focused our 
attention on the rewards offered by the device. 

First, we empirically investigated rewards in the form 
of functional effectiveness. Empirical data reassured us 
on this point, showing that the device effectively pin-
pointed program points containing faults [23], and 
guided end users to effective debugging strategies [19]. 

Since the problem was not rooted in functional rewards, 
we began to suspect that the problem lay in perceivable 
rewards, and perhaps in their negatives as well, perceiv-
able punishments. Perceivable rewards are those that a 
user may perceive to be a reason to use the device, yet do 
not directly reflect the device’s functionality. (Similarly, 
perceivable punishments are those that a user may per-
ceive to be a reason not to use the device.) The difference 
between perceivable and functional rewards is that 
perceivable rewards (1) are not tied to how effectively 
the device performs its purpose, and (2) potentially 
appeal to the user’s emotions, such as by contributing to 
a user’s sense of making progress toward their goal. 

To investigate whether perceivable rewards play a 
significant role in end-user debugging, we conducted an 
experiment in which two experimental groups had envi-
ronments with exactly the same functionality; the only 
difference being the perceivable reward structure of the 
fault localization device. Specifically, we set out to 
investigate the following research questions:  

RQ1: Effectiveness: Do perceivable rewards impact end 
users’ abilities to fix faults? 

RQ2: Usage: Do perceivable rewards impact end users’ 
usage of a debugging device? 

RQ3: Understanding: Do perceivable rewards impact 
end users’ understanding of a debugging device? 

This paper is, to our knowledge, the first to 
differentiate functional rewards from perceivable 
rewards, and to isolate the impact of the latter. 

2. Background and Related Work 

2.1 Rewards in End-User Computing 
The concept of rewarding users is an important com-

ponent of a strategy we have been using called Surprise-
Explain-Reward [26]. Our empirical results have shown 
that this strategy can be quite effective in promoting the 
use of end-user software engineering devices. Drawing 
from research on curiosity [16], “surprises” are used to 
arouse users’ curiosity, enticing them to investigate items 
related to the surprise. For example, in our research 
prototype (Forms/3 [7], which is a member of the spread-
sheet paradigm), as soon as a cell is given a formula, it is 
decorated with a checkbox containing a “?”. If a curious 
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user investigates, the “explain” component, which is 
based on minimalist learning theory [10, 21], produces 
explanations via popup tooltips that communicate the 
meaning of the object, suggested action(s) if any, and the 
potential rewards for taking the action(s). For example, 
the explanation for a “?” is “Left click if cell’s value is 
correct. Right click if it is wrong. These decisions help 
test and find errors.” The “reward” component of the 
strategy, based on the Attention Investment model [5], 
consists of both interactive feedback and the potential for 
genuine improvements in the program. For example, a 
user’s right click provides visual fault localization feed-
back (described in Section 3.2). If the feedback leads the 
user directly to an erroneous formula, he or she has 
received a clear reward for using the device.  

The “reward” component of Surprise-Explain-Reward 
is grounded in Blackwell’s Attention Investment model 
[5], an economic model to predict user behaviors in the 
realm of programming-like activities. According to this 
model, users take into account perceived benefits, per-
ceived payoffs, perceived costs, and perceived risks 
when making cost-benefit decisions about whether to 
pursue an activity requiring an investment of attention 
(roughly the same as time). For example, a user deciding 
whether to use fault localization will consider the savings 
expected if the device identifies the fault(s) quickly 
(perceived benefit), the cost of learning to use the device 
and then invoking it (perceived cost), the expected future 
savings from using the device (perceived payoff), and 
possible losses or penalties such as being led to wrong 
cells by the device (perceived risk). (We will refer to 
these unexpected “after-the-fact” penalties as punish-
ments, even though Blackwell’s model does not explic-
itly label them as such.) This model suggests that 
perceivable rewards can impact users’ abilities to benefit 
from devices such as our fault localization device. 

A conceptual neighbor of the Attention Investment 
model is the model of Information Foraging [18]. This is 
a model to predict human activities in the domain of 
information access technologies. Although Information 
Foraging is based on a biological model rather than an 
economic one, it parallels Blackwell’s model regarding 
costs and rewards. The costs of obtaining information are 
analogous to Blackwell’s costs, and the information for 
which users “forage” can be viewed as a reward.  

2.2 End-User Debugging 
Work aimed specifically at aiding end users with 

debugging is beginning to emerge. Woodstein [25] is a 
software agent that assists e-commerce debugging. Ko 
and Myers present the Whyline [14], an “interrogative 
debugging” device for the event-based programming 
environment Alice. Users pose questions in the form of 
“Why did…” or “Why didn’t…” that the Whyline 
answers by displaying visualizations of the program. 

This work builds on their model of programming errors 
[15], which classifies errors and their causes. Other 
strategies are statistical outlier finding [17] and anomaly 
detection [20], which use statistical analysis and interac-
tive techniques to direct end-user programmers’ attention 
to potentially problematic areas during automation tasks.  

There has been a particularly large variety of work 
supporting program comprehension and debugging by 
end users in the spreadsheet paradigm. Igarashi et al. 
present devices to aid spreadsheet users in dataflow visu-
alization and editing tasks [12]. S2 [24] provides a visual 
auditing feature in Excel 7.0: similar groups of cells are 
recognized and shaded based upon formula similarity, 
and are then connected with arrows to show dataflow. 
This technique builds upon the Arrow Tool, a dataflow 
visualization device proposed by Davis [11]. Ayalew and 
Mittermeir present a method of fault tracing based on 
“interval testing” and slicing [4] that has some similari-
ties to our own work on assertions to help users auto-
matically guard against faults [8]. There is also recent 
work to automatically detect certain kinds of errors, such 
as errors in spreadsheet units [1] and types [2].  

Our work focusing on end-user testing and debugging 
support includes a visual testing methodology [6, 22], 
assertion support [8], and visual fault localization [19, 
23]. Our previous empirical studies of these devices have 
focused on each device’s functional effectiveness. This 
paper is the first to investigate the impact of perceivable 
rewards, and uses fault localization as a vehicle to 
accomplish this. 

3. Rewards in Fault Localization 
To investigate perceivable rewards in the realm of 

end-user debugging, we identified the perceivable 
rewards and punishments in our end-user programming 
environment. This section discusses those rewards as 
they pertain to our fault localization device. We then 
build upon this discussion to present two implementa-
tions with varying quantities of perceivable rewards and 
punishments. 

3.1 WYSIWYT’s Rewards 
Our approach to fault localization is integrated into 

the “What You See Is What You Test” (WYSIWYT) 
visual testing methodology [22]. We have prototyped 
WYSIWYT in the spreadsheet paradigm, and it has also 
been extended to the screen transition paradigm [6] and 
to the dataflow paradigm [13]. In this section, we 
consider how the user interacts with WYSIWYT in terms 
of its rewards. 

The underlying assumption behind WYSIWYT is that 
as a user incrementally develops a program, he or she 
can also be testing incrementally. Figure 1 presents an 
example of WYSIWYT in Forms/3 [7]. In WYSIWYT, 
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untested cells have red borders (light gray in this paper). 
Whenever users notice a correct value, they can place a 
checkmark (√) in the decision box at the corner of the 
cell they observe to be correct: this testing decision con-
stitutes a successful test. Such checkmarks increase the 
“testedness” of a cell according to a test adequacy crite-
rion detailed in [22], and this is reflected by adding more 
blue to the cell’s border (more black in this paper).  

The systematic colorings of these cell borders may be 
perceived as rewards by the user (at the cost of making a 
testing decision) because they show progress, and that 
the system is helping the user keep track of what still 
needs to be tested. A genuine functional reward may also 
ensue: as a result of attempting to turn every cell blue, 
the user’s testing may reveal an incorrect value—in 
software engineering terminology, this value is a failure. 

In addition to the cell granularity, testedness is 
depicted at two other granularities. First, at the subex-
pression granularity, dataflow arrows depict not only 
dataflow but also testedness. In Figure 1, the user has 
triggered arrows for the Min_Midterm1_Midterm2 
cell, showing flow from/to the subexpressions of 
Min_Midterm1_Midterm2’s formula. Each arrow’s 

color depicts the testedness of its relationship, which 
helps explain to users why a cell’s border is not com-
pletely blue. Second, at the spreadsheet granularity is an 
“overall testedness” progress bar, residing at the very top 
of the spreadsheet. For example, Figure 1’s spreadsheet 
has an overall testedness of 30%. In past experiments, 
users have commented upon their efforts to reach 100% 
according to this bar: reaching 100% appears to be per-
ceived as a reward worth attaining.  

3.2 Fault Localization’s Rewards 
Instead of noticing that a cell’s value is correct, the 

user might notice that the value is incorrect. In this case, 
instead of checking off the value, the user can put an X-
mark in the cell’s decision box. X-marks trigger fault 
likelihood calculations for each cell that might have con-
tributed to the incorrect value [23]. Cells suspected of 
containing faults are colored in shades according to a 
yellow-orange continuum (shades of gray in this paper), 
with darker orange shades given to cells with increased 
fault likelihood. (Figure 2 presents an example of this 
behavior in the fault localization implementation of one 
experimental group.) The intended functional effective-
ness reward is that the user might be led directly to the 
faulty cell (colored the darkest orange). Our empirical 
work has shown promising results in this regard [19]. 

3.3 Reward/Punishment Issues 
When we carefully considered fault localization’s 

perceivable reward structure, several issues were 
revealed. For each issue, there were trade-offs and/or 
side effects involved in deciding which of two apparently 
reasonable solutions to choose. We implemented both 
solutions in each case, putting one of the two into a 

 
Figure 2. The user notices an incorrect value in Course_Avg—the value is obviously too low—and places an X-
mark in the cell’s decision box. All cells that could have dynamically contributed to this incorrect value have 
been colored in shades of yellow and orange (gray in this paper), with darker shades corresponding to increased 
fault likelihood (known as bug likelihood to users). In this example, three cells have an estimated fault likelihood 
of “Low” and five cells have a fault likelihood of “Very Low”. 

Figure 1. An example of WYSIWYT in Forms/3. 
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“Low-Reward” implementation and the other into a 
“High-Reward” implementation. We emphasize that 
there are rational reasons for both implementations, and 
the categorization was done strictly based on quantity of 
potentially perceivable rewards.  There were five 
differences between the Low-Reward and High-Reward 
implementations.  These differences are described next. 

3.3.1 Mixed Message vs. “Loss” of Testedness 

The first issue arose from previous users sometimes 
describing cells with blue borders as “correct” instead of 
tested. (Since end users are not likely to have software 
engineering background, this misunderstanding is not 
surprising.) If a tested cell has fault likelihood, this belief 
can lead to confusion due to a “mixed message” from 
seemingly conflicting testing and fault localization feed-
back, which indicates that a tested cell may still be 
“wrong” (i.e., have a fault in its formula). 

We devised two solutions. One solution was to elimi-
nate the mixed messages by removing the testing feed-
back—thereby removing the conflict with the fault 
localization feedback, but reducing the quantity of per-
ceivable rewards—and the other was to allow testing 
feedback to remain. The first solution went into the 
“Low-Reward” implementation, and the second solution 
went into “High-Reward” for the following reasons. 

In our first solution, changing the testing borders (and 
associated arrows) of colored cells back to red removes 
any indication that the cell is “tested”—this constitutes 
the first two differences in the reward structure. For 
consistency with the cell borders, which may have gone 
from “tested” to “untested”, the overall testedness 
progress bar must also decrease—this is the third 
difference. (The underlying testing information in the 
system remains unchanged, and so removing the X-mark 
causes the colors and progress bar to revert to their 
previous state.) Because these differences might be 
perceived as a sign that past successful tests involving 
the colored cells have been discarded—in fact, a past 
empirical subject remarked that she had just lost all her 
work when this happened—this solution was assigned to 
the Low-Reward implementation due to the potential 
perception of punishment.  

Our second solution (allowing the mixed messages to 
remain) is not necessarily “better”. However, the solu-
tion does not contain the perceivable punishment of a 
loss of testedness information, and therefore has a 
greater quantity of rewards (less punishment) for using 
fault localization. For these reasons, the solution was put 
in the High-Reward implementation.  

3.3.2 Explaining the Solutions 

The removal of some testing feedback in the Low-
Reward solution raised another issue—how to explain 

the red cell borders and arrows. For example, if a cell 
was 100% tested before it became colored, since the 
system hasn’t discarded tests, the (now red-bordered) 
cell would still be 100% tested. Because there was no 
simple message to explain this, we chose not to display 
explanation tooltips at all for colored cells’ (red) borders 
or their associated arrows, relying instead on the expla-
nation tooltips describing colored interiors. This keeps 
with the common practice of conceptually “eliding 
away” information deemed too complex for end users.  

Removal of the explanations for borders and arrows 
of colored cells could be perceived as a punishment (loss 
of information), which necessarily results in a smaller 
quantity of rewards—thus this solution was assigned to 
the Low-Reward implementation.  This was the fourth 
reward/punishment difference in our study.  

3.3.3 Competing with WYSIWYT 

WYSIWYT had a greater quantity of perceivable 
rewards than the fault localization device. In addition to 
the cell-by-cell colorings, it also had the testedness pro-
gress bar, which in the past has seemed quite motivating 
to our users. Since fault localization did not have a pro-
gress bar of its own, this reward imbalance may have 
encouraged users more toward “positive” tests (checking 
off valid values) than toward “negative” tests (X’ing out 
invalid values).  

For the High-Reward implementation, we instituted 
an additional reward of a “bug likelihood” progress bar 
(top of Figure 2). This bar summarizes the percentage of 
cells in the spreadsheet with each fault likelihood color 
intensity. In striving for the “reward” aspect, we included 
all the color intensities that are represented on the screen 
in the bar; this often has the effect of indicating overall 
“progress” in localizing one or more faults, as a smaller 
subset of cells grow darker (with higher “bug likeli-
hood”) due to increased testing information. For exam-
ple, in Figure 2, the number of cells with higher likeli-
hood is at 15%. This was the fifth and final 
reward/punishment difference in our study.  

4. Experiment 
We emphasize that the differences we have just 

described are not contrived differences. Rather, both 
groups’ implementations had solid reasons. However, the 
High-Reward implementation always contained an 
implementation choice that was quantitatively greater in 
terms of perceivable reward, even if it had disadvantages 
from other perspectives. 

To investigate the impact of the reward differences 
via the research questions enumerated in Section 1, we 
conducted a controlled laboratory experiment. The de-
sign of the experiment was such that both groups had 
environments with exactly the same functionality; the 
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only differences were those described in Section 3.3, 
which could affect users’ perceptions of rewards and 
punishments associated with fault localization. 

4.1 Procedures 
Participants from the same experimental group were 

seated one per computer during six separate sessions. 
The participants (mostly business students) were ran-
domly divided into two groups: a group of 24 partici-
pants with the Low-Reward implementation from Sec-
tion 3.3 and a group of 30 participants with the High-
Reward version. (The differences in group size are due to 
some participants not showing up for sessions.) 
Statistical tests on the background of participants—
obtained from a background questionnaire—showed no 
significant differences between the groups in terms of 
grade point average, spreadsheet experience, or pro-
gramming experience. 

After completing the background questionnaire, we 
administered a 35-minute “hands-on” tutorial to familiar-
ize participants with the environment. The participants 
were then given two tasks. We captured their actions in 
electronic transcripts, as well as their final spreadsheets.  

At the conclusion of each task, we administered post-
task questionnaires in which participants self-rated their 
performance on the task. The last (post-session) ques-
tionnaire also included questions assessing participants’ 
comprehension of fault localization and their attitudes 
toward the features they had used.  

Prior to the experiment, we conducted a four-partici-
pant pilot study to test our experimental procedures and 
materials. 

4.2 Tutorial 
In the tutorial, participants performed actions on their 

own machines with guidance at each step. The tutorial 
taught the use of WYSIWYT (checkmarks and associ-
ated feedback), but did not include any debugging or 
testing strategy content. Most importantly, we did not 
teach use of fault localization.  Instead, participants were 
simply introduced to the mechanics of placing X-marks 

and given time to figure out any aspects of the feedback 
that they found interesting. To ensure that no influences 
would arise from tutorial differences, we presented the 
same tutorial to both groups. 

4.3 Tasks 
The experiment consisted of two tasks termed 

Gradebook and Payroll (shown in Figures 2 and 3, 
respectively). To make our tasks representative of real 
end-user spreadsheets, Gradebook was derived from 
an Excel spreadsheet of an (end-user) instructor, which 
we ported into an equivalent Forms/3 spreadsheet. (To 
accommodate Forms/3 features, a minor change was 
made to two minimization operators.) Payroll was a 
spreadsheet designed by two Forms/3 researchers using a 
payroll description from a real company.  

These spreadsheets were seeded with five faults cre-
ated by real end users. To obtain these faults, we pro-
vided three separate end users with the following: (1) a 
“template” spreadsheet for each task with cells and cell 
names, but no cell formulas; and (2) a description of how 
each spreadsheet should work, which included sample 
values and correct results for some cells. Each person 
was given as much time and he or she needed to design 
the spreadsheet using the template and the description.  

From the collection of faults left in these end users’ 
final spreadsheets, we chose five according to Allwood’s 
classification system [3]. Under Allwood’s system, 
mechanical faults include simple typographical errors or 
wrong cell references. Logical faults are mistakes in rea-
soning and are more difficult than mechanical faults. An 
omission fault is information that has never been entered 
into a cell formula, and is the most difficult [3]. We 
seeded Gradebook with three of the users’ mechanical 
faults, one logical fault, and one omission fault, and 
Payroll with two mechanical faults, two logical faults, 
and one omission fault. Payroll was deemed the more 
difficult task due to its larger size, greater level of data-
flow and intertwined dataflow relationships, and more 
difficult faults. 

The participants were provided these Gradebook 

 
Figure 3. The Payroll task. 
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and Payroll spreadsheets and descriptions, with time 
limits of 22 and 35 minutes, respectively. (The debug-
ging tasks necessarily involved time limits to ensure par-
ticipants worked on both spreadsheets, and to remove 
possible peer influence of some participants leaving 
early.)  The experiment was counterbalanced with re-
spect to task order so as to distribute learning effects 
evenly. The participants were instructed, “Test the 
spreadsheet thoroughly to ensure that it does not contain 
errors and works according to the spreadsheet descrip-
tion. Also, if you encounter any errors in the spreadsheet, 
fix them.” 

4.4 Fault Localization Strategy 
To calculate fault likelihood values, this experiment’s 

fault localization strategy was the “Test Count Tech-
nique” in [23]. (We modified the strategy to support five, 
rather than four, color intensities.) We chose this strategy 
because it was the most robust strategy in the presence of 
user mistakes [23], which our previous research has 
shown to be an important issue [19].  

5. Results 

5.1 RQ1: Effectiveness 
To evaluate participants’ debugging performance, we 

measured the number of faults fixed by each group. As a 
statistical vehicle for investigating the number of faults 
fixed by the Low-Reward and High-Reward participants, 
we state the following null hypothesis:  
H1: There will be no difference in the number of faults 
fixed by Low-Reward and High-Reward participants. 

Figure 4 summarizes the number of faults fixed for 
each task by each group. Although there was no signifi-
cant difference in the number of faults fixed in the 
Gradebook task (two-sided t-test: t=0.3936, df=53, 
p=0.696), the High-Reward group participants fixed sig-
nificantly more faults in the Payroll task (t=-2.31, 
df=53, p=0.025). (A two-sided t-test, rather than repeated 
measures ANOVA, was selected because the two 

experimental tasks were distinctly different—for 
example, in types of faults and task times—and because 
the experiment was counterbalanced with respect to task 
order.) Therefore, we reject H1. 

Recall that the functionality of the Low-Reward and 
High-Reward environments was exactly the same: the 
same cells were colored as likely to contain faults, using 
the same coloring scheme, same calculations, etc. Thus 
the same functional effectiveness reward potentially 
existed in both environments. The only changes were in 
aspects that might affect users’ perception of rewards. 
The significant difference in debugging effectiveness 
suggests that these aspects may have a powerful impact 
on users’ effectiveness. 

5.2 RQ2: Usage 
One possible explanation for the effectiveness differ-

ence could be that the High-Reward participants used X-
marks more. We consider this using two metrics: (1) 
“Persistent” X-marks that, once placed, persist until 
changes in the program’s source code (spreadsheet for-
mulas) cause those X-marks to become obsolete (at 
which point the system removes them), and (2) “Total” 
X-marks, which include all X-marks placed, even tran-
sitory ones that are placed only for a moment and then 
removed (such as if a user is experimenting with X-
marks to see what they do, or changes his/her mind about 
whether a value is really incorrect). The latter metric 
accounts for even brief feedback that the user saw before 
removing the X-mark, as even the brief presence of such 
feedback could prove constructive to a debugging effort. 
H2: There will be no difference in the usage of fault 
localization by Low-Reward and High-Reward partici-
pants. 

The number of “Persistent” and “Total” X-marks per 
spreadsheet task by each group can be found in Table 1. 
A two-sided t-test on these results showed no significant 
differences between the groups for either “Persistent” X-
marks (Gradebook: t=0.3436, df=53, p=0.7325; Pay-

0

1

2

3

Gradebook (p=0.696) Payroll (p=0.025)

Figure 4. The average number of faults fixed by each 
participant. The High-Reward (dark bars) group 
fixed significantly more faults than the Low-Reward 
group (light bars) on the more difficult Payroll
task. 

 Metric 1: 
“Persistent”  

Metric 2: 
“Total” 

Gradebook:    
 Low-Reward (n=24) 1.58 (2.98) 4.67 (5.77) 
 High-Reward (n=30) 1.52 (2.26) 4.13 (5.74) 
Payroll:    
 Low-Reward (n=24) 1.96 (3.07) 8.67 (13.88)
 High-Reward (n=30) 2.00 (2.68) 5.98 (7.34) 

Table 1. Mean (standard deviation) number of X-
marks placed. The number of “Total” X-marks that 
participants placed ranged from 0 to 60 for each task, 
with large variations in the data. None of the differ-
ences are significant. 
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roll: t=0.9292, df=53, p=0.357) or “Total” X-marks 
(Gradebook: t=0.1629, df=53, p=0.8712; Payroll: 
t=–0.0078, df =53, p=0.9938). Therefore, we cannot 
reject H2. 

We were surprised by these results because, when 
combined with those of Section 5.1, they tell us that 
High-Reward participants fixed more faults despite no 
difference in the amount of usage of the fault localization 
device!  

The lack of difference in usage rate was corroborated 
by one of the post-session questions, which solicited the 
users’ opinions on the helpfulness of various aspects of 
the system. Specifically, we asked for functionality 
“helpfulness ratings” (regarding finding and fixing 
faults) on the WYSIWYT, explanation, and fault local-
ization devices. They rated the helpfulness of each item 
on a 5-point Likert scale.  The mean ratings scored 
WYSIWYT the highest, then explanations, and finally 
fault localization. However, none of the differences were 
significant. The lack of difference between the two 
groups’ ratings reaffirms the usage data: fault localiza-
tion was not deemed any more functionally helpful by 
the High-Reward group than by the Low-Reward group, 
leading to similar usage patterns.  

5.3 RQ3: Understanding 
From the previous section, it is clear that the greater 

effectiveness of the High-Reward group cannot be ex-
plained by mere usage of the fault localization device. In 
this section, we consider an alternative explanation—that 
the High-Reward group had more understanding of the 
feedback’s implications than the Low-Reward group did.  
H3: There will be no difference in the ability to under-
stand fault localization feedback by Low-Reward and 
High-Reward participants. 

We consider two types of comprehension: the shallow 
level of being able to interpret feedback received, and the 
deeper level of being able to predict feedback under 
various circumstances. Two questions on the post-ses-
sion questionnaire were used to evaluate interpretation 
(e.g., “What does it mean when the color in the interior 
of one cell is darker than the others?”). Six questions 
measured prediction, such as asking participants to 
determine what would happen to a particular cell 
(whether it would turn darker, lighter, or remain the 
same color) if an X-mark was placed in a specified cell.  

High-Reward participants provided more correct 
responses than did the Low-Reward participants on all 
but one question (although not always significantly). The 
difference in correct responses between the two groups 
was significant at the 0.05 level (two-sided t-test: t= 
-2.01, df=53, p=0.0496). Most of this difference was 
accounted for by the prediction scores (t=-2.05, df=53, 

p=0.0454). Figure 5 shows the mean scores question-by-
question. Clearly, H3 is rejected. 

It is actually quite remarkable that the High-Reward 
participants understood the feedback better, since it is 
this group who experienced the “mixed messages” 
described in Section 3.3.1. To investigate whether these 
“mixed messages” were really mixed, we had included a 
four-part question in the post-session questionnaire for 
the High-Reward group (since only they had the mixed 
message). Given a cell with a blue border and an orange 
interior, the first three parts of the question asked about 
the correctness of the value, the cell’s testedness, and the 
cell’s fault likelihood; and the fourth part asked whether 
the combination of a blue border and an orange interior 
made sense. The results were mixed. The percentages 
answered correctly by the participants on the first three 
parts varied, ranging from 50% to 87%. More to the 
point, only about half (54%) said the mixed message 
made sense. The other 46% either said it did not make 
sense, they did not know, or did not answer the question. 
Clearly, the mixed message introduced confusion in 
many of the High-Reward participants.  

It would be reasonable to expect that the confusion 
they reported would seriously hamper understanding of 
the feedback. Despite this confusion, however, the per-
ceivable rewards still drew significantly better overall 
understanding.  

5.4 Interpreting the Results 
We designed this experiment to increase the perceiv-

able rewards of using fault localization, without chang-
ing the device’s functional rewards, in order to investi-
gate the research questions outlined in Section 1. How-
ever, there are other interpretations that could explain 
our results. For example, the curiosity that may have 
resulted from seemingly inconsistent feedback (e.g., 
mixed messages) could have caused users to better debug 
the more difficult Payroll task, and to better under-
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40%
50%
60%
70%
80%
90%

100%

q1 q2 q3 q4 q5 q6 q7 q8

Figure 5. Participants who answered each question 
correctly: Low-Reward participants (light bars) and 
High-Reward participants (dark bars). Questions 1-6 
are prediction questions, and 7-8 are interpretation 
questions. 
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stand the device’s feedback. Alternatively, providing 
additional feedback, even if it conflicts with preexisting 
feedback, may have in fact bettered users’ debugging 
efforts.  Further investigation is needed to tease apart the 
impact directly due to perceivable rewards from other 
factors, such as curiosity, that may be involved. 

6. Conclusions 
Research often focuses on improving programming 

environments and devices without taking perceivable 
rewards and punishments into consideration. Our results 
indicate that perceivable rewards alone may significantly 
improve the effectiveness and understanding of end users 
performing debugging tasks. This finding is important 
for a number of reasons. First, it indicates that the tradi-
tional approach of addressing functional rewards, while 
valuable, may not be the only means of improving end-
user debugging. Second, it suggests the need for further 
work in this area. Finally, our results add to the emerging 
body of evidence validating the importance of rewards in 
end-user programming. This study is especially unique in 
that it is the first to differentiate the importance of 
functional rewards from perceivable rewards in end-user 
debugging. 
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