
Designing Features for Both Genders in End-User Programming Environments

Laura Beckwith*, Shraddha Sorte*, Margaret Burnett*,

Susan Wiedenbeck†, Thippaya Chintakovid†, and Curtis Cook*

*Oregon State University †Drexel University

Corvallis, OR 97331 Philadelphia, PA 19104
{beckwith, sortes, burnett, cook}@cs.orst.edu {Susan.Wiedenbeck, Thippaya.Chintakovid}@cis.drexel.edu

Abstract

Previous research has revealed gender differences that

impact females’ willingness to adopt software features in
end users’ programming environments. Since these fea-

tures have separately been shown to help end users prob-

lem solve, it is important to female end users’ productivity
that we find ways to make these features more acceptable

to females. In this paper, we draw from our ongoing work

with users to help inform our design of theory-based
methods for encouraging effective feature usage by both

genders. This design effort is the first to begin addressing
the gender differences in the ways that people go about

problem solving in end-user programming situations.

1. Introduction

Although there have been gender studies designed to

understand and ameliorate the low representation of fe-

males in the computing field [12], there has been little

emphasis on how software’s design affects females’ and

males’ performance in computing tasks. Building upon

theories and research on gender differences from a num-

ber of domains [6], we have begun investigating whether

there are features within software that interact with gender

differences in the realm of end-user programming.

Our method for conducting this investigation is as fol-

lows: (1) use theory and previous gender difference em-

pirical work from other domains to hypothesize gender

issues and their causes that could arise in end-user pro-

gramming environments, (2) use empirical methods to

investigate whether these issues do actually arise in end-

user programming environments, (3) use the results of the

first two steps along with theory and qualitative empirical

work involving low-cost prototyping to derive and refine

approaches to address the issues, and (4) use quantitative

empirical methods to evaluate the effectiveness of the

approaches.

Our work on the first step was presented in [6]. In that

paper, we derived a set of hypotheses from relevant re-

search literature; the subset of those hypotheses of interest

to this paper is given in Table 1. A particularly useful

aspect of these hypotheses is that, because many of these

hypotheses are theory-based, they tend to suggest a cause

for the hypothesized effect. These causes potentially point

the direction for our designs to take in addressing issues

that are present.

Our work on the second step has so far concentrated on

hypotheses H1 and H2 in the table. To investigate these

hypotheses, we conducted a study [7] in which we gave

male and female spreadsheet users two spreadsheet de-

bugging tasks in an environment containing a number of

features that support such debugging tasks. The hypothe-

ses were confirmed by our investigation:

• Females had lower self-efficacy (a form of confidence)

than males did about their abilities to debug. Further,

females’ self-efficacy was predictive of their effective-

ness at using the debugging features (which was not the

case for the males).

• Females were less likely than males to accept the new

Table 1: Theory-based hypotheses about gender differ-

ences in end-user programming environments [6].

Basis: Confidence and Risk

H1: There will be gender differences in users’ interest in

(initially) exploring new features in end-user pro-

gramming environments.

H2: Females’ high perceptions of risk will render them

less likely to make (genuine) use of unfamiliar de-

vices in end-user programming environments.

Basis: Learning Theory, Problem-Solving Style, and

Information Processing Style

H3: Gender differences in learning style will cause

some software devices aiming to “teach” new fea-

tures or procedures to be less effective for one gen-

der than another.

H4: An end-user programming environment that re-

stricts users to a linear (non-linear) approach will

adversely impact females’ (males’) abilities to prob-

lem-solve effectively in that environment.

H5: Males will be less likely than females to thoroughly

read complicated or lengthy “help” explanations.

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

debugging features. A reason females stated for this

was that they thought the features would take them too

long to learn. Yet, there was no real difference in the

males’ and females’ ability to learn the new features.

• Although there was no gender difference in fixing the

seeded bugs, females introduced more new bugs—

which remained unfixed. This appears to be explained

by their low acceptance of the debugging features: high

effective usage was a significant predictor of ability to

fix bugs.

In this paper, we report the results of the third step of

our investigation as applied to the above findings related

to H1 and H2: developing potential solutions to address

the issues revealed. H3, H4, and H5 are also relevant to

these design efforts, because we derived our approaches

in part from the bases of those hypotheses. After review-

ing our earlier work on gender and end-user programming

(Section 2), we used theory-based approaches to derive

two solutions, which we evaluated using low-cost proto-

typing (Sections 3 and 4).

This paper’s contributions are two-fold. First, the pa-

per shows the application of these particular theories to

the design of potential solutions to address gender issues

in end-user programming features. The second contribu-

tion is the potential solutions, which are, to our knowl-

edge, the first reported approaches to target gender issues

for end-user programming environments.

2. The Starting Point

For some time, we have been working on a concept we

term “end-user software engineering” [11]. The essence

of the end-user software engineering concept is to tightly

intertwine into end-user programming environments fea-

tures that aid end users in guarding against errors in the

“programs” they create (spreadsheets in our case). In this

section, we describe the end-user software engineering

features as they existed in our prototype at the time of the

empirical study that investigated H1 and H2.

As the results of H1 and H2 showed, the environment

was not as effective for females as it was for males. As

one specific example, females’ self-efficacy was a signifi-

cant predictor of their effectiveness testing spreadsheet

formulas, as the positively sloping line in Figure 1 shows.

For the males, however, this was not the case. In short, for

females, low self-efficacy was tied to low usage of useful

features, creating a barrier to effectively testing and de-

bugging their spreadsheet formulas.

2.1 The Features: WYSIWYT with Fault

Localization

Two end-user software engineering features in our en-

vironment are the WYSIWYT (“What You See Is What

You Test”) features that allow users to incrementally

“check off” (“ ” in Figure 2) or “X out” (“X” in Figure 2)

values that are correct or incorrect, respectively [20, 21].

A third features is optional dataflow arrows for making

relationships among the cells explicit (the arrow in Figure

2). These three features were present when the above em-

pirical results were obtained.

Marking values correct and incorrect allows the system

to track the “testedness” and estimate the fault likelihood

of all the cells contributing to those correct and incorrect

values. Untested cells start with red borders (light gray in

this paper), and as a cell becomes more tested, the cell’s

border becomes more blue (more black in this paper). X-

marks trigger fault likelihood calculations, which cause

the interiors of cells suspected of containing faults to be

colored along a yellow-orange continuum (shades of gray

in this paper), with darker orange shades given to cells

with increased fault likelihood. The overall goal of these

features is to encourage the user to test the spreadsheet

thoroughly and, if the testing reveals incorrect values, to

lead the user to the faulty formula(s).

2.2 Surprise-Explain-Reward

These environment features are supported via the Sur-

prise-Explain-Reward strategy [23]. If a user is surprised

by or becomes curious about any of the feedback of the

debugging features, such as cell border color or interior

cell coloring, he or she can seek an explanation, available

via tool tips (as in Figure 2). If the user follows up as ad-

vised in the explanation, rewards potentially ensue.

Our empirical results with end-user programming as

supported by Surprise-Explain-Reward have been encour-

aging [11, 23]. Still, the results of our investigation into

H1 and H2 [7] suggest that the Surprise-Explain-Reward

strategy was not as effective at enticing females as it was

males to use the features. This was the case not only for

adopting and using the features, but even for initially ap-

proaching the features. Our theory-based hypotheses H1

and H2 suggest that females’ lower confidence and higher

Figure 1: Light/dark colors represent the females/males,

respectively. There was a significant relationship be-

tween females’ self-efficacy and spreadsheet testedness

(a measure of effective feature usage).

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

perception of risk may be causes. Also, since much of our

strategy rests upon explanations, it seems likely that the

bases for H3-H5 (learning theory, problem-solving style,

and information processing style) may also be contribu-

tors. We next consider specific barriers that may be con-

tributing to these results, and how to remove them.

3. From Problem to Solution 1:

“No Confidence Required”

From a high-level design perspective, we are dealing

with an “ill-structured” [22] problem. In such problems,

formulating the problem and the solution are not entirely

separate issues, because each attempt to solve the problem

changes the researchers’ understanding of the problem.

The potential solutions are not well-defined, theory is

incomplete, and information upon which a solution can be

based is also incomplete.

In our own ill-structured setting we drew from a com-

bination of existing empirical results, theories, and hu-

man-computer interaction (HCI) design techniques. Fol-

lowing Ko et al.’s example [16], we use the concept of

“barriers” to help organize the problem space. Table 2

lists possible barriers and potential solutions to help fe-

males overcome these barriers. The hypotheses of Table

1, the associated research contributing to those hypothe-

ses, and our empirical results on H1 and H2 were the

sources of the barriers and of the potential solutions.

3.1 Barriers and Potential Solutions

As we have already pointed out, Barrier 1, low confi-

dence in females in computer-related tasks, has been

widely reported, as has risk aversion in females [6].

According to the attention investment model [8], users

will take an action if they believe that the action’s benefits

Table 2: Barriers females faced related to the findings of H1 and H2 and potential solutions.

Barrier Potential Solutions

Emphasize low risk nature of judgments by providing a way to make it acceptable to

express less confident judgments. (For example: not very sure to very sure)

Provide a “what if these cells were wrong” feature, where users can get feedback, but

do not have to commit to saying that the cells are definitely wrong.

Barrier 1: Low computer-

related confidence in females

(as measured in [7] and nu-

merous other sources).

Experience helps in increasing confidence.

Barrier 2: Low feature usage

by females [7].

A WYSIWYT Skill Builder (similar to a Wizard, but set up to facilitate learning

without being overly directive) to introduce users and lead them to greater skills.

Clearly state X-mark’s usefulness, to emphasize the value of learning the X-mark.

Watch someone else use X-marks.

Enhance fault localization feedback to help users understand how fault localization

narrows down the potentially faulty formulas.

Barrier 3: Perception that it

will take too long to learn the

X-mark feature (reported by

females in [7]).

Expand content of explanations to help users make more accurate assessment of risks

and benefits of using the X-mark feature.

Figure 2. WYSIWYT with fault localization as prototyped in Forms/3 [10]. The user notices an incorrect value in

Course_Avg and places an X-mark in the cell. As a result of this X and the checkmark in Exam_Avg, eight cells are

identified as being possible reasons for the incorrect value, with some deemed more likely than others.

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

are greater than their perceived costs and are likely to

materialize given the perceived risks. This implies that

our approach should emphasize the low risk nature of

checkmarks and X-marks. Taking this into account in

conjunction with females’ low confidence led to two low-

risk, low-confidence design ideas, in which users need not

be 100% certain of the correctness of their judgments in

order to make these marks (the first two potential solu-

tions listed in Table 2). The third potential solution, in-

creasing experience to help increase confidence, is based

on Bandura’s self-efficacy theory [4]. Bandura argues that

the best way to increase self-efficacy is to give the low-

confidence individual more experience in personally ac-

complishing the task. This solution does not seem very

useful by itself—seeming to come down to “the best way

to increase feature usage is to increase feature usage”—

but it could magnify the effects of solutions, such as the

first two, that encourage users to get at least a little ex-

perience in the course of trying out the features.

Barrier 2, low feature usage by females, is not inde-

pendent of the other barriers, but is present in our table

because it encourages thinking directly about usage,

rather than concentrating only on underlying causes, as in

the other barriers. A proposed solution is to provide a

“wizard-like” entity, such as Excel’s Chart wizard, to

facilitate feature usage and to build skills. This approach

draws from minimalist learning [19, 13], which advises

that new system features should be introduced by engag-

ing users in activity and providing scaffolding to help

them gradually increase their skills. As this learning the-

ory advocates, the scaffolding would avoid being so

overly directive that users blindly follow instructions;

thus the device would be somewhat different from tradi-

tional wizards, which tend to be very directive.

Barrier 3, females’ perceptions that it takes too long to

learn the X-mark feature has several possible solutions.

The first is ensuring the usefulness of the feature is clearly

stated. The attention investment model’s benefits compo-

nent suggests that, if benefits of placing X-marks are not

obvious to users, they are not likely to see learning the

feature as a good use of their time, especially if they ex-

pect that amount of time to be large. The second solution,

drawn from self-efficacy theory [4], indicates that observ-

ing peers accomplishing the task is an important source of

self-efficacy. This would mean that a low self-efficacy

female should observe another female peer.

It is also possible that the feedback about the results of

X-marks led to Barrier 3. If so, then enhancing the feed-

back would help reduce the barrier. From a theoretical

perspective, Norman’s action cycle [18] points out that to

carry out a task successfully, users must correctly inter-

pret feedback on their actions. Arroyo [3] and Beck et al.

[5] support interactivity in learning to understand tasks,

and both studies revealed useful information about gen-

der. Arroyo’s study suggested that concrete and interac-

tive hints helped females to perform better and learn

more. Beck et al.’s study further indicated that highly

interactive hints helped increase females’ confidence.

3.2 Claims Analyses

For each solution in Table 2 we performed a claims

analysis. Claims analysis [14] is a technique for evaluat-

ing design solutions. In claims analysis the researchers

identify positive and negative consequences of each solu-

tion with respect to the intended users. Our claims analy-

ses were instrumental in helping us to improve our solu-

tions and to choose which solutions to implement. For

example, the claims analysis for the first solution in the

table (which became our “Solution 1”) is shown in Table

3.

3.3 Solution 1’s Prototype

Solution 1’s goal was to communicate to users that

they did not have to be confident to judge the correctness

or incorrectness of values. Thus, in our prototype, instead

of having only two possible actions—checking off or

X’ing out values—there are now four possible actions: the

original two (“it’s right” and “it’s wrong”) plus “seems

right maybe” checkmarks and “seems wrong maybe” X-

marks. See Figure 3. The lighter colored marks are for

lower confidence judgments, as their tool tips explain.

One small but important detail: another way this

change differs from the previous prototype is that in the

previous version, the checkmark was done with a left

click and the X-mark with a right click. Removing the

need for a right click, which we have observed is not of-

ten used by less experienced users, may make X-marks

more accessible to those with less experience.

The lower confidence marks result in feedback at

lower saturations. That is, a lower confidence checkmark

produces lower saturations of border colors reflecting the

affected cells’ “testedness.” Similarly, a lower confidence

Table 3: The claims analysis for Barrier 1 of Table 2.

Problem (re: Barrier 1): Females might use checks or

X-marks only when they are confident about their

judgments.

Potential Solution: Emphasize low risk nature of judg-

ments by providing a way to make it acceptable to ex-

press less confident judgments.

Pros:

+ may increase willingness to use checkmarks or X-

marks.

+ user receives feedback that encourages placing a

mark at the moment he/she questions a cell.

+ optional—user not forced to use it—yet noticeable.

Cons:

- another step for users to perform, taking more time.

- may be seen as greater complexity.

- might be too many "environments" to keep track of.

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

X-mark produces lower saturations of interior colors re-

flecting the affected cells’ fault likelihood. See Figure 4.

Like the increases/decreases in testedness and fault likeli-

hood that arise from the correctness judgments communi-

cated through checkmarks and X-marks, the confidence of

these judgments are also propagated to all affected cells.

3.4 Feedback from Users

As the prototype evolved, we brought in end users with

no programming experience, one at a time, (two males

and six females) to use our prototype, in order to inform

our design of the prototype changes. Each participant was

asked to “think aloud” while working on the same tasks as

in [7]. The tasks were followed by interviews.

Only three participants used the low-confidence marks,

but in general the participants did seem to be more willing

to make judgments than they had been in previous studies.

This change seemed especially apparent with the X-

marks. Thus, the changes may have indeed succeeded in

communicating the low risk and acceptability of low con-

fidence. However, without a statistical study, we cannot

be sure that such a change occurred.

For example, one female (S4) used the approach ex-

actly as we had hoped. Here is what she said while con-

templating a cell’s value:

S4 (thinking aloud): “I am not sure if this cell’s value

is right so maybe I’ll mark it gray and come back to it

later.”

However S3, a female, did not use the low-confidence

marks and later told us she did not see their importance:

S3 (interview): “I didn’t use the ‘maybe’ marks be-

cause I thought that they might not help me any more

than the other ones in my task.”

S3 also made some revealing comments relating to

Barrier 3:

S3 (interview): “I didn’t know what was wrong when

it seemed correct to me ...why it showed 50 and not

100 [% tested].”

Interviewer: “Weren’t the tool tips helpful?”

S3 (interview): “Yeah, they were good but sometimes I

didn’t find the answer that I wanted …I needed more

answers than were present.”

Comments such as this one pointed us toward the path

to Solution 2.

4. Solution 2: Explanations

The addition of low-confidence marks may have

helped with the usage of marks, but the evidence is not

overwhelming. To strengthen our approach, we decided to

tackle Barrier 3 (Table 2), perceived difficulty of learning,

via the learning vehicle in the system, explanations.

As pointed out in Section 2.2, explanations are a criti-

cal part of the Surprise-Explain-Reward strategy [23].

They connect surprises with rewards by providing users

with a low-cost mechanism (tool tips) to explore objects

that arouse their curiosity.

Until the work we report here, explanations were as

follows: each explanation described the semantics, the

action users should try, and a potential reward. They were

designed with minimalist learning theory in mind, with

the goal of encouraging users to learn by doing and to

stay connected to the task they were working on when

they sought the explanations. Therefore, we kept the ex-

planations short—typically one to three very short lines.

4.1 Requirements on Types of Explanation

Content

We used the theory that generated the hypotheses of

Table 1 to also help develop requirements on the solutions

for both Solution 1 and Solution 2. For example, one im-

portant influence on the redesign of our explanations’

content was the evidence suggesting that the above short

explanations may not be well suited to females. Accord-

ing to research in information processing and in educa-

tion, short explanations such as these are closer matches

to the type of information processing and learning envi-

ronments in which males thrive, not females [3, 5, 17].

Anson’s essay on minimalist learning theory, a second

important influence on Solution 2, discusses content and

delivery of minimalist documentation [2]. Content is de-

scribed using the terms conceptual, procedural, and prob-

lem solving. These terms provide a useful framework for

organizing requirements on explanations’ content types.

Anson did not provide precise definitions, but we use the

term “conceptual” for content relating to concepts and

semantics, “procedural” for how to perform actions, and

“problem solving” for higher-level strategies directed

toward “big picture” goals. Together, these terms form

completeness requirements for our content types; that is,

Figure 3: Clicking on the checkbox turns it into the four

choices. The tool tips over the choices, starting with the

left-most X, are “it’s wrong,” “seems wrong maybe,”

“seems right maybe,” “it’s right.”

Figure 4: Saturation of border color (top) and interior

color (bottom) reflect confidence of user judgments of

values being correct or incorrect.

High Low

Low High

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

we require explanations to be available with conceptual,

procedural, and problem-solving content.

A third influence on Solution 2 was Ko et al.’s work

on learning barriers [16]. We used these learning barriers

to cross-check our list of content type requirements for

completeness and to solidify each requirement’s aim.

A final influence came from research on learning [15]

and problem-solving [1] styles. These works have found

that females’ styles tend to be non-linear (not necessarily

sequential in nature), whereas males’ tend to be linear

(sequential). As a result, we required that our redesigned

explanations support both linear and non-linear styles.

4.2 Applying the Requirements

The content type requirements of Section 4.1 led ini-

tially to three additional components in the explanations:

a “what” component to fulfill the conceptual requirement,

a “how should...” component, to fulfill the procedural

requirement, and an “advice” component to fulfill the

problem-solving requirement. Eventually, we subdivided

the conceptual component for clarity of labeling: a “what”

component with declarative information and a “how

did...” component that explains how the current state

came about (emphasizing system responses to user ac-

tions). Users of our low-cost prototype experienced the

new components primarily in the form of paper augmen-

tations to our executable prototype, as shown in Figure 5.

In addition, the actual content of each type necessitated

an orthogonal set of requirements. Table 4 lists the re-

quirements, along with the originating theories.

4.2.1 Conceptual: The “What” Component

S7 (thinking aloud): “I don’t understand why this [cell]

is not 100% tested when it appears to have the right

value.”

Figure 6 shows an example of a short explanation

(“50% of this cell has been tested”) and the additional

components. The goal of the “what” component is to

communicate the semantics of the object in more detail

than the short explanation:
The purple border means that this cell has been partially

tested, but that other situations still need to be tested. The

says you have tested this cell’s value.

The first two sentences of this “what” component

demonstrate Requirement 5 well (Table 4). This theory

suggests that information be presented to users only when

the information is relevant [13]. Separating the “what”

component from the “how” and “advice” components is

one way we applied this theory, because it gives the user a

way to communicate what question they are wondering

about. We also applied this theory by tying the explana-

tions to specific objects, where users, through their hover-

ing actions, get information on exactly which object, in

which state, they are curious about.

The last sentence of this component, “Trying more

situations helps you find errors” demonstrates Require-

ments 8 and 11, by relating the object’s current situation

to the big picture and keeping the rewards clear.

Note the emphasis on testing, rather than on the actions

and feedback. Several learning theories dissuade giving

users information that is too directive (Requirement 3),

resulting in users simply taking the action without think-

ing or learning from it [13, 9]. Thus, we elected to stress

testing situations, rather than checking cells off to achieve

a blue cell border as the goal.

4.2.2 Conceptual: The “How did…” Component

S8 (thinking aloud): “...how did I do that?”

The “how did” component explains what steps the sys-

tem or user took to get the object to its current state:
The purple border and the means you previously decided

that this cell’s value(s) was correct, and checked it off.

This component was particularly influenced by Re-

quirements 4 and 7. Its tie to Requirement 4 is simply that

it helps the user to interpret the meaning of the feedback.

Requirement 7, which comes from various learning theo-

ries, allows omission of information the user may well

already know (and if not, they can always ask again via

“how should”). According to these theories, this encour-

ages users to make ties among the different explanation

components and their experience using the spreadsheet

features. These interconnections help them learn.

For S8, who proceeded to open this component in or-

der to answer her question above, the “how did…” con-

tent provided her with the information she needed:

S8 (thinking aloud): “Oh yeah, I should test it more.”

 4.2.3 Procedural: The “How should…” Component

S8 (thinking aloud): “How should I test it more?”

The “how should…” component suggests action(s) us-

ers can take to make progress on their task:
You can get into a new situation by changing some of the in-

Figure 5. In our low-cost prototype, the user’s request

for an additional explanation component (bottom)

caused the examiner to add it to the screen (top). Note

the support for non-linear approaches—a user can view

many unrelated components simultaneously.

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

put values. Looking for new testing opportunities (marked by

?s) helps you make progress testing.

 The second sentence of the above example aligns es-

pecially with two main themes of minimalist learning

theory: keeping the user task-oriented and active (Re-

quirements 1 and 2, respectively). The example compo-

nent above reminds the user of the focus — testing, and

suggests specific actions they can take to make progress

on this task. Note that it also reminds them of the meaning

of the “?” feedback device (Requirement 4), to help them

evaluate the result of the action if they do take it.

4.2.4 Problem Solving: The “Advice” Component

The “advice” component provides ideas about higher-

level strategies to achieve the “big picture” goals. One of

the purposes is to help orient the user to this feature

within the context of their overall task.
You can use the border colors to systematically test your

spreadsheet. If you can make a decision about a cell’s value

(correct or wrong) you can (1) test this cell given different

inputs, or (2) move on to testing another cell, or (3) if there

are tinted cells, which indicate possible locations of errors,

follow the system’s guidance (cells with darkest tints) to find

the cause(s).

Border colors reflect the number of s on this or related

cells, and tints on the entire cell reflect the number of Xs (in

relation to the number of s) on this or related cells.

The “advice” component satisfies Requirement 6,

which is important when the complexity of a task is high

and users need ideas on how to approach the task. In this

example, the advice component suggests three strategies.

There is a fine balance in the advice components be-

tween providing enough information (Requirements 9, 10,

and 11) without providing too much (Requirements 3 and

5). As Requirement 10 clarifies, it is important for the

user to know how to follow through. Further, pertinent to

satisfying Requirement 9, research on gender differences

in perceived risk, risk aversion, and the way the females

process information suggests that females may need many

details before taking an action. Finally, according to the

attention investment model, the explanation component

may be important in decreasing users’ perceptions of risk

and/or increasing their perceptions of benefits.

5. Conclusion

In this paper, we describe our third step of investiga-

tion into gender issues in end-user programming envi-

ronments. The first two steps of our four-step investiga-

Figure 6. The top line of the tool tip contains a very short explanation. The expansion components will be clickable via

the “What?”, “How did...?”, “How should...?”, and “Advice” labels.

Table 4: The explanation content requirements.

Content Requirements Sources

1. Is task oriented. Minimalist learning

[13]

2. Keeps user active. Various learning

theories [9, 13]

3. Explanation not too direc-

tive.

Various learning

theories [9, 13]

4. Explains how to evaluate

whether an action taken was

the right one to take.

Norman’s action

cycle [18]

5. Is context-appropriate: User

should care about informa-

tion when presented.

Minimalist learning

[13]

6. Suggests strategies for a dif-

ficult task.

Minimalist learning

[19]

7. Encourages user to take ad-

vantage of prior knowledge.

Various learning

theories [19, 9]

8. Explains why task is mean-

ingful (relate to big picture).

Motivation (summa-

rized in [6])

9. Provides enough information

for users to accurately assess

risks and benefits.

Risk, information

processing (summa-

rized in [6]), Atten-

tion investment [8]

10. Makes obvious the actions

that need to be taken.

Minimalist learning

[13]

11. Makes sure rewards are

clear.

Attention invest-

ment [8]
The purple border means that this cell has been partially tested,

but that other situations still need to be tested. The says you

have tested this cell’s value. Trying more situations helps you

find errors.

The purple border and the mean you previously decided that

this cell’s value(s) was correct, and checked it off.

You can get into a new situation by changing some of the input

values.

Looking for new testing opportunities (marked by ?s) helps you

make progress testing. Testing helps you find errors.

You can use the border colors to systematically test your spreadsheet. If you can make a decision about a cell’s value (correct or

wrong) you can (1) test this cell given different inputs, or (2) move on to testing another cell, or (3) if there are tinted cells, which

indicate possible locations of errors, follow the system’s guidance (cells with darkest tints) to find the cause(s).

Border colors reflect the number of s on this or related cells, and tints on the entire cell reflect the number of Xs (in relation to the

number of s) on this or related cells.

How

did

How

should

What

Advice

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

tion method were to use theory and previous empirical

work to derive specific hypotheses (see Table 1) related to

gender issues in such environments, and to investigate

whether these hypothesized issues really do arise in end-

user programming. The result of the second step was con-

firmation that two hypothesized gender issues indeed ex-

ist in end-user programming (although the underlying

cause for these gender differences is unknown). The third

step, reported in this paper, was to develop solutions to

address these issues. The changes were specifically aimed

at the females who appeared to be facing barriers in using

our earlier design, although we suspect that our changes

will help both genders. The fourth step, using quantitative

empirical methods to evaluate the effectiveness of the

solutions, will be the subject of an upcoming study.

Our work resulted in two complementary solutions: a

single-mouse-button “no confidence required” device to

elicit inputs from low-confidence users that were then

reflected in the feedback devices, and changes to our ex-

planation system to support user-driven, non-linear explo-

ration of the end-user programming devices in the system.

Our procedure for developing these solutions used the-

ory, low-cost prototyping, and qualitative empirical work.

Specifically, we showed how theories such as self-

efficacy theory, minimalist learning theory, Norman’s

action cycle, and attention investment can be used to help

understand barriers, derive requirements, and ultimately

derive design ideas to address gender issues in end-user

programming. Using the theory-derived design ideas,

coupled with design techniques originally developed in

HCI, we designed the potential specifics of our solutions,

evaluated them analytically and through rapid prototyp-

ing, and informed our emerging approaches with a small

stream of users. The solutions that resulted are the first to

begin addressing gender differences through the design of

features in end-user programming environments.

Acknowledgments

Our removal of the right click in Solution 1 builds on

an earlier design proposed by Joseph Ruthruff. This work

was supported in part by Microsoft Research, by NSF

grant CNS-0420533 and by the EUSES Consortium via

NSF grants ITR-0325273 and CCR-0324844.

References

[1] P. Ames, “Gender and learning styles interactions in

student’s computer attitudes”, J. Educational Computing

Research, 28, 3, 2003, 231-244.

[2] P. Anson, “Exploring minimalistic technical documentation

design today: a view from the practitioner’s window”, In J.

M. Carroll (Ed.), Minimalism Beyond the Nurnberg Funnel,

MIT Press, Cambridge, MA, 1998, 91-117.

[3] I. Arroyo, “Quantitative evaluation of gender differences,

cognitive development differences and software effectiveness

for an elementary mathematics intelligent tutoring system”,

PhD Thesis, Univ. Mass. Amherst 2003,

http://ccbit.cs.umass.edu/people/ivon/Dissertation80.pdf

[4] A. Bandura, “Self-efficacy: Toward a unifying theory of

behavioral change”, Psychological Review, 8, 1977, 191-215.

[5] J.E. Beck, I. Arroyo, B.P. Woolf, and C. Beal, “An ablative

evaluation”, Ninth Int. Conf. Artificial Intelligence in

Education, 1999, 611-613.

[6] L. Beckwith and M. Burnett, “Gender: An important factor in

end-user programming environments?” IEEE Symp. Visual

Languages and Human-Centric Computing, 2004, 107-114.

[7] L. Beckwith, M. Burnett, S. Wiedenbeck, C. Cook, S. Sorte,

and M. Hastings, “Effectiveness of end-user debugging

software features: Are there gender issues?” ACM Conf.

Human-Computer Interaction, 2005, 869-878.

[8] A. Blackwell, “First steps in programming: a rationale for

Attention Investment models”, IEEE Symp. Human-Centric

Computing Languages and Environments, 2002, 2-10.

[9] J.D. Bransford, A.L. Brown, and R.R. Cocking, How People

Learn: Brain, Mind, Experience, and School, National

Academy Press, Washington DC, 1999.

[10] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J.

Reichwein, and S. Yang, “Forms/3: A first-order visual

language to explore the boundaries of the spreadsheet

paradigm”, J. Fun. Programming, 11, 2, 2001, 155-206.

[11] M. Burnett, C. Cook, and G. Rothermel, “End-user software

engineering”, Comm. ACM, 47, 9, 2004, 53-58.

[12] T. Camp, “The incredible shrinking pipeline”, Comm.

ACM, 40, 10, 1997, 103-110.

[13] J.M. Carroll (Ed.), Minimalism Beyond “The Nurnberg

Funnel”, MIT Press, Cambridge, MA: 1998.

[14] J.M. Carroll and M.B. Rosson, “Getting around the task-

artifact cycle: how to make claims and design by scenarios”,

ACM Trans. Information Systems, 10, 2, 1992, 181-212.

[15] C. Gorriz and C. Medina, “Engaging girls with computers

through software games”, Comm. ACM, 43, 1, 2000, 42-49.

[16] A.J. Ko, B.A. Myers, and H.H. Aung, “Six learning barriers

in end-user programming systems”, IEEE Symp. Visual

Languages and Human-Centric Computing, 2004, 199-206.

[17] J. Meyers-Levy and B. Sternthal, “Gender differences in

the use of message cues and judgments”, J. Marketing

Research, 28, Feb 1991, 84-96.

[18] D.A. Norman, The Design of Everyday Things, Basic

Books, New York, 1988.

[19] M.B. Rosson, J.M. Carroll, and R.K.E. Bellamy, “Smalltalk

scaffolding: a case study of minimalist instruction”, ACM

Conf. Human-Computer Interaction, 1990, 423-429.

[20] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A.

Sheretov, “A methodology for testing spreadsheets”, ACM

Trans. Software Eng.ineering and Methodology, 10, 1, 2001,

110-147.

[21] J.R. Ruthruff, S. Prabhakararao, J. Reichwein, C. Cook, E.

Creswick, and M. Burnett, “Interactive, visual fault

localization support for end-user programmers”, J. Visual

Languages and Computing, 16, 1-2, 2005, 3-40.

[22] H.A. Simon, “The structure of ill-structured problems”,

Artificial Intelligence, 4, 1973, 181-202.

[23] A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L.

Casburn, C. Cook, M. Durham, and G. Rothermel,

“Harnessing curiosity to increase correctness in end-user

programming”, ACM Conf. Human Factors in Computing

Systems, 2003, 305-312.

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

