
How Well Do Professional Developers Test with Code Coverage Visualizations?
An Empirical Study

Joseph Lawrance†‡, Steven Clarke†, Margaret Burnett‡, Gregg Rothermel∗

†Microsoft Corporation ‡School of Electrical Engineering ∗Department of Computer
One Microsoft Way and Computer Science Science and Engineering

Redmond, WA 98052-8300 Oregon State University University of Nebraska-Lincoln
Corvallis, Oregon 97331-3202 Lincoln, Nebraska 68588-0115

‡{lawrance,burnett}@eecs.oregonstate.edu, †stevencl@microsoft.com, ∗grother@cse.unl.edu

Abstract

Despite years of availability of testing tools, professional
software developers still seem to need better support to de-
termine the effectiveness of their tests. Without improve-
ments in this area, inadequate testing of software seems
likely to remain a major problem. To address this prob-
lem, industry and researchers have proposed systems that
visualize “testedness” for end-user and professional devel-
opers. Empirical studies of such systems for end-user pro-
grammers have begun to show success at helping end users
write more effective tests. Encouraged by this research, we
examined the effect that code coverage visualizations have
on the effectiveness of test cases that professional software
developers write. This paper presents the results of an em-
pirical study conducted using code coverage visualizations
found in a commercially available programming environ-
ment. Our results reveal how this kind of code coverage vi-
sualization impacts test effectiveness, and provide insights
into the strategies developers use to test code.

1. Introduction

As early as 1968, attendees of the NATO Software En-
gineering Conference recognized that inadequate testing of
software was a problem [8]. Although decades have passed
and advancements have been made, inadequate testing is
a problem we still face today. In fact, in 2002, NIST esti-
mated that inadequate software tests cost the economy up to
$59.5 billion per year, or about 0.6% of the US GDP [17].

Addressing the problem of inadequate software testing
requires a definition of an adequate test. An adequate test
suite is a set of test cases considered “good enough” by
some criterion. Ideally, a test suite is “good enough” when

it exposes every fault and specifies the correct behavior of
the program under test. Unfortunately, this criterion is im-
possible to measure without a complete specification and
a list of all faults in the program. As Zhu et al. [19] point
out, one of the first breakthroughs in software testing was
Goodenough and Gerhart’s idea of a measurable test ade-
quacy criterion, which quantitatively specifies what consti-
tutes an adequate test [9]. Test adequacy criteria provide
means to assess the quality of a set of test cases without
knowledge of a program’s faults or its specification. A set
of test cases that meet a test adequacy criterion are said to
provide coverage for the program under test.

Code coverage visualizations provide visual feedback of
test adequacy [11]. Such visualizations show areas of code
exercised by a set of test cases, and areas of code not exe-
cuted by a set of test cases.

To our knowledge, no previous empirical studies of soft-
ware testing visualizations have made the specific contribu-
tions we make here (see Section 5). This paper makes three
contributions. First, this is the first study to our knowledge
to investigate the effect of a code coverage visualization
device on professional developers’ effectiveness. Second,
this is the first study to our knowledge to investigate the ef-
fect of a code coverage visualization device when the test
adequacy criterion is block coverage (see Section 2). Third,
this study sheds insights into human strategy choices in the
presence of code coverage visualization devices.

2. Background

2.1. Test adequacy criteria

Research has produced many test adequacy criteria; [19]
summarizes several of these, including the following:

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

Statement A set of test cases that executes every statement
in a program provides statement coverage of the pro-
gram.

Branch A set of test cases that executes all branches in a
program provides branch coverage of the program.

Condition A set of test cases that exercises the true and
false outcome of every subexpression in every condi-
tion in a program provides condition coverage of the
program.

DU A set of test cases that exercises all pairs of data def-
initions and uses in a program provides definition-use
(DU) coverage of the program.

Path A set of test cases that exercises all execution paths
from the program’s entry to its exit provides path cov-
erage of the program.1

In practice, of course, some coverage elements cannot be
exercised given any program inputs and are thus infeasi-
ble, so coverage criteria typically require coverage only of
feasible elements [5].

Tests serve only as an indirect measure of software qual-
ity, demonstrating the presence of faults, not necessarily the
correctness of the program under test. Code coverage anal-
ysis simply reveals the areas of a program not exercised by
a set of test cases. Even if a set of test cases completely ex-
ercises a program by some criterion, those test cases may
fail to reveal all the faults within the program. For example,
a set of tests providing statement coverage may not reveal
logic or data flow errors in a program.

2.2. Code coverage analysis

Code coverage analysis tools automate code coverage
analysis by measuring coverage. Code coverage analysis
tools include GCT,2 Clover,3 and the code coverage tools
built into Visual Studio.4

GCT measures statement coverage, branch coverage,
condition coverage and several more coverage metrics not
listed earlier.

Clover and Visual Studio, on the other hand, measure
and visualize coverage. Although neither of these tools
support the additional coverage metrics that GCT supports,
both tools measure and visualize “block” (statement and
branch) coverage. Clover and Visual Studio color the
source code based on the sections of code executed by the
last collection of tests. That is, the visualization resets ev-
ery time a developer selects a new collection of tests to
run; visualizations do not accumulate with each succes-
sive test run. Figure 1 shows that code highlighted in green

1Since the number of execution paths increases exponentially with
each additional branch or loop, 100% path coverage is infeasible in all
but the most trivial programs.

2http://www.testing.com/tools.html
3http://www.cenqua.com/clover/
4Visual Studio refers to Visual Studio 2005 Beta 2 Team System.

Figure 1. Code coverage visualization:
Green: Executed , Red: Unexecuted ,
Blue: Partial execution

represents code executed by the test run, whereas code in
red represents unexecuted code (refer to the legend in Fig-
ure 1). Visual Studio also colors partially executed code
with blue highlights. In practice, Visual Studio’s coverage
tool reserves blue highlights for short-circuited conditions
or thrown exceptions.

3. Experiment

To gain insight into the effect code coverage visualiza-
tions (using block coverage) have on developers, we inves-
tigated the following research questions empirically:

RQ1: Do code coverage visualizations motivate develop-
ers to create more effective tests?

RQ2: Do code coverage visualizations influence the
amount of testing?

RQ3: Do code coverage visualizations lead developers
into overestimating how many faults they found?

RQ4: What strategies do developers use in testing, with
and without code coverage visualization?

Each of these research questions focuses on how code
coverage visualizations affect professional software devel-
opers, and serves as a comparison to similar research on
end-user programmers using testing visualizations [16].
The first research question is important because code cov-
erage visualizations are designed to motivate developers
to write more effective tests by visualizing test adequacy.
In addition, code coverage visualizations are supposed to
improve developer efficiency or promote more productive

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

testing strategies; we asked research questions two and four
to address these points. On the other hand, code coverage
visualizations could lead developers to overestimate their
test effectiveness; thus, we asked research question three to
address this concern.

3.1. Design & Materials

For this study, we recruited a group of 30 professional
software developers from several Seattle-area companies.
We required developers with two years of experience in the
C# programming language, used C# in 70% of their soft-
ware development, were familiar with the term “unit test-
ing,” and felt comfortable with reading and writing code
for a 90-minute period of time.

Our study was a between-subjects design in which we
randomly assigned developers to one of two groups. We
assigned 15 developers to the treatment group and 15 de-
velopers to the control group. The treatment group had
code coverage visualizations available to them. The con-
trol group had the same setup as the treatment group, but
had no code coverage information available to them.

Our study required a program for participants to test,
so we wrote a class in C# containing a set of 10 meth-
ods.1 We wanted to avoid verbally explaining the class
to the developers, so we implemented methods likely to
be familiar to most developers. These methods included
common string manipulation methods and an implementa-
tion of square root. We included descriptive, but sometimes
intentionally vague specifications with the methods in the
program under test because we did not want the specifica-
tions to trivialize the task of writing tests. The program was
too complex for participants to test exhaustively in an hour,
but it gave us enough leeway for participants who were sat-
isfied with their tests prematurely.

We required faults for our participants to uncover in the
program we wrote. Following the lead of previous empiri-
cal studies of testing techniques [4,10], we seeded the pro-
gram we wrote with faults. We performed this seeding to
cover several categories of faults, including faults that code
coverage visualizations could reveal and faults that the vi-
sualization could miss. That said, we wanted developers to
focus on testing, so the program generates no compilation
errors.

To help create faults representative of real faults, we
performed our seeding using a fault classification simi-
lar to published fault classification systems [1, 14]. Types
of faults considered under these systems include mechan-
ical faults, logical faults and omission faults; we also in-
cluded faults caused by method dependencies and a red

1The materials we developed and additional results are available
online at: http://eecs.oregonstate.edu/library/files/
2005-86/tech-report.pdf

herring.2 Mechanical faults include simple typographical
errors. Logical faults are mistakes in reasoning and are
more difficult to detect and correct than mechanical faults.
Omission faults include code that has never been included
in the program under test, and are the most difficult faults
to detect [14].

In addition to the faulty program we wrote, we devel-
oped two questionnaires for our participants. We wrote the
first questionnaire to assess the programming and unit test-
ing experience of our participants, and to assess the homo-
geneity of the two groups. In the follow-up questionnaire,
we asked participants to estimate the percentage of faults
that they found, and asked other questions to help us an-
swer our research questions.

To assess our materials, we observed four developers in
a pilot study. The pilot revealed that we needed to clarify
some questions in our questionnaires. It also revealed that
we needed to re-order the methods in the program under
test. Some developers in the pilot study devoted most of
the session to understanding and testing a single method.
Since we were not interested in stumping developers, we
sorted the methods roughly in ascending order of testing
difficulty. We also added four test cases providing cover-
age for two methods under test to help us answer research
question three.

3.2. Procedure

We conducted our experiment one person at a time, one-
on-one for 90 minutes. We familiarized developers with
the task they were to perform and had them complete the
baseline questionnaire. After the orientation, we observed
developers as they wrote unit tests for the methods we gave
them. Finally, we gave them a follow-up questionnaire.

We trained developers to use a test development tool to
create unit test cases for each method in the program we
provided. We explained that clicking “Generate” in the test
development tool (shown in Figure 2) produces unit test
methods (shown in Figure 3) for every selected method.
We described how unit tests pass parameters to a method,
expect a result, and how the Assert class compares the ex-
pectations with the result of the method call. We stressed
that we were looking for depth as opposed to breadth in the
tests they created. That is, we asked developers to create
what they believed to be the most effective set of test cases
for each method in the program under test before testing
the next method.

We explained that we were interested in the tests that
they wrote, not in the faults that they fixed. We told them
not to fix faults unless they felt confident they could easily
fix the fault. We stressed that test case failure was accept-

2A red herring is code that draws attention away from the actual faults.

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

Figure 2. Test development tool

able, but we also mentioned that a test case failure can re-
veal a problem with the test expectations. We answered any
questions they had in relation to the tools or to their task.
For participants in the treatment group, we described what
the code coverage visualizations meant. After the orienta-
tion, we asked participants to complete the baseline ques-
tionnaire before we asked them to start writing tests.

While each developer wrote tests, we observed the de-
veloper behind a one-way mirror. We answered any ques-
tions developers had during the experiment through an in-
tercom system. We had to answer some of the developers’
questions carefully so as not to bias the result of the experi-
ment. If developers asked us whether their test cases looked
adequate, we told them: “Move on to the next method when
you feel you have created what you believe to be the most
effective set of test cases for this method.” If develop-
ers asked for our feedback on the tests repeatedly, we told
them: “Feel free to move on to the next method when you
feel confident in the tests that you have created.”

We recorded transcripts and video of each session. Us-
ing the transcripts, we made qualitative observations of de-
veloper behavior. When the time for the participants was
up, we instructed the participants to complete a follow-up
questionnaire. We archived the program and the test cases
the developers wrote for our data analysis.

3.3. Threats to Validity

Many other studies of software testing involve software
engineering students, and are conducted in large groups.
Since such studies are run on populations of students, the
results of these studies do not necessarily generalize to de-
velopers in industry (external validity). Such studies are

Figure 3. Generated test method

also plagued by the problem of participants revealing the
details of the experiment to other students (internal valid-
ity). To avoid these threats, we recruited software devel-
opers from several companies and ran the study one par-
ticipant at a time. Participants were given non-disclosure
agreements as a condition for participating in this study.
Although the possibility exists that participants could have
discussed the study with colleagues who also participated
in the study, almost all participants did not know each other.
Subjects were aware that we were observing them behind a
one-way mirror, which may have changed their behavior.

We seeded the program that developers tested with
faults. Although we made an effort to produce “natural”
faults, most of the errors in the program were there inten-
tionally. Also, the program housing these seeded faults
may not have corresponded to the kind of programs our
participants were accustomed to writing. Some of our par-
ticipants explained that they were accustomed to writing
database applications, web applications, or GUI-based ap-
plications, not string manipulation methods.

Controlled laboratory experiments can isolate factors
well, but do not reflect real world settings. Thus, many
questions remain for future study. The short, faulty pro-
gram that we provided to our subjects may have missed
the potential advantages of code coverage visualizations on
larger programs. Our study compared developers using
a code coverage visualization tool (using the block cov-
erage criterion) with developers using no code coverage
tool. Therefore, we cannot generalize our results to code
coverage tools (textual or visual) that use stronger test ad-

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

Table 1. Descriptive statistics (x = mean, s =
standard deviation)

Metric Control Treatment
Participants n = 15 n = 15
Programming experience x = 11 x = 11.06
(years) s = 5.13 s = 6.76
Unit testing experience x = 2.62 x = 2.37
(7 point Likert scale) s = 1.3 s = 0.91
Logic errors found 39 43
Omissions found 39 28
Dependency faults found 17 11
Typos found 2 7
Precision errors found 6 2
Overflows found 3 1
Red herrings found 1 1
Total faults found 107 93

equacy criteria than the block coverage criterion that we
chose to visualize. Investigating these issues can only be
done through studies involving longer programs, field stud-
ies involving real programs, studies using stronger test ad-
equacy criteria, and studies that compare textual code cov-
erage tools with code coverage visualization tools.

4. Results and Discussion

Table 1 provides descriptive statistics from our study’s
data, and the next subsections present the hypotheses that
we investigated using statistical methods. In the following
subsections we describe these results in relation to each of
our research questions in turn.

4.1. RQ1: Test effectiveness

To investigate how code coverage visualizations influ-
enced test effectiveness, we compared the number of faults
revealed between each group. The null hypothesis is:

H1: The number of faults revealed between the control
group and the code coverage group does not differ.

To test H1, we ran the Mann-Whitney test on the code
coverage group and the control group, U = 100.5, p = 0.63.
Thus, the test provided no evidence to suggest a difference
in the number of faults revealed between the control group
and the treatment group.

Discussion. Code coverage visualizations using block
coverage did not affect the number of faults developers
found in the program we provided in the time provided:
developers in the code coverage group did not differ from
developers in the control group in terms of the number of
faults found. This result is consistent with research done on
software engineering students that compared the effective-

ness of a reading technique with a structural testing tech-
nique using similar coverage criteria [13, 18].

4.2. RQ2: Amount of testing

To compare the amount of tests the two groups wrote,
we looked at the mean and variance in the number of test
cases between the control group and the treatment group.
H2: There is no difference in the number of test cases be-

tween the control group and the treatment group.
H3: There is no difference in the variance of test cases be-

tween the control group and the treatment group.
Figure 4 displays the distribution of the number of test

cases written per group using a box plot.1 The boxes in
Figure 4 suggest that developers using code coverage visu-
alizations produced slightly fewer test cases and varied less
in the amount of test cases than developers without code
coverage visualizations.

To test H2, we ran the Mann-Whitney test, U = 100,
p = 0.62. Thus, the test provided no evidence to suggest the
number of test cases between the control group and treat-
ment group differed.

To test H3, we ran the Levene test, F.05,1,28 = 6.42,
p = 0.017. The ratio of variances in the number of test
cases between groups was not equal to one. Thus, evidence
suggests that code coverage visualizations reduced the vari-
ability in the amount of tests cases developers wrote.

Discussion. The reduced variability in the amount of
test cases suggests that code coverage visualizations were
powerful enough to affect the developers’ testing behav-
ior. With code coverage visualizations, developers stopped
testing when they achieved coverage, and wrote more tests
cases when they did not achieve coverage. Since test ade-
quacy criteria are supposed to make people continue test-
ing until they achieve coverage and then stop, the testing
visualization’s closing up of the variance suggests that it
performed exactly as it should have.

In contrast, developers in the control group had no cues
about the effectiveness of their tests. Such developers had
only their own individual talents to draw on in determining
the effectiveness of their tests, which probably explains the
wide variability in the control group.

4.3. RQ3: Overestimation of test effectiveness

Developers commonly determine when code is ready
to ship based on their estimates of the correctness of the

1A boxplot is a standard statistical device for representing data distri-
butions. In the boxplots presented in this paper, each data set’s distribu-
tion is represented by a box. The box’s height spans the central 50% of
the data, and its ends mark the upper and lower quartiles. The horizon-
tal line partitioning the box represents the median element in the data set.
The vertical lines attached to the ends of the box indicate the tails of the
distribution. Data elements considered outliers are depicted as circles.

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

Co
de

 c
ov

er
ag

e

Co
nt

ro
l

10

20

30

40

50

Figure 4. RQ2: Test cases written by group (left),
RQ3 (H4): Overestimation by group (right)

code. Thus, to test the possibility that code coverage visual-
izations using block coverage criteria lead developers into
overestimating the correctness of the program, we asked
developers to estimate the percentage of faults that they
found. Using our measure of test effectiveness, we devised
the following two formulas to measure the amount of over-
estimation, where total faults is the number of faults in the
program (35), and total faults possible is the total number
of faults in the methods each developer tested. Then, using
each measure of the actual percentage of faults found, we
compared overestimation by group.

H4: Overestimation did not differ by the following:

estimate−
(

test effectiveness
total faults

)

H5: Overestimation did not differ by the following:

estimate−
(

test effectiveness
total faults possible

)

Figure 4 displays the distribution of overestimation mea-
sured in H4 by group. The box plots suggest that develop-
ers in the code coverage group overestimated their effec-
tiveness more than developers in the control group.

To test H4, we ran the Mann-Whitney test, U = 151.5,
p = 0.052. To test H5, we ran the Mann-Whitney test,
U = 160, p = 0.026. The result of H5 provides evidence
to suggest that developers using code coverage visualiza-
tions overestimated the percentage of faults revealed more
than developers without code coverage visualizations.

Discussion. Both groups overestimated the percentage
of faults they revealed, indicating that both groups did not
have a true sense of how many faults they revealed with
their test cases. This result is not surprising, considering
the pervasive human tendency toward overconfidence [14].

Given this tendency toward overconfidence, it is unlikely
that testing visualizations could ever completely solve the
problem of developers overestimating the percentage of
faults that they revealed. Surprisingly, the overestimation
we observed in this study suggests that code coverage vi-
sualizations using block coverage criteria did not help de-
velopers attain a truer assessment of how many faults they
found. In fact, developers who used visualizations of block
coverage had even less sense of how many faults they
found.

Recall that test adequacy criteria are designed to tell
people when to stop testing. Comparing our results with
the results of research using the stronger definition-use test
adequacy criterion [16] suggests that the choice of test ade-
quacy criterion may be critical. With the block coverage
criterion, it was trivial to achieve complete coverage of
the program we provided, and to achieve correspondingly
positive visual feedback. Using stronger coverage criteria,
the task of achieving complete coverage becomes less triv-
ial. Thus, the stronger the criterion, the less positive visual
feedback each test provides, and the less likely a developer
will stop testing too early.

The results of RQ3 taken together with previous find-
ings for definition-use coverage in spreadsheets [16] im-
plies that the choice of test adequacy criterion may influ-
ence developers’ estimates of their own effectiveness at
testing, which in turn plays a critical role in determining
when they believe code is ready to ship.

4.4. RQ4: Testing strategies

Developers needed to understand the code we gave them
and also to create, organize and evaluate their test methods
and test cases. As we observed developers, we identified
several strategies developers used in each step of the testing
process, summarized in Table 2. We also classified strate-
gies developers used in response to a test run as productive
or counterproductive (see Table 3).

Recall that all participants were experienced profes-
sional developers. Yet, almost one-third of them spent
much of their time following counterproductive strategies
listed in Table 3. Fisher’s exact test revealed no signifi-
cant difference between the groups, p = 0.2135. This sug-
gests that even professional developers need assistance to
avoid counterproductive strategies. Some counterproduc-
tive strategies, such as changing the parameters of a method
under test or deleting failed tests amounted to developers
throwing away their work. Other counterproductive strate-
gies, such as “fixing” generated test framework code, skip-
ping tests for similar methods, or changing the expecta-
tion or specification to match the behavior, suggested that
some developers didn’t understand where the fault was lo-
cated. Still other counterproductive strategies wasted de-

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

Table 2. Testing strategies (number of developers)
Strategy Control Treatment
Test creation process
• Batch 9 7
• Incremental 6 8
Test run process
• Batch 7 8
• Incremental 8 7
Test creation choices
• Copy/paste 8 7
• Change test case 2 1
• Test development tool 5 5
• Write tests from scratch 0 2
Test organization
• One test case / test method 9 11
• Many test cases / test method 4 2
• Parameterized test method 2 2
Test follow-up
• Productive 9 12
• Counterproductive 6 3
Code understandinga

• Read specification 15 15
• Read program under test 15 15
• Execute code mentally 15 15
• Debug program under test 9 7
• Examine code coverage 0 15

aDevelopers employed several of these strategies simultaneously.

veloper time, such as creating duplicate tests or repeating
the last test run without making any changes. Some com-
mon strategies, such as copying and pasting test code or
debugging code, carried risks or consumed time, but we
did not classify these strategies as counterproductive.

5. Related Work

Empirical studies of software testing compare testing
techniques or test adequacy criteria [12]. Some empirical
studies of software testing use faulty programs as subjects;
others use humans as subjects [3]. A few empirical stud-
ies have also studied the effect of visualizations [11, 16].
This is the first study to our knowledge that focuses exclu-
sively on the effect of code coverage visualizations using
block coverage on professional software developers. Al-
though we are not aware of any studies exactly like ours,
the results of previous empirical studies of software testing
have guided our study design and our hypotheses, and have
given us a basis to compare our results with previous work.

We based our study design and hypotheses on empirical
studies of humans testing software. Studies of humans in-
clude [2, 13, 16, 18]. In each of these studies, like our own

Table 3. Test follow-up strategies
Productive Counterproductive
Review, modify or
fix method under test

Review, modify or “fix” gener-
ated test framework

Create new test Change test parameters
Change expectations
to match the specifi-
cation

Change expectation or spec to
match wrong behavior, leave
specification as-is

Review assertion
failed messages

Comment out or delete tests
that fail

Create similar tests
for other methods

Create duplicate tests, skip
tests for similar methods

Note the test results
and write next test

Repeat last test run without
making any changes

study, experimenters gave participants faulty programs and
compared the participants’ test effectiveness based on the
testing technique. In [2, 13, 18], experimenters compared
statement and branch coverage with other testing and veri-
fication techniques and measured the number of faults each
subject found. Their results corresponded to our own re-
sults, which revealed that participants were equally effec-
tive at isolating faults regardless of test technique. Despite
the similarity in test effectiveness, Wood [18] noted that the
relative effectiveness of each technique depends on the na-
ture of the program and its faults. This result corroborates
our own observation that the code coverage group discov-
ered fewer omissions than the control group.

Although our results were consistent with results of ex-
periments in which statement and branch coverage were
used as test adequacy criteria, we were not consistent with
the results of [16]. In [16], participants using a definition-
use coverage visualization performed significantly more ef-
fective testing, were less overconfident and more efficient
than participants without such visualizations.

Other empirical studies explain why our results dif-
fered radically from [16]. Studies of faulty programs
have given us a basis to compare our results with previ-
ous work [6, 7, 10, 11]. These studies have shown that
definition-use coverage can produce test suites with bet-
ter fault-detection effectiveness than block coverage [10].
Definition-use coverage is a stronger criterion (in terms
of subsumption) than statement or branch coverage [15].
Thus, comparing our results with the results of [16] imply
that the test adequacy criterion is critical to the human test-
ing effectiveness.

6. Conclusion

With block coverage, code coverage visualizations nei-
ther guided developers toward productive testing strategies,

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

nor did these visualizations motivate developers to write
more tests or help them find more faults than the control
group. Nevertheless, code coverage visualizations did in-
fluence developers in important ways. A negative influ-
ence was that code coverage visualizations led develop-
ers to overestimate their test effectiveness more than the
control group, showing that code coverage visualizations
have the potential to shape developers’ behavior in harm-
ful ways. A positive influence was that these same visual-
izations reduced the variability in the number of test cases
developers wrote by changing the standard developers used
to evaluate their test effectiveness, showing that code cov-
erage visualizations can shape developers’ behavior toward
a desired testing productivity standard.

Thus, the true power of testing visualizations lies not
only with the faults that visualizations can highlight; it also
lies in how visualizations can change how developers think
about testing. Testing visualizations guide developers to a
particular standard of effectiveness, so if we want devel-
opers to test software adequately, we must ensure that the
coverage criteria we choose to visualize leads developers
toward a good standard of test effectiveness.

7. Acknowledgments

We thank Curt Becker, Wayne Bryan, Monty Hammon-
tree, Ephraim Kam, Karl Melder and Rick Spencer for ob-
serving the study with us. We thank Curt Becker and Jesse
Lim for developing the logging and reporting tools essen-
tial to running this study. We thank Madonna Joyner, I-Pei
Lin, and Thomas Moore for their assistance in running the
study. We especially thank the developers who took the
time to participate in our study.

References

[1] C. Allwood, “Error detection processes in statistical prob-
lem solving.” Cognitive Science, vol. 8, no. 4, pp. 413–437,
1984.

[2] V. R. Basili and R. W. Selby, “Comparing the effectiveness
of software testing strategies,” IEEE Trans. Software Engi-
neering, vol. 13, no. 12, pp. 1278–1296, 1987.

[3] L. Briand and Y. Labiche, “Empirical studies of software
testing techniques: Challenges, practical strategies, and fu-
ture research,” WERST Proceedings/ACM SIGSOFT Soft-
ware Engineering Notes, vol. 29, no. 5, pp. 1–3, 2004.

[4] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: A family of empirical studies,” IEEE Trans.
Software Engineering, vol. 28, no. 2, pp. 159–182, 2002.

[5] P. Frankl and E. Weyuker, “An applicable family of data flow
criteria,” IEEE Trans. Software Engineering, vol. 14, no. 10,

pp. 1483–1498, 1988.
[6] P. G. Frankl and S. N. Weiss, “An experimental comparison

of the effectiveness of branch testing and data flow testing,”
IEEE Trans. Software Engineering, vol. 19, no. 8, pp. 774–
787, 1993.

[7] P. G. Frankl and O. Iakounenko, “Further empirical stud-
ies of test effectiveness,” in SIGSOFT ’98/FSE-6: 6th ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, Lake Buena Vista, Florida, USA, 1998,
pp. 153–162.

[8] B. A. Galler, “ACM president’s letter: NATO and software
engineering?” Comm. ACM, vol. 12, no. 6, p. 301, 1969.

[9] J. B. Goodenough and S. L. Gerhart, “Toward a theory of
test data selection,” in International Conf. Reliable Soft-
ware, 1975, pp. 493–510.

[10] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Ex-
periments of the effectiveness of dataflow- and controlflow-
based test adequacy criteria,” in ICSE ’94: 16th Interna-
tional Conf. Software Engineering, 1994, pp. 191–200.

[11] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of
test information to assist fault localization,” in ICSE ’02:
24th International Conf. Software Engineering, 2002, pp.
467–477.

[12] N. Juristo, A. M. Moreno, and S. Vegas, “Reviewing 25
years of testing technique experiments,” Empirical Software
Engineering, vol. 9, no. 1-2, pp. 7–44, 2004.

[13] E. Kamsties and C. M. Lott, “An empirical evaluation of
three defect-detection techniques,” in Fifth European Soft-
ware Engineering Conference, W. Schafer and P. Botella,
Eds. Lecture Notes in Computer Science Nr. 989, 1995,
pp. 362–383.

[14] R. Panko, “What we know about spreadsheet errors.” Jour-
nal of End User Computing, pp. 15–21, 1998.

[15] S. Rapps and E. J. Weyuker, “Selecting software test data
using data flow information,” IEEE Trans. Software Engi-
neering, vol. 11, no. 4, pp. 367–375, 1985.

[16] K. J. Rothermel, C. R. Cook, M. M. Burnett, J. Schonfeld,
T. R. G. Green, and G. Rothermel, “WYSIWYT testing
in the spreadsheet paradigm: An empirical evaluation,” in
ICSE ’00: 22nd International Conf. Software Engineering,
2000, pp. 230–239.

[17] RTI, “The economic impacts of inadequate infrastructure
for software testing,” National Institute of Standards and
Technology, Tech. Rep. 02-3, 2002. [Online]. Available:
http://www.nist.gov/director/prog-ofc/report02-3.pdf

[18] M. Wood, M. Roper, A. Brooks, and J. Miller, “Compar-
ing and combining software defect detection techniques: A
replicated empirical study,” in ESEC ’97/FSE-5: 5th ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, 1997, pp. 262–277.

[19] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test
coverage and adequacy,” ACM Comput. Surv., vol. 29, no. 4,
pp. 366–427, 1997.

Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05)

0-7695-2443-5/05 $20.00 © 2005 IEEE

