
Garbage In, Garbage Out?
An Empirical Look at Oracle Mistakes by End-User Programmers

Amit Phalgune*, Cory Kissinger*, Margaret Burnett*,

Curtis Cook*, Laura Beckwith*, and Joseph R. Ruthruff†

*Oregon State University †University of Nebraska-Lincoln
Corvallis, Oregon 97331 Lincoln, Nebraska 68588

{phalgune, ckissin, burnett, cook, beckwith}@cs.orst.edu {ruthruff}@cse.unl.edu

Abstract
End-user programmers, because they are human, make
mistakes. However, past research has not considered how
visual end-user debugging devices could be designed to
ameliorate the effects of mistakes. This paper empirically
examines oracle mistakes—mistakes users make about
which values are right and which are wrong—to reveal
differences in how different types of oracle mistakes im-
pact the quality of visual feedback about bugs. We then
consider the implications of these empirical results for
designers of end-user software engineering environments.

1. Introduction
Errors occur in every domain of human action, and

thus it should be no surprise that they arise in end-user
programming. For example, evidence abounds of errors in
the spreadsheet domain, where errors are frequent and in
some cases very costly (e.g., [10, 14, 15]). Panko’s work
[14] points out the substantial error rates in spreadsheets
and possible reasons for these rates, such as the lack of
debugging tools available in spreadsheet systems and
overconfidence on the part of the spreadsheet users.

In the early decades of computing, a common saying
was “garbage in, garbage out.” That is, mistakes in com-
municating with a computer were aberrations, and if users
provided bad data (garbage in), then they should expect
the software to produce incorrect answers (garbage out).

Of course, with the joint advents of interactive systems
and HCI as a subarea of computer science, it was realized
that people do make mistakes in communicating with
computers, and features began to appear to help prevent
mistakes (such as menus instead of typed-in commands)
and to allow people to detect and recover from them (such
as immediate feedback and undo facilities).

Still, below this surface level, the philosophy of “gar-
bage in, garbage out” remains: if the user’s mistake
somehow gets in unnoticed, then surely he or she still
should expect “garbage out.” The unfortunate conse-
quence is that it then seems reasonable for developers to
assume that software needs to work correctly only when

no mistaken data has worked its way into the system.
In this paper, we consider whether this is a reasonable

assumption in software whose purpose is to help end-user
programmers reason about and debug their programs. In
the problem solving end-user programmers must perform
to find and remove errors from their programs, it is not
always straightforward for users to make correct judg-
ments about how well different parts of their program are
working, and thus some mistakes are inevitable. We con-
sider the prevalence and effects of these mistakes in order
to determine whether end-user software engineering envi-
ronments offering testing and debugging support to end-
user programmers must be designed with this inevitability
in mind.

The type of testing and debugging mistakes upon
which this paper focuses are oracle mistakes [23], a term
meaning a falsely positive or falsely negative judgment as
to whether an output computed by the program is correct.
The end-user programming environment prototype in
which we consider this type of mistakes is a spreadsheet
environment that includes a visual testing and fault local-
ization device we have developed known as WYSIWYT
(What You See Is What You Test) [16, 18]. In this paper,
we explore how different subsets of oracle mistakes im-
pact the effectiveness of interactive, visual testing and
debugging support for end-user programmers, and what
might be done to ameliorate these impacts.

2. End-User Debugging and Mistakes
2.1 End-User Debugging

There has been recent research focusing on assisting
end-user programmers in debugging. Virtually all of this
work communicates with the user largely in the form of
visual devices. Woodstein [22] is a software agent that
visually assists users in debugging e-commerce errors. Ko
and Myers present the Whyline [13], an “interrogative
debugging” device for the event-based programming en-
vironment Alice. There has also been a variety of work
supporting program comprehension and debugging by end
users in the spreadsheet paradigm. For example, Igarashi

et al. [11] present devices to aid spreadsheet users in data-
flow visualization and editing tasks. S2 [21] provides a
visual auditing feature in Excel 7.0: similar groups of
cells are recognized and shaded based upon formula simi-
larity, and are then connected with arrows to show data-
flow. This technique builds upon the Arrow Tool, a data-
flow visualization device proposed by Davis [8]. Ayalew
and Mittermeir [3] present a method of fault tracing based
on “interval testing” and slicing, which is similar to our
own work on assertions to help users automatically guard
against faults [6]. There is also recent work to automati-
cally detect certain kinds of errors, such as errors in
spreadsheet units [1] and types [2].

2.2 WYSIWYT with Visual Fault Localization
We have been working on a vision of end-user soft-

ware engineering [7] that we have prototyped in the
spreadsheet paradigm because it is so widespread. Our
vision of end-user software engineering involves holistic
support of the facets of software development in which
end users engage, tied together through incremental visual
devices. These visual devices are necessarily low in cost
to maintain the immediate responsiveness expected by
spreadsheet users, and are immediately updated as end
users add to, modify, test, and debug their programs.

WYSIWYT with visual fault localization is part of this
vision. An example from our research prototype, Forms/3
[5], is shown in Figure 1. In the course of developing a
spreadsheet, users can communicate a judgment that a
cell’s value is correct with a checkmark (√), or that a
cell’s value is incorrect with an X-mark (X), as shown in
the figure. Checkmarks contribute to the “testedness” of
the cells according to an adequacy criterion detailed in
[16], and a cell’s testedness is reflected in border colors
along a red-to-blue continuum (light gray to black). Data-
flow arrows reflecting dependencies, whose color reflects
the testedness of specific relationships among cells and
subexpressions, are available on demand. The system
combines the user’s checkmarks and X-marks with the
dependencies in the cells’ formulas to estimate likeli-

hoods of the fault (erroneous formula) being located in
various cells. It colors these cells’ interiors in light-to-
dark amber (gray) to reflect these likelihoods [18].

Given these communication devices, a false positive is
a checkmark on a value that is incorrect, and a false nega-
tive is an X-mark on a value that is correct (Figure 2).

2.3 Mistakes in Interactive Testing and
Debugging Environments

Like most environments for end-user programmers, the
spreadsheet paradigm is modeless and interactive: users
incrementally experiment with their software and see how
the results work out after each change; an example of this
in spreadsheets is the automatic recalculation feature. This
means that testing and debugging support in these types
of environments must accommodate continuous interac-
tion with the end user.

Figure 1 shows an example from our research proto-
type. In the figure, suppose there is a fault in cell Mid-
term1_Perc, causing incorrect values in several down-
stream cells. Unfortunately, the user has made an oracle
mistake by checking off (√) Min_Midterm1_Midterm2's
value (a false positive). Because of this mistake, Mid-
term1_Perc is only mildly implicated as the culprit by the
visual feedback, as the figure shows.

The research literature provides little guidance regard-
ing how the developers of visual devices for interactive
testing and debugging should handle oracle mistakes and
their impacts on such devices’ accuracy of feedback. In

Figure 1: Gradebook spreadsheet with an oracle mistake (√, a false positive) on cell Min_Midterm1_Midterm2.
The correct mark (X) would have resulted in a more accurate prediction of the faulty cell’s (Midterm1_Perc)
fault likelihood, with a resultingly darker coloring than the relatively light coloring it has here.

Figure 2: Oracle mistakes consist of false positives and
false negatives.

fact, the presence of any mistakes runs contrary to a
common assumption in traditional testing and debugging
research—that all information is accurate and reliable—
meaning that much of the prior software visualization
research may be inherently unsuited for the interactive
environments that end-user programmers utilize.

There is, however, some information about mistakes in
end-user debugging upon which we can build. Galletta et
al. found that presenting users with formulas and values
while debugging spreadsheets did not help them find er-
rors, but did diminish the number of false positives users
committed [9]. In the course of other investigations we
have done on end-user debugging, we have reported the
presence of oracle mistakes observed [17, 19, 20], which
gives a little preliminary information about their preva-
lence. Ko and Myers [12] use the phrase “determining a
failure” to describe all errors in perceiving and under-
standing output, which has a significant overlap with ora-
cle mistakes. In their observational study, problems of the
“determining failure” type made up 28 of the 29 break-
downs that occurred during debugging, strongly implying
that this type of problem is one of the most important fac-
tors when debugging goes astray. Combined, these works
suggest that designers of interactive fault localization de-
vices may not be able to ignore the possibility of oracle
mistakes. This paper investigates this possibility.

3. Experiment
To gain insight into the importance of oracle mistakes

on end-user testing and debugging we consider the fol-
lowing research questions:

RQ1: How often do oracle mistakes occur?
RQ2: Do oracle mistakes impact effectiveness of a

fault localization device?
RQ3: Are oracle mistakes tied to end users’ under-

standing of the debugging device?
RQ4: Do oracle mistakes impact end users’ ability to

debug?
RQ5: Do “smart” oracle mistakes impact effectiveness

of the fault localization device differently?

3.1 Design
This investigation consists of both an observational

study and a planned experiment.
A collection of naturally occurring oracle mistakes was

available to us in the electronic transcripts from a previ-
ous experiment [4]. We refer to this collection of tran-
scripts, which contains the oracle mistakes the partici-
pants actually made, as Version Original. For the observa-
tional study, we simply analyze effects of an observed
independent variable (number of oracle mistakes) on ob-
served dependent variables (discussed later).

For the planned experiment, the design was a within-
subjects design, in which the treatment variable being
manipulated—i.e., the independent variable—starts with

the same collection of observed oracle mistakes. We then
manipulated these observed oracle mistakes, in ways we
describe later in this section, to generate new simulated
versions with which we can compare Version Original.

3.2 What the Original Participants Did
The previous experiment [4] produced Version Origi-

nal. After completing a background questionnaire, the 51
participants were given a tutorial that taught the use of the
WYSIWYT checkbox for checking off correct values and
associated feedback, but did not teach debugging or test-
ing strategy content. We did not even teach the use of
fault localization; rather, participants were introduced to
the mechanics of placing X-marks and given time to ex-
plore any resulting feedback that they found interesting.

The participants were then provided with two spread-
sheets to debug. The use of two spreadsheets reduced the
chances of the results being due to any one spreadsheet’s
particular characteristics. The experiment was counterbal-
anced with respect to task order so as to distribute learn-
ing effects evenly. We collected electronic transcripts of
every action taken by the participants and the system’s
resulting feedback.

The two spreadsheets were Gradebook (Figure 1) and
Payroll (shown in [19]). To make the spreadsheets repre-
sentative of real end-user spreadsheets, Gradebook was
derived from an Excel spreadsheet of an (end-user) in-
structor, which we ported into an equivalent Forms/3
spreadsheet. (To accommodate Forms/3 features, a minor
change was made to two minimization operators.) Payroll
was a more complicated spreadsheet designed by two
Forms/3 researchers using a payroll description from a
real company.

These spreadsheets were seeded with five faults cre-
ated by real end users. Gradebook was seeded with three
of these users’ mechanical faults, one logical fault, and
one omission fault, and Payroll with two mechanical
faults, two logical faults, and one omission fault. Under
Panko’s classification [14] mechanical faults include sim-
ple typographical errors or wrong cell references. Logical
faults are mistakes in reasoning and are more difficult
than mechanical faults. An omission fault is information
that has never been entered into a cell formula, and is the
most difficult to detect [14].

The participants were supported by a fault localization
algorithm known as Test Count [18]. Let NumFailing-
Tests (NFT) be the number of failed tests in which a cell c
has participated, and NumSuccessfulTests (NST) be the
number of successful tests in which c has participated.
With Test Count, if cell c has no failed tests, the fault
likelihood of c is “None”. Otherwise, the fault likelihood
of cell c is computed as:

Fault likelihood(c) = max (1, 2*NFT - NST)

3.3 Current Experiment’s Procedures
Using Version Original as a base, we manipulated the

numbers and types of oracle mistakes to generate three
more versions of the data: Version FalsePositivesOnly,
Version FalseNegativesOnly, and Version Ideal.

3.3.1 Three Generated Versions

In Version FalsePositivesOnly, we replaced each false
negative mistake (in which the user placed an X-mark on
a value that was in fact correct) with a non-mistaken
judgment, namely a checkmark. We corrected each false
negative mistake one at a time, in isolation from the oth-
ers. Specifically, we ran a simulation on the original data
to collect the fault localization feedback after each action,
and as soon as a false negative mistake was detected, we
replaced the erroneous X-mark with its correct counter-
part (a checkmark), reported the new fault localization
feedback that the system provided, and then restored the
original mistake before proceeding on with the simula-
tion. This procedure enabled us to isolate the difference in
the visual feedback provided by the system whenever a
false negative mistake was corrected. It also prevented
this “what if” version from straying too far from what the
original participants actually saw by preventing a cascad-
ing effect from the accumulation of changes.

Similarly, in Version FalseNegativesOnly, we replaced
each false positive mistake (in which the user checked off
a value that was in fact incorrect) with a non-mistaken
judgment, namely an X-mark, using the same safeguard
against accumulated effects as for Version False-
PositivesOnly.

Version Ideal was intended to reflect the best feedback
each participant could have had if he or she had made no
mistakes at all. It corrected both types of oracle mistakes.
For this version, there was no reason to guard against cas-
cading effects; it simply reflected the ideal feedback that
could be achieved by making no oracle mistakes when
judging (marking) whatever cells each participant judged.

3.3.2 “Smart” Mistakes

By definition, testing is validating output values, and
the role of an oracle is to accurately judge whether the
output values are correct [23]. However, during several
earlier think-aloud studies we have noticed some users
placing marks to communicate judgments about the cor-
rectness (or lack thereof) of the formulas (i.e., source
code). For example, even when a value was incorrect,
some users checked off the cell because the formula was
correct. Although this unintended usage may not seem a
mistake from a user’s perspective, it is still a (serious)
mistake from the perspective of a testing system's reliabil-
ity, because these systems reason according to the above
definitions. But, it is a different sort of mistake, one that
has a possible rationale behind it. Thus, we term this type

of mistake as a smart mistake. The remaining mistakes are
termed no-rationale mistakes. See Figure 3.

In investigating the impacts of these two, mutually ex-
clusive, subsets of mistakes, we created a variation of the
above Version Ideal that isolated the smart mistakes (cor-
recting only the no-rationale mistakes). This version is
termed Version Smart.

3.4 Dependent Variables and Measures
For the portion of our investigation conducted via the

observational study, the observed dependent variables
were the participants’ actual bugs fixed and their bugs
introduced. We chose to focus on these variables because
oracle mistakes seem likely to affect debugging success.

We also required a measure of the fault localization
technique’s effectiveness. Since an important goal of this
experiment was to study the impact of oracle mistakes on
the visual feedback of our fault localization device, as in
our previous work [17], we defined the fault localization
technique’s effectiveness as the technique’s ability to cor-
rectly and visually differentiate the correct cells in the
spreadsheet from those that actually contain faults. Let
FaultyCells(AvgFL) be the average fault likelihood of
colored faulty cells. Let CorrectCells(AvgFL) be the aver-
age fault likelihood of colored correct cells. The formula
to calculate visual effectiveness (VE) according to this
measure is then:

VE = FaultyCells(AvgFL) – CorrectCells(AvgFL)

4. Results
4.1 RQ1: Prevalence of Oracle Mistakes

As Table 1 illustrates, 17.1% and 22.5% of the judg-
ments made in Gradebook and Payroll, respectively, were
mistaken. This frequency is even worse than that ob-
served in previous work [17, 20], which ranged from 5%
to a bit over 20%. In fact, in this study, only two out of
the 51 participants managed to not make oracle mistakes.

4.2 RQ2: Impact on Visual Effectiveness
To measure the impact of oracle mistakes on the effec-

tiveness of fault localization feedback, we compared the
visual effectiveness of the feedback the user actually saw
to the visual effectiveness they might have seen if each
single oracle mistake had instead been a correct judgment.

Figure 3: The shaded sectors show the smart mistakes.

(Alternatively, we could have compared with a version in
which each oracle mistake was simply removed, i.e., no
decision was made. However, at the point an oracle mis-
take was made, the user was ready to make a decision, so
fixing the erroneous decision seemed a closer scenario to
reality than simulating the user making no decision at that
point.) Since we wanted to stay as close as possible to
what the users really saw, Versions FalsePositivesOnly
and FalseNegativesOnly were the right versions for this
question, but Version FalsePositivesOnly had too few
changes to benefit from statistical analysis.

Thus, we compared Version Original with the version
with most of the mistakes fixed (i.e., Version FalseNega-
tivesOnly), using the following (null) hypothesis as a sta-
tistical vehicle:

H2-1: There will be no difference between the visual
effectiveness of the feedback produced in Version
Original and that in Version FalseNegativesOnly.
For both Gradebook and Payroll (Table 2), there was a

significant difference in the average visual effectiveness
scores between the two versions (paired t-test: df = 50,
Gradebook: t=10.57, p<.001; Payroll: t=2.19, p=.03).
Thus, we reject H2-1.

Discussion: Obviously, the use of a device, any device,
in an incorrect manner will negatively impact that de-
vice’s effectiveness. Still, this result combined with the
findings from RQ1 establishes a critical point: designing
an interactive fault localization device under the assump-
tion that oracle mistakes can be ignored is not reasonable.
The investigation of RQ1 shows they occurred with great
frequency and the investigation of RQ2 shows they did
significant damage.

4.3 RQ3: Relationship to Understanding
Suppose a lack of understanding of the fault localiza-

tion device is causing the mistakes. If that is the case, we
might work on increasing users’ understanding of the
device to reduce the number of oracle mistakes and miti-
gating the type of damage observed in RQ2. To consider
whether this would be a profitable direction, we consid-
ered the following hypothesis:

H3-1: There will be no relationship between users’
oracle mistakes and their understanding of the debug-
ging device.
Understanding was measured via post-test question-

naire scores, with a maximum score possible of 10. Re-
gression analysis on the observed data in Version Original
(Figure 4), showed no significant relationship between the
users’ understanding of the debugging device and the
number of oracle mistakes made (linear regression:
F(1,49) = .104, β =.204, R2= .002, p = .75).

Discussion: The users’ understanding of the device
does not seem implicated. The results show that partici-
pants with a better understanding of the device did not
make fewer mistakes.

4.4 RQ4: Impact on Debugging
Section 4.2 considered the system’s ability to produce

good feedback in the presence of oracle mistakes by mak-
ing comparisons with a generated version of the data. We
now turn to solely observed data to consider the user’s
ability to succeed at debugging in the presence of oracle
mistakes.

H4-1: The number of oracle mistakes users made will
have no relationship to the number of bugs they fixed
or introduced.
Results of the regression analyses of the participants’

number of oracle mistakes compared to their ability to fix
the bugs we seeded, and to avoid introducing new bugs, is
shown in Table 3. The regression coefficient is the slope
of the least squares fitting of number of mistakes against
the progress measures.

We found a significant relationship between oracle
mistakes and both bugs fixed and introduced for the
Gradebook task (linear regression: data shown in Table
3). The Payroll task, however, did not show any signifi-
cant relationship between the number of oracle mistakes a
user made and the user’s debugging. The relationships are
illustrated in Figure 5. Thus, for the Gradebook task, we

Table 1: Frequency of oracle mistakes for each task (as observed in Version Original).
 Number of marks

(judgments)
Number of

oracle mistakes
% Number of

false positives
Number of

false negatives
Mean mistakes

per user
Median

Gradebook 899 154 17.1 144 10 3.02 2
Payroll 1,696 381 22.5 354 27 7.27 4

Table 2: Mean / median of Version FalseNegativesOnly
feedback and Version Original (p < .05 is shaded).

 VE with most mistakes
corrected

VE Original

Gradebook .73 / .71 .01 / .00
Payroll .25 / .12 .01 / .00

Oracle Mistakes

0
1
2
3
4
5
6
7
8
9

0 10 20 30 40

U
nd

er
st

an
di

ng

Figure 4: Most participants made 1 to 10 oracle mis-
takes, regardless of their understanding scores.

reject H4-1. (Even so, note that the low R2 values do not
indicate a good fit despite the level of significance.)

Discussion: We were surprised that on the Payroll
task, the harder of the two, oracle mistakes had no rela-
tionship to a user’s debugging success. However, a closer
analysis of the characteristics of the oracle mistakes them-
selves may explain this, which we consider next.

4.5 RQ5: Impact of Smart Mistakes
Consider the implications of making a “smart mis-

take”. For example, suppose the user placed an X-mark
on a cell with a correct value but an incorrect formula.
Most fault localization algorithms are based on evidence
of “guilt” (judgments that values are bad), and this is the
case with our fault localization algorithm as well. As a
result, this cell will be colored “more faulty” (darker in
our prototype) because the user has just implicated it.
Thus, although the user has mistakenly communicated
that the value is wrong, a desirable side effect occurred:
the cell, which is indeed faulty, has just gotten darker. For
this particular cell then, its visualized fault likelihood is
better than if the user had not made the oracle mistake!

However, looking to this cell’s backward slice (the
cells contributing to this cell’s value), there is likely to be
a detrimental effect on visual effectiveness, because all of
these cells will be wrongly assumed to be contributing to
an incorrect value (which they did not), and as therefore
being potentially faulty.

So, these “smart” mistakes are helpful in some respects
and harmful in others. To consider just how helpful or
harmful they are, we compared the effects of smart mis-
takes to the ideal:

H5-1: There will be no difference in visual effective-
ness between Version Smart and Version Ideal.
As Table 4 shows, there were only a few smart mis-

takes in the Gradebook task, but over half of the oracle
mistakes in Payroll were smart mistakes. (This is interest-
ing, and could be tied to the difference in relative diffi-
culty between the two.)

Because Gradebook had so few smart mistakes, the ef-
fects of smart mistakes on its visual effectiveness scores
could not be analyzed statistically, but we analyzed Pay-
roll as follows. The feedback in Version Smart (the ver-
sion from which the no-rationale mistakes had been cor-
rected) was compared to that of Version Ideal. The differ-
ence in the average visual effectiveness scores was not
significant in magnitude, due in part to the fact that there
were also a number of correct marks present. However,
the average visual effectiveness score for each participant
under Version Smart was higher a startling number of
times (Figure 6). Analysis of the counts showed that Ver-
sion Smart indeed had significantly better feedback than
Version Ideal (Fishers Exact Test: p = .03).

Discussion: Our results above showed that, for this
particular spreadsheet, smart mistakes were better than
perfection! These results may, of course, be due to the
particular relationships present in that spreadsheet. (For
example, for a spreadsheet with longer dataflow chains
the detrimental effect on the backward slice could out-
weigh the positive effect on the cell that was directly
marked.) But despite the fact that in some cases the global
negatives could win out, the fact remains that this type of
mistake was extremely common in Payroll, and has a
strongly positive impact on the cell being marked.

RQ5’s result may explain the differences that were
seen between Gradebook and Payroll in RQ4. Many of
the mistakes in Payroll were smart mistakes, and RQ5
implies that these mistakes would not have deleterious
effects on debugging.

Finally, recall that the results of RQ2 showed that,
overall, oracle mistakes had a negative impact on visual
effectiveness. Since the smart mistakes included in RQ2’s

Oracle Mistakes

Fi
xe

d

Oracle Mistakes

In
tro

du
ce

d

Figure 5: In Gradebook, oracle mistakes were inversely
proportional to the number of bugs fixed and directly
proportional to the number of bugs introduced.

-0.5
0

0.5
1

1.5
2

 Participants

A
ve

ra
ge

 V
. E

.

Figure 6: Average visual effectiveness for each par-
ticipant under Version Smart (light bars) and Version
Ideal (dark bars).

Table 3: Regression analyses of number of oracle mis-
takes vs. bugs fixed and bugs introduced.

Progress Measure F(1,49) β R2 p-value
Gradebook:

Fixed 4.34 -.179 .081 .043
Introduced 8.02 .195 .141 .007

Payroll:
Fixed < .001 < .001 < .001 .986
Introduced .69 .021 .014 .411

Table 4: Number of smart mistakes made compared to
total number of mistakes.

 Number of
smart mistakes

Number of
oracle mistakes

%

Gradebook 10 154 6.5
Payroll 213 381 55.9

results were actually helping the visual effectiveness of
the feedback, the implication is that the no-rationale mis-
takes had a very strong negative effect—strong enough to
significantly negate the positive effects of the correct
marks and smart mistakes together.

5. Implications for Designers of End-User
Environments

Given these results, how should designers of end-user
environments proceed? At least two possible strategies
present themselves: (1) find ways to lessen the impact of
no-rationale mistakes, and (2) find ways to strengthen the
positive impacts of smart mistakes.

As it happens, the Test Count fault localization algo-
rithm already tempers the negative impact of no-rationale
mistakes. The way it does so is through a “robustness”
property [20]. Suppose there is a cell c marked with an X-
mark. The robustness property requires that all cells in the
backward slice of cell c receive at least some visual fault
coloring, no matter how many positive tests have also
been run. This feature guarantees that any faulty cell con-
tributing to a failure the user observed will be one of the
cells highlighted. Since false positives were by far the
most common type of oracle mistake, without this robust-
ness feature, the detrimental impact of mistakes would
have been even worse than it was in our study.

Another fortunate attribute of Test Count is that it
gives double the weight to negative judgments as it does
to positive judgments (Section 3.2). This is fortunate be-
cause most of the mistakes were false positives, not false
negatives, as has also been true in our previous experi-
ments. Hence, correct judgments are getting more weight
than incorrect ones. This may well account for the mostly
positive (above zero) visual effectiveness scores observed
throughout our results.

The surprising results of RQ5 suggest an opportunity
for improved robustness. We realized that any negative
effects of smart mistakes must be solely the global effects,
since locally a smart mistake is actually beneficial. The
algorithm used in this paper, Test Count, gives equal

weight to local and global impacts of the marks made.
Thus, we wondered if reducing the impact a mark can
have on cells in its backward slice (or equivalently, in-
creasing the local impact) would improve visual effec-
tiveness. We decided to evaluate this idea empirically.

Recall from Section 3.2 that NumFailingTests (NFT) is
the number of failed tests in which a cell c participated,
and NumSuccessfulTests (NST) is the number of success-
ful tests in which c participated. For an increased effect
on local impacts (an algorithm variant we will term “Test
Count Local”), we partitioned NFT into NFT_L (number
of failed tests locally) and NFT_G (number of failed tests
globally). Similarly, we partitioned NST into NST_L and
NST_G. To double the impact of local decisions, the fault
localization formula for Test Count Local is thus defined
as:

Fault likelihood(c) = max(1, (4*NFT_L + 2*NFT_G) -
 (2*NST_L + NFT_G))

We then compared the visual effectiveness of the feed-
back the participants actually received (Version Original)
to that which they would have received with the Test
Count Local algorithm. A paired t-test (used in the same
manner as in RQ2 on visual effectiveness scores) revealed
that Test Count Local produced feedback whose visual
effectiveness was significantly better than the feedback
produced by Test Count Original (paired t-test: Grade-
book: df=23, t=4.73, p<.001; Payroll: df=31, t=2.99,
p=.005). See Figure 7 and Table 5. This is especially re-
vealing since Gradebook had few smart mistakes whereas
Payroll had many. Thus, Test Count Local was signifi-
cantly better overall at ameliorating the effects of oracle
mistakes than Test Count Original.

These results do not appear to be specific to our Test
Count algorithm. In a previous investigation of fault lo-
calization algorithms [17], one algorithm, Nearest Con-
sumer, outperformed the other two (one of which was
Test Count), both with and without the presence of oracle
mistakes. We were unable to explain this, since Nearest
Consumer actually uses less information and is less pre-
cise than Test Count. However, it emphasizes local im-

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

A
ve

ra
ge

 V
. E

.

Participants

A
ve

ra
ge

 V
. E

.

Participants

Figure 7: Average visual effectiveness for each user with Test Count Local (light bars) versus Test Count Origi-
nal (dark bars). Left: Gradebook. Right: Payroll.

pacts in a manner similar to Test Count Local, which now
seems likely to have played an important role in that algo-
rithm’s increased effectiveness and robustness.

In fact, these findings may well be applicable beyond
the spreadsheet paradigm. For example, any dataflow-
oriented debugging devices, such as Woodstein [22] and
the Whyline [13], are potential beneficiaries of the find-
ings and recommendations in this paper.

6. Conclusion
In this paper, we have investigated the impact of dif-

ferent types of oracle mistakes on the quality of visual
feedback that can be achieved by end-user fault localiza-
tion devices based on testing. Our investigation revealed
that, contrary to traditional assumptions, it is not reason-
able to ignore oracle mistakes in designing interactive
fault localization devices.

Following up on this result, our findings also led to the
following recommendations for handling oracle mistakes:
• For robustness given smart mistakes, a system should

weight local effects more heavily than global effects.
• For robustness against false positives, a cell or variable

implicated in a fault should always retain some degree
of implication, no matter how many positive tests in
which it participates.

• Because there are more false positives than false nega-
tives, a system should trust (and weight) positive judg-
ments less than negative judgments.
Although further empirical study is needed for general-

ity, the implications of our empirical findings to date sug-
gest that following these recommendations can improve
the effectiveness of interactive fault localization devices
for end-user programmers.

Acknowledgments
This work was supported in part by the EUSES Con-

sortium via NSF grant ITR-0325273.

References
[1] R. Abraham and M. Erwig, “Header and unit inference for

spreadsheets through spatial analyses”, Proc. IEEE Symp.
Visual Langs. Human-Centric Computing, 2004, 165-172.

[2] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishna-
murthi, “A type system for statically detecting spreadsheet
errors”, Proc. IEEE Conf. Auto. Soft. Eng., 2003.

[3] Y. Ayalew and R. Mittermeir, “Spreadsheet debugging”,
Proc. European Spreadsheet Risks Interest Group, 2003.

[4] L. Beckwith, M. Burnett, S. Wiedenbeck, C. Cook, S.
Sorte, M. Hastings, “Effectiveness of End-User Debugging

Software Features: Are There Gender Issues?”, ACM Conf.
Human Factors in Computing Systems, 2005, 869-878.

[5] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J.
Reichwein, and S.Yang, “Forms/3: A first-order visual lan-
guage to explore the boundaries of the spreadsheet para-
digm”, J. Functional Programming, 11, 2, 2001, 155- 206

[6] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet,
and C. Wallace, “End-user software engineering with asser-
tions in the spreadsheet paradigm”, Proc. Int. Conf. Soft.
Eng., 2003, 93-103.

[7] M. Burnett, C. Cook, and G. Rothermel, “End-user soft-
ware engineering”, Comm. ACM, 2004, 53-58.

[8] J. S. Davis, “Tools for spreadsheet auditing”, Int. J. Hu-
man-Computer Studies, 45, 1996, 429-442.

[9] D. F. Galletta, K. S. Hartzel, S. E. Johnson, J. L. Joseph,
and S. Rustagi “Spreadsheet presentation and error detec-
tion: An experimental study”, J. Management Info. Sys-
tems, 13, 3, 1997, 45-63.

[10] D. Hilzenrath, “Finding errors a plus, Fannie says; Mort-
gage giant tries to soften effect of $1 billion in mistakes”,
The Washington Post, 2003.

[11] T. Igarashi, J. D. Mackinlay, B. W. Chang, and P. T. Zell-
weger, “Fluid visualization of spreadsheet structures”,
Proc. IEEE Symp. Visual Langs., 1998, 118-125.

[12] A. J. Ko and B. A. Myers, “Development and evaluation of
a model of programming errors”, Proc. IEEE Symp.Visual
Langs. Human-Centric Computing Langs., 2003, 7-14.

[13] A. J. Ko and B. A. Myers, “Designing the Whyline: A de-
bugging interface for asking questions about program fail-
ures”, Proc. ACM Conf. Human Factors Computing Sys-
tems, 2004, 151-158.

[14] R. Panko, “What we know about spreadsheet errors”, J.
End User Computing, 1998.

[15] G. Robertson, “Officials red-faced by $24M gaffe: Error in
contract bid hits bottom line of TransAlta Corp.” Ottawa
Citizen, 2003.

[16] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Shere-
tov, “A methodology for testing spreadsheets”, ACM
Trans. Soft. Eng. Meth. 10, 1, 2001, 110-147.

[17] J. Ruthruff, M. Burnett, and G. Rothermel, “An empirical
study of fault localization for end-user programmers”,
Proc. Int. Conf. Soft. Eng. 2005, 352-361

[18] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Prab-
hakararao, M. Fisher II, and M. Main, “End-user software
visualizations for fault localization”, Proc. ACM Symp.
Soft. Visualization, 2003, 123-132.

[19] J. Ruthruff, A. Phalgune, L. Beckwith, M. Burnett, and C.
Cook, “Rewarding ‘good’ behavior: End-user debugging
and rewards,” Proc. IEEE Symp. Visual Langs. Human-
Centric Computing, 2004, 107-114.

[20] J. Ruthruff, S. Prabhakararao, J. Reichwein, C. Cook, E.
Creswick, and M. Burnett, “Interactive, visual fault local-
ization support for end-user programmers”, J. Visual
Langs. Computing, 16, 1-2, 2005, 3-40.

[21] J. Sajanieme, “Modeling spreadsheet audit: A rigorous
approach to automatic visualization”, J. Visual Langs.
Computing, 11, 1, 2000, 49-82.

[22] E. J. Wagner and H. Lieberman, “Supporting user hypothe-
ses in problem diagnosis on the web and elsewhere”, Proc.
Int. Conf. Intelligent User Interfaces, 2004, 30-37.

[23] E. Weyuker, “On testing non-testable programs”, The
Computer Journal, 25, 4, 1982, 465-470.

Table 5: Mean / median of visual effectiveness with
Test Count Local and Test Count Original.

 VE Test
Count Local

VE Test Count
Original

Gradebook .94 / 1.00 .36 / .35
Payroll .38 / .39 .09 / .13

