

On to the Real World: Gender and Self-Efficacy in Excel

Laura Beckwith, Derek Inman, Kyle Rector, and Margaret Burnett
Oregon State University

Corvallis, OR USA
{beckwith, inmand, rectorky, burnett}@eecs.orgonstate.edu

Abstract

Although there have been a number of studies of
end-user software development tasks, few of them have
considered gender issues for real end-user developers
in real-world environments for end-user programming.
In order to be trusted, the results of such laboratory
studies must always be re-evaluated with fewer con-
trols, more closely reflecting real-world conditions.
Therefore, the research question in this paper is
whether the results of a Gender HCI controlled study
generalize -- to real-world end-user developers, in a
real-world spreadsheet environment, using a real-
world spreadsheet. Our findings are that the concepts
revealed by the original laboratory study appear to be
quite robust, being demonstrated in multiple ways in
this real-world environment.

1. Introduction
In the field of visual and human centric computing

languages, there have been many studies using aca-
demic prototypes, populations, and tasks. These studies
often feature careful controls to limit the number of
variables, and thus can achieve clean and clear results.
However, too often researchers never take the next step
to explore the generalizability of their findings on real-
world (widely used and commercially available) prod-
ucts. As a result, their findings cannot be trusted be-
yond the original, very limited setting.

This paper takes the next step following up on the
results of one of our earlier studies involving an aca-
demic prototype. The original study examined the ef-
fects of self-efficacy (a form of self-confidence) and
gender on users’ problem solving behaviors with the
academic prototype spreadsheet environment Forms/3
including its WYSIWYT (“What You See Is What
You Test”) debugging features [5]. The context was
the end-user software engineering task of debugging.
The results found significant gender differences in the
ways males and females problem solved in the envi-
ronment.

The purpose of the follow-up study was to explore
how the original findings generalize. The term general-

ize is defined as “to give general applicability to” [14].
In order to generalize the results from our initial ex-
periment we made the following changes:
• Different environment: Excel with unlimited ac-

cess to features.
• Different population: Seattle-area real-world users

of Excel.
• Different task: Spreadsheet modification, with

emphasis on reliability of changes.
Another goal in the follow-up experiment design is

replication, to ascertain whether the same research re-
sults will occur if an experiment is replicated. (The
term replicate is defined as “performance of an ex-
periment or procedure more than once” emphasis
added [14].) There is a delicate balance between gener-
alizing and replicating. If there are too many changes,
the new study is no longer replicating the original; if
there are too few changes, hardly any generalization
can occur. Thus, we replicated the initial experiment
procedures to the extent possible given our generaliza-
tion goals. The factors we replicated were:
• Task domain: End-user software engineering.
• Tutorial: Same style of teaching and introducing

features to aid task.
• Design/Procedures: The design was the same, and

the procedures were as similar as possible given
the new setting.

• Research questions: the same research questions.
Our goal was to discover whether the new experi-

ment in this new setting would reveal significant gen-
der differences in how males and females problem-
solve.

2. Background: Gender-Debugging Study

The study we set out to generalize (referred to as the
gender-debugging study in this paper) investigated the
following two research questions [2]:

RQ1: Are there gender differences in self-efficacy
that impact effective end-user programming?
RQ2: Are there gender differences in users’ likeli-
hood of acceptance of unfamiliar features in end-
user programming environments?

2007 IEEE Symposium on Visual Languages and Human-Centric Computing

0-7695-2987-9/07 $25.00 © 2007 IEEE
DOI 10.1109/VLHCC.2007.15

119

The general format of the study was to give male
and female participants (mainly an end-user business
student population) two spreadsheets to debug, after
being familiarized with the environment. Figure 1
shows several features users had access to for aiding
their debugging task. The results were as follows:
• Females had lower self-efficacy (a form of confi-

dence) than males did about their abilities to debug.
Further, females’ self-efficacy was predictive of
their effectiveness at using the debugging features
(which was not the case for the males).

• Females were less likely than males to accept the
new debugging features. A reason females stated for
this was that they thought the features would take
them too long to learn. Yet, there was no real differ-
ence in the males’ and females’ ability to learn the
new features.

• Although there was no gender difference in fixing
the seeded bugs, females introduced more new
bugs—which remained unfixed. This appears to be
explained by their low acceptance of the debugging
features: high effective usage was a significant pre-
dictor of ability to fix bugs.

3. Related Work
Self-efficacy [1] is a person’s judgment about his or

her ability to carry out a course of action to achieve a
certain type of performance. High self-efficacy is criti-
cal in problem solving because self-efficacy influences
the use of cognitive strategies, the amount of effort put
forth, the level of persistence, the coping strategies
adopted in the face of obstacles, and the final perform-
ance outcome.

Busch was one of the first to report gender differ-
ences in computer-related self-efficacy which he dis-
covered in teaching a year long course of various com-
puter applications. At the end of the course, the fe-
males had significantly lower self-efficacy on complet-

ing complex spreadsheet tasks than the males [6].
Even though females have often been found to have

lower computer-related self-efficacy than males [2, 6,
8, 9], few studies have considered how self-efficacy
affects actual computer usage. Of the ones that have,
most relied on self-reported usage [11, 13, 17]. In each
of these studies, the males’ and females’ self-reported
usage of the computer technologies was no different,
but males always reported higher beliefs in their abili-
ties than the females.

Recently, other researchers have begun to study
males and females doing programming activities, look-
ing specifically at gender. Kelleher et al.’s work on
gender and programming environments [12] has fo-
cused on middle school girls, and the types of envi-
ronments that encourage computer programming. They
found that girls become more engaged in programming
and enjoy it more when the programming environment
is designed for story-telling [12].

 A few interview-style studies of end-user pro-
grammers in their “real lives” have also considered
gender, for example with end-user web developers and
programming in the home [15, 16]. Rode et al.’s re-
search on home programming found different catego-
ries of appliances that were more likely to be pro-
grammed by males (e.g. entertainment devices) and by
females (e.g. kitchen appliances). Their study involved
both a real-world environment (of various home appli-
ances) and real-world users. Our study uses a real-
world environment and real-world population, but the
set-up is lab- and task-based, not interview-based.

4. Study Design
As mentioned in the Introduction, we replicated the

gender-debugging study’s procedures to the extent
possible [2]. (This is why we used a controlled lab
study instead of observing real-world activity.)

4.1 Participants
We recruited participants from Microsoft’s reposi-

tory of Seattle-area residents interested in being part of
a study. (For their participation they could choose a
piece of Microsoft software.).In order to be eligible to
participate in this study, each participant had to meet
the requirements of Table 1.

In total our participants were 21 males, 23 females.
For these participants there were no gender differences
in age, spreadsheet experience, programming experi-
ence, and education. Most participants (33/44) consid-
ered themselves Excel “intermediates.” Median ages
were 48 for males and 44 for females. Education was
primarily at the baccalaureate level. Only 9 participants
(6 males and 3 females) had never created a spread-
sheet for professional use.

Figure 1. The experimental environment (Forms/3 [5])
used in the gender-debugging study. The features in-
cluded allowing users to check-off correct values x-out
incorrect values (not shown). These actions caused cells’
borders and colors to change, reflecting the system’s rea-
soning about “testedness” and likelihood of formula er-
rors. Users could also see dataflow relationship between
cells using arrows.

120

4.2 Environment
The experiment took place using the real-world en-

vironment of Microsoft Excel 2001. Because Excel is
the mostly widely used end-user programming lan-
guage, this environment is an ideal choice for examin-
ing the generalization of the gender-debugging study
results.

To as closely as possible replicate the purpose of
the gender-debugging study, this study was designed
with the same end-user software engineering objec-
tives. We thus focused on factors and features in Excel
that would promote the reliability of the spreadsheet
formulas. Excel’s audit toolbar feature has several fea-
tures that aid users in ensuring reliability, and allow
them to engage in end-user software engineering ac-
tivities. As shown in Figure 2, the audit toolbar con-
tains 12 buttons. Five of these (numbers 2-6 in Figure
2) support operations with dataflow arrows. Two
(numbers 1 and 7) relate to Excel’s error checking of
cells flagged as being inconsistent or otherwise suspi-
cious. Two (numbers 9 and 10) relate to Excel’s “vali-
dation” feature, in which users can check if any of their
cells’ values violate expected ranges (also set by the
user). Finally, number 11 is for watching cell’s values
that may be off-screen or on another sheet all together;
and number 12, “evaluate formula,” allows a user to go
step-by-step in evaluating a formula.

Although we focused on the audit toolbar, we did
not restrict the participants to only these features. In
comparison to the gender-debugging study (with only

4 features – see Figure 1), participants in this study had
to choose among hundreds of Excel features.

4.3 Tutorial
The tutorial was designed under the same require-

ments as the gender-debugging study [2]. As with the
gender-debugging study’s tutorial, it was hands-on,
and lasted about 30 minutes. Its purposes were to (1)
focus participants’ attention on the goal of formula
reliability, (2) teach features in the “taught” category,
and (3) also call attention to (but not teach) features in
the “untaught” category.

The taught features were the arrows (numbers 2-6
from Figure 2). For these features, the instructor de-
scribed how to use the feature and its feedback once
used. The taught features were used multiple times
during the study. The untaught features singled out by
the instructor were the error checking buttons and the
evaluate formula button (numbers 1 and 12). Users
were encouraged to explore all audit toolbar features.

Throughout the tutorial, participants learned to use
the taught features, and experimented as they wished
with the untaught ones focusing on the reliability of the
spreadsheet as they worked. They also learned about

Table 1: The minimum requirements participants had to meet in order to participate in the study.

Type Requirement Rationale
Age 20-60: 60 was the upper limit. To generalize, we wanted a wide range of ages.

Upper limit was set to avoid confounding factors
due to deteriorating eyesight and other cognitive
factors that occur with age.

Profession Participants classifying themselves as a software
developer, IT professional, computer engineer, or
electrical engineer were disqualified.

Our interest was in end-user programmers. These
professions are closer to professional programming
than to end-user programming.

Excel
experience

Participants could classify their Excel experience
as: beginner, intermediate, advanced, or expert.
Answering “no experience” disqualified them.

Since the population of interest to us is people al-
ready engaged in this type of end-user programming,
some prior experience with Excel was required.

Programming
background

Participants who had taken 2 or more courses in
Java- and/or Perl- like programming were disquali-
fied. (Web programming and Visual Basic were
also allowed.)

Some programming coursework was allowed be-
cause, given modern business degree requirements,
young business adults have usually taken 1-2 pro-
gramming courses in high school and/or college.

Experience with
macros

Participants who had programmed Excel macros
were disqualified.

This level of sophistication with Excel is beyond
that of many business users.

Disqualifying
features

If participants had previously used data validation,
the watch window, or evaluate formula they were
disqualified.

We wanted to analyze the use of these specific fea-
tures without the participants having prior knowl-
edge of them.

Qualifying
Features

Participants had to have used three or more of the
functions from the following list: average, count,
countif, hlookup, if, indirect, lookup, max, min,
round, sum, and sumif.

To avoid spreadsheet illiteracy as a confound, it was
important to ensure that participants had some expe-
rience with reasonably complicated formulas.

1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12

Figure 2: To stay with the theme of end-user software
engineering the experiment emphasized the use of the
features in the audit toolbar to aid formula reliability.

121

the “IF” function in Excel, because in previous studies,
a number of participants have stumbled on its use, and
we wanted to avoid introducing “noise” relating to
misunderstandings of IF into our data.

The spreadsheet they worked on during the tutorial
came from the EUSES corpus of real-world spread-
sheets [10], with slight modifications for tutorial suit-
ability. The spreadsheet was a learning styles question-
naire; participants’ task during the tutorial was to in-
troduce two new rows for two new learning styles
questions – which would then have to be accounted for
in several downstream formulas. One of these was
completed step-by-step during the tutorial. This main-
tenance-style task was designed to be similar to one of
the tasks in the main part of the experiment.

At the end of the tutorial, once one of the modifica-
tions had been made, the participants had several min-
utes to explore the features they had just learned about
and to make the second modification (add the next
question) to the spreadsheet.

4.4 Main spreadsheet and tasks
The main experiment required participants to make

two modifications to a grade book spreadsheet. This
spreadsheet, also obtained from the EUSES Spread-
sheet Corpus of real-world spreadsheets [10], is shown
in Figure 3. This represents a situation when someone
has to work with a spreadsheet they did not create.

We chose to make the tasks modification tasks—
instead of strictly debugging as in the gender-
debugging study—for generalization purposes. Modi-
fication includes debugging, creating new code, and,
ideally, testing it.

The modification tasks were designed with two cri-
teria in mind. First, they needed to be grounded in the
real world. For this reason, we drew the spreadsheet

and the task ideas from the EUSES Corpus of real-
world spreadsheets. Second, the tasks needed to be
complicated enough to warrant use of the auditing
toolbar features. If the modification tasks were too
easy, we feared there would be no reason for partici-
pants to consider use of these features.

The first modification task (#1) was drawn directly
from a second real-world spreadsheet from the corpus,
in which the teacher was incorporating lab assignments
into the students’ grade. The second modification (#2)
was to solve an error proneness problem with the cur-
rent spreadsheet. Without the second modification,
teachers would have to manually override formulas for
students with waived homework assignments; the
modification was thus to instead change the formulas
so that they could calculate the grades for any student
with or without waived homeworks.

4.5 Questionnaires
A pre-session questionnaire collected participant

background data. It also included self-efficacy ques-
tions based on a slightly modified version of Compeau
and Higgins’ validated scale [7]; the modifications
made the questionnaire task-specific to spreadsheet
modifications. Participants were asked to answer on a
five-point Likert scale their level of agreement with the
statements. For example, “…I could modify [a] spread-
sheet to change how it calculates formulas and ensure
it works properly… if there was no one around to tell
me what to do as I go…” and “…if I had seen someone
else using it before trying it myself.”

The following background data were collected:
gender, degree program, highest degree completed,
current job title, programming experience, previous
spreadsheet experience, professional spreadsheet expe-
rience, and whether English was their primary lan-
guage. We did not collect data on other factors that
might seem relevant, such as mathematical ability,
because the population of interest was spreadsheet us-
ers (other than trained programmers), regardless of any
other talents they may have.

Following the experiment a post-session question-
naire assessed comprehension of the audit toolbar fea-
tures via 22 multiple choice and true/false questions.

5. Results that Generalized

5.1 Effectiveness

Gender-Debugging Study Result: Females’ self-
efficacy was predictive of their effectiveness at us-
ing the debugging features (which was not the case
for the males).
To analyze this question, we used the measure pos-

sible with the data that was most related to effective-
ness with the debugging features. This was a measure

Figure 3. A snapshot of part of the grade book spread-
sheet from the EUSES Spreadsheet Corpus [10]. Partici-
pants’ tasks were to make modification to formulas, and
add a new lab section. Figure is shrunk and cropped to
give a sense of the overall size.

122

of success on the task – specifically how much of the
two tasks were attempted and/or completed. To deter-
mine “how much” we divided the tasks into small sub-
tasks. Points were assigned for correctly completing
tasks (even if completed in unexpected ways), with
partial credit for (incorrectly) attempting completion of
the subtask. The sum of points is the “task success.”

Females’ self-efficacy was a predictive indicator of
their task success (linear regression: F(1,21)=7.2,
ß=0.47, R2=0.26, p<0.01). Males’ self-efficacy, how-
ever, was not a significant predictor of their task suc-
cess (linear regression: F(1,19)=2.19, ß=0.15, R2=0.10,
p<0.16). Figure 4 shows the males’ and females’ rela-
tionships between self-efficacy and task success. These
findings are consistent with the above gender-
debugging study result.

Self-efficacy was also a significant predictor of task
success for all participants (F(1,42)=6.99, ß=0.24,
R2=0.14, p<0.01), but this seems due to the females.
This R2 values—a measure of how much of the vari-
ance in task success self-efficacy described—in the
preceding paragraph show that the analysis provides a
better fit to the female data than with the combined
group.

5.2 Comprehension

Gender-Debugging Study Result: No difference in
the males’ and females’ ability to learn the new fea-
tures.
One possible explanation for the result of Section

5.1 is that the females made better judgments than the
males did regarding their abilities to understand and
use the features effectively.

In the gender-debugging study, this was not the
case. A comprehension post-test showed that there was
no difference in males’ and females’ understanding of
how the debugging features worked, or interpretation
of their feedback, etc. In the gender-debugging study
females’ low self-efficacy was a self-fulfilling proph-
ecy: low belief in their ability impacted their willing-
ness to engage with the features, although their under-
standing would not have predicted this difference.

Turning to the current study, the comprehension
post-test also showed no difference in males’ and fe-
males’ comprehension of the audit toolbar features
with females scoring a median of 12 points (22 possi-
ble), males a median of 11 (t-test: t=0.72, df=42,
p<0.47). Furthermore, self-efficacy also did not predict
comprehension for either gender (linear regression:
males: F(1,19)=0.16, ß=-0.04, R2=0.008, p<0.69; fe-
males: F(1,21)=0.56, ß=0.12, R2=0.03, p<0.46). These
results suggest that, similar to the gender-debugging

study, females’ self-efficacy was more of a self-
fulfilling prophecy (regarding their task outcomes)
than an accurate assessment of abilities.

5.3 Familiar Features

Gender-Debugging Study Result: Females had a
higher adoption rate of the Type Familiar feature
(formula edits) than the males did.
Familiar features were those features not defined as

taught or untaught features (see Section 4.3). The cate-
gory included formula and value manual edits (i.e.,
without using replicate features), and basic features
such as bold, copy/paste, and insert function. A t-test
revealed no gender differences in the overall use of the
familiar features (t-test: t=0.51, df=42, p<0.62). But, as
Figure 5 clearly suggests, females’ and males’ relation-
ships between their self-efficacy and use of the familiar
features differed. Females’ self-efficacy was inversely
predictive of their use of these features: as their self-
efficacy decreased their use of the familiar features
increased (linear regression: F(1,21)=10.08, ß=-15.8,
R2=0.32, p<0.005). For males, the relationship is not
significant (F(1,19)=0.49, ß=-2.65, R2=0.03, p<0.49).

The regression relationship for the females is con-
sistent with the gender-debugging study. Specifically,
low self-efficacy females concentrated more of their
efforts on the familiar features, particularly when com-
pared to the high self-efficacy females.

0

100

200

300

400

500

15 20 25 30 35 40 45 50

Self-Efficacy

F
a

m
il

ia
r

F
e

a
tu

re
 U

s
a

g
e

Figure 5. For the females (light), lower self-efficacy was a
significant predictor of higher usage of familiar features.
For the males (dark), there was no relationship.

0

5

10

15

20

15 20 25 30 35 40 45 50

Self-Efficacy

T
a

s
k

 S
u

c
c

e
s

s

Figure 4. For the females (light), self-efficacy predicted
task performance. This relationship did not hold for the
males (dark).

123

Closer scrutiny of these relationships showed that
they were almost entirely due to (manual) value edits.
Unlike the gender-debugging study, which had only
one feature classified as familiar—formula edits, not
value edits—in this study, there were several groups
classified as such, as shown in Table 2. (The role of
values was different in the previous study, due to the
connection with a testing tool.)

Females’ self-efficacy inversely predicted use of
these manual value edits (but no other sub-category),
as shown in Figure 6 (linear regression: edit values:
F(1,21)=12.08, ß=-17.22, R2=0.37, p<0.002; edit for-
mulas: F(1,21)=2.10, ß=1.14, R2=0.09, p<0.16; other
features: F(1,21)=0.03, ß=0.14, R2=0.001, p<0.86). For
males, self-efficacy did not predict any use of the three
sub-categories (linear regression: edit values:
F(1,19)=0.32, ß=-1.9, R2=0.02, p<0.58; edit formulas:
F(1,19)=0.21, ß=-0.44, R2=0.01, p<0.65; other fea-
tures: F(1,19)=0.08, ß=-0.29, R2=0.004, p<0.78).

The distinction between values entered manually
and those entered using replicate (e.g., by copy/pasting
to several cells, fill functions, and the cross bar in the
lower-right corner of a cell) provided insights into the
females’ behaviors. In fact, values entered using repli-
cate were predicted by self-efficacy for the females,
but the relationship is opposite of the manual value
edits. Shown in Figure 7, self-efficacy is a predictive
indicator for the percentage of females’ total value
edits that are filled using replicate, but not so for the
males (linear regression: males: F(1,19)=2.37, ß=1.17,
R2=0.11, p<0.14; females: F(1,21)=6.26, ß=3.9,
R2=0.23, p<0.02). This same pattern is consistent for
formula edits entered using replicate (linear regression:
males: F(1,19)=0.94, ß=2.19, R2=0.05, p<0.34; fe-
males: F(1,21)=9.05, ß=14.6, R2=0.30, p<0.007).

Self-efficacy theory provides an interpretation for
this difference. According to self-efficacy theory “peo-
ple tend to avoid tasks and situations they believe ex-
ceed their capabilities, but they undertake and perform
assuredly activities they judge themselves capable of
handling” [1]. From this perspective, low self-efficacy
females spending their time manually entering values
may be avoiding a challenging part of the task.

For example, one aspect of task #1 (see Section
4.4), providing additional columns, could be inter-
preted to mean that many data values should be typed
in. Another subtask was to write an “IF” formula, ar-
guably the most challenging sub-task of task #1. Of the

10 low self-efficacy females (defined as females with
self-efficacy below the median of 40), only 1 attempted
the “IF” (unsuccessfully), compared with the high self-
efficacy females of whom 6 of the 13 made the change
correctly: a statistically significant result (t-test: t=2.3,
df=21, p<0.03). This result suggests that low self-
efficacy females, in avoiding a subtask they believed
exceeded their capabilities, focused on the part of the
task they knew they could do—manually entering val-
ues.

6. Unconfirmed Results
Some of the gender-debugging study results were

not confirmed. Those are discussed briefly here.
Gender-Debugging Study Result: females had sig-
nificantly lower self-efficacy than the males.
In the current study, both males and females had a

median self-efficacy of 40 (t-test: t=0.41, df=42,
p<0.68). We also found no gender differences in self-
efficacy in a previous study [3]. For researchers and
designers concerned about gender differences, the bot-
tom line is that no assumptions should be made regard-
ing whether females will or will not have lower self-
efficacy than the males. Even so, for females, low self-
efficacy when present had more detrimental effects
than for low self-efficacy males.

Table 2. Mean (std. dev.) for the components of the famil-
iar features. No significant gender differences in usage.

Familiar Features Males Females
Value (manual) edits 125.1 (111.8) 151.7 (124.3)
Formula (manual) edits 29.5 (31.5) 26.0 (16.5)
Other basic features 28.0 (33.5) 25.2 (15.8)

0

100

200

300

400

15 20 25 30 35 40 45 50

Self-Efficacy

V
a

lu
e

 E
d

it
s

Figure 6. Self-efficacy (inversely) predicts value edits for
females (light), but not for males (dark).

0

10

20

30

40

50

60

70

80

90

100

15 20 25 30 35 40 45 50

Self-Efficacy

%
 V

a
lu

e
 E

d
it

s
 F

il
le

d
 w

it
h

R
e
p

li
c
a
te

Figure 7. Self-efficacy predicts percentage of value edits
filled using replicate for the females (light), but not the
males (dark).

124

Gender-Debugging Study Result: Males were more
willing to adopt the new features: they performed
significantly more Type Taught actions than fe-
males. Furthermore, significantly more males used
Type Untaught features than females did.
For the type taught and untaught features, there

were no statically significant gender differences in
usage (t-test: taught: t=-0.76, df=42, p<0.45; untaught:
t=0.065, df=42, p<0.95). However, the relationship
between self-efficacy and untaught feature usage is
revealing. Figure 8 shows the suggestive relationships,
and how those differ for the males and females. For the
females, their self-efficacy was suggestively predictive
of untaught feature usage, but for the males suggestive
relationship is the opposite (linear regression: males:
F(1,19)=0.41, ß=-0.08, R2=0.02, p<0.53; females:
F(1,21)=1.92, ß=0.21, R2=0.084, p<0.18). In essence,
gender differences in the use of untaught features were
not confirmed for a commercial spreadsheet environ-
ment.

Gender-Debugging Study Result: no significant dif-
ference between the females’ and males’ perform-
ance in fixing seeded bugs, but the females intro-
duced significantly more bugs than the males did.
There was no gender difference in task success:

males and females scored a median of 10 and 9 points
respectively (t-test: t=0.46, df=42, p<0.65). In the gen-
der-debugging study the gender differences in intro-
duced bugs may be due to the females’ lower self-
efficacy in that study. A subsequent study also found
no gender differences in performance [3]. These find-
ings, in combination with our original results, amount
to this: when there are no differences in self-efficacy,
there is no evidence of lower task performance by fe-
male end-user programmers.

7. Discussion
This work has generalized one particular study. An-

other recent study we did investigated “tinkering” as
another interesting behavior in end-user programming
environments [3]. We would have liked to consider its
applicability to Excel features, but there was not
enough activity on any one feature. Overall, partici-
pants used 61 different Excel features, with a median
of 12 different features per participant.

A central outcome from the current study is that
neither gender alone nor self-efficacy alone was a par-
ticularly useful predictor of the outcomes for this task
of spreadsheet maintenance. Rather, the impact of self-
efficacy on behavior was different for male than for
female end-user programmers. This outcome is consis-
tent with our other studies of end-user software engi-
neering tasks as well [2, 3, 4].

Because this phenomenon is consistently present in

0

2

4

6

8

10

12

14

16

15 20 25 30 35 40 45 50

Self-Efficacy

U
n

ta
u

g
h

t
F

e
a

tu
re

 U
s

a
g

e

Figure 8. Notice that the suggested relationship between
self-efficacy and untaught feature usage is nearly the op-
posite for the males (dark) and females (light).

1. Choose an environment, preferably one that sup-
ports logging (for easy data capture).
Our study: We chose Excel.
Alternatives for replication/generalization: Other
environments.

2. Choose participants. Ensure that their experience
level does not interfere with your choice of features
to study.
Our study: Real end-user developers, familiar with
Excel, subject to the limitations described in Section
4.1.
Alternatives for replication/generalization: End-user
developers with at least some prior experience with
the environment.

3. Choose a task for the participants to complete.
Our study: Modification task, with both the original
program and the modification ideas drawn from
real-world spreadsheets from the EUSES Spread-
sheet Corpus.
Alternatives for replication: Different spreadsheets
from the same corpus; programs drawn from some
other corpus of software developed by end users.
Alternatives for generalization: Debugging, with
bugs harvested from other end users; some other
end-user software development task, such as com-
prehending, reusing, testing,

4. Create a tutorial that teaches the “taught” features,
briefly calls attention to the “untaught” features, and
illustrates the correspondence between the useful-
ness of features and the task the participants are do-
ing.
Our study: Described in Section 4.3.
Alternatives for generalization: An on-line self-
study guide.

5. Create a pre-task and post-task questionnaire.
Our study: Described in Section 4.5.
Alternatives for generalization: Questionnaire could
be tailored for different research goals.

Figure 9. How to replicate or generalize the experiment in
other environments.

125

our studies, including this one showing its presence in
a commercial environment, there is now significant
evidence that it is real, at least for spreadsheets. To
encourage other researchers interested in exploring its
applicability to other end-user programming environ-
ments, Figure 9 summarizes how to repeat it.

8. Conclusion
We have presented our process and subsequent re-

sults of replicating and generalizing the gender-
debugging study that first revealed gender differences
in end-user programming environments. We have
found that several of the results from that study gener-
alize to the commercial environment, namely:
• Females’ self-efficacy predicted task success, but

the same did not hold true for the males.
• Low self-efficacy females were more engaged

with the type familiar features, particularly value
edits. Self-efficacy theory suggests that they may
have avoided more challenging aspects of the
tasks. (Males’ usage did not suggest this same ex-
planation.)

• The above results cannot be attributed to females
being better judges of their weaknesses. Females’
comprehension of the software features were no
different than the males’ and were not predicted by
self-efficacy.

This is the first study in a commercial environment,
but the fourth study in total [2, 3, 4] in which we have
found that the effects of self-efficacy play out differ-
ently for male and female end-user programmers.

Acknowledgements
We thank Mary Czerwinski and her team at Micro-

soft Research for ideas, assistance, and hosting this
study. This work was also supported by Microsoft Re-
search UK, by NSF grant CNS-0420533, and by the
EUSES Consortium via NSF grant ITR-0325273.

References
[1] Bandura, A. Social foundations of thought and action: a

social cognitive theory, Prentice-Hall, Englewood
Cliffs, N.J. 1986.

[2] Beckwith, L., Burnett, M., Wiedenbeck, S., Cook, C.,
Sorte, S., & Hastings, M. Effectiveness of end-user de-
bugging software features: Are there gender issues?
ACM Conf. Human Factors in Computing Systems,
2005, 869-878.

[3] Beckwith, L., Kissinger, C., Burnett, M., Wiedenbeck,
S., Lawrance, J., Blackwell, A. & Cook, C. Tinkering

and gender in end-user programmers’ debugging. ACM
Conf. Human Factors in Computing Systems, 2006,
231-240.

[4] Beckwith, L., Burnett, M., Grigoreanu, V. & Wieden-
beck, S. Gender HCI: What about the software? IEEE
Computer 39(11), 2006, 83-87.

[5] Burnett, M., Cook, C. & Rothermel, G. End-user soft-
ware engineering. Comm. of the ACM 47, 9 (2004), 53-
58.

[6] Busch, T. Gender differences in self-efficacy and atti-
tudes toward computers. J. Educational Computing Re-
search 12, 1995, 147-158.

[7] Compeau, D. & Higgins, C. Computer self-efficacy:
development of a measure and initial test. MIS Quar-
terly 19(2), 1995, 189-211.

[8] Corston, R., & Colman, A.M., Gender and social facili-
tation effects on computer competence and attitudes to-
ward computers, Journal of Educational Computing Re-
search 14(2) 1996, 171-183.

[9] Durndell, A. & Haag, Z. Computer self-efficacy, com-
puter anxiety, attitudes toward the Internet and reported
experience with the Internet, by gender, in an East
European sample. Computers in Human Behavior 18,
2002, 521-535.

[10] Fisher II, M. & Rothermel, G. The EUSES Spreadsheet
Corpus: a shared resource for supporting experimenta-
tion with spreadsheet dependability mechanism.
WEUSE05: 1st Workshop on End-User Software Engi-
neering, 2005, 47-51.

[11] Hargittai, E. & Shafer, S. Differences in actual and per-
ceived online skills: The role of gender. Social Science
Quarterly 87(2), 2006, 432-448.

[12] Kelleher, C., Pausch, R., & Kiesler, S. Storytelling Al-
ice motivates middle school girls to learn computer pro-
gramming. ACM Conf. Human-Computer Interaction,
2007 (to appear).

[13] McCoy, L.P., Heafner, T.L., Burdick, M.G. & Nagle,
L.N. Gender differences in computer use and attitudes
on a ubiquitous computing campus. AERA Annual Meet-
ing, 2001, 2-7.

[14] Merriam-Webster Online Dictionary. 2006-2007.
http://www.merriam-webster.com (accessed: March 18,
2007).

[15] Rode, J.A., Toye, E.F. & Blackwell, A. The Fuzzy Felt
Ethnography – understanding the programming patterns
of domestic appliances. 2nd International Conference on
Appliance Design, 2004, 10-22.

[16] Rosson, M.B., Ballin, J. & Nash, H. Everyday pro-
gramming: Challenges and opportunities for informal
web development. Visual Languages and Human-
Centric Computing, 2001, 123-130.

[17] Spotts, T.H., Bowman, M.A., & Mertz, C., Gender and
use of instructional technologies: A study of university
faculty. Higher Education 34, 1997, 421-436.

126

