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Abstract  

 

Although there have been a number of studies of 
end-user software development tasks, few of them have 
considered gender issues for real end-user developers 
in real-world environments for end-user programming. 
In order to be trusted, the results of such laboratory 
studies must always be re-evaluated with fewer con-
trols, more closely reflecting real-world conditions. 
Therefore, the research question in this paper is 
whether the results of a Gender HCI controlled study 
generalize -- to real-world end-user developers, in a 
real-world spreadsheet environment, using a real-
world spreadsheet. Our findings are that the concepts 
revealed by the original laboratory study appear to be 
quite robust, being demonstrated in multiple ways in 
this real-world environment. 

 

1. Introduction  
In the field of visual and human centric computing 

languages, there have been many studies using aca-
demic prototypes, populations, and tasks. These studies 
often feature careful controls to limit the number of 
variables, and thus can achieve clean and clear results. 
However, too often researchers never take the next step 
to explore the generalizability of their findings on real-
world (widely used and commercially available) prod-
ucts. As a result, their findings cannot be trusted be-
yond the original, very limited setting.  

This paper takes the next step following up on the 
results of one of our earlier studies involving an aca-
demic prototype. The original study examined the ef-
fects of self-efficacy (a form of self-confidence) and 
gender on users’ problem solving behaviors with the 
academic prototype spreadsheet environment Forms/3 
including its WYSIWYT (“What You See Is What 
You Test”) debugging features [5]. The context was 
the end-user software engineering task of debugging. 
The results found significant gender differences in the 
ways males and females problem solved in the envi-
ronment. 

The purpose of the follow-up study was to explore 
how the original findings generalize. The term general-

ize is defined as “to give general applicability to” [14]. 
In order to generalize the results from our initial ex-
periment we made the following changes:  
• Different environment: Excel with unlimited ac-

cess to features. 
• Different population: Seattle-area real-world users 

of Excel. 
• Different task: Spreadsheet modification, with 

emphasis on reliability of changes.  
Another goal in the follow-up experiment design is 

replication, to ascertain whether the same research re-
sults will occur if an experiment is replicated. (The 
term replicate is defined as “performance of an ex-
periment or procedure more than once” emphasis 
added [14].) There is a delicate balance between gener-
alizing and replicating. If there are too many changes, 
the new study is no longer replicating the original; if 
there are too few changes, hardly any generalization 
can occur. Thus, we replicated the initial experiment 
procedures to the extent possible given our generaliza-
tion goals. The factors we replicated were: 
• Task domain: End-user software engineering. 
• Tutorial: Same style of teaching and introducing 

features to aid task. 
• Design/Procedures: The design was the same, and 

the procedures were as similar as possible given 
the new setting. 

• Research questions: the same research questions. 
Our goal was to discover whether the new experi-

ment in this new setting would reveal significant gen-
der differences in how males and females problem-
solve.  

2. Background: Gender-Debugging Study  

The study we set out to generalize (referred to as the 
gender-debugging study in this paper) investigated the 
following two research questions [2]:  

RQ1: Are there gender differences in self-efficacy 
that impact effective end-user programming? 
RQ2: Are there gender differences in users’ likeli-
hood of acceptance of unfamiliar features in end-
user programming environments? 
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The general format of the study was to give male 
and female participants (mainly an end-user business 
student population) two spreadsheets to debug, after 
being familiarized with the environment. Figure 1 
shows several features users had access to for aiding 
their debugging task. The results were as follows:  
• Females had lower self-efficacy (a form of confi-

dence) than males did about their abilities to debug. 
Further, females’ self-efficacy was predictive of 
their effectiveness at using the debugging features 
(which was not the case for the males). 

• Females were less likely than males to accept the 
new debugging features. A reason females stated for 
this was that they thought the features would take 
them too long to learn. Yet, there was no real differ-
ence in the males’ and females’ ability to learn the 
new features. 

• Although there was no gender difference in fixing 
the seeded bugs, females introduced more new 
bugs—which remained unfixed. This appears to be 
explained by their low acceptance of the debugging 
features: high effective usage was a significant pre-
dictor of ability to fix bugs. 

3. Related Work  
Self-efficacy [1] is a person’s judgment about his or 

her ability to carry out a course of action to achieve a 
certain type of performance. High self-efficacy is criti-
cal in problem solving because self-efficacy influences 
the use of cognitive strategies, the amount of effort put 
forth, the level of persistence, the coping strategies 
adopted in the face of obstacles, and the final perform-
ance outcome. 

Busch was one of the first to report gender differ-
ences in computer-related self-efficacy which he dis-
covered in teaching a year long course of various com-
puter applications. At the end of the course, the fe-
males had significantly lower self-efficacy on complet-

ing complex spreadsheet tasks than the males [6].  
Even though females have often been found to have 

lower computer-related self-efficacy than males [2, 6, 
8, 9], few studies have considered how self-efficacy 
affects actual computer usage. Of the ones that have, 
most relied on self-reported usage [11, 13, 17]. In each 
of these studies, the males’ and females’ self-reported 
usage of the computer technologies was no different, 
but males always reported higher beliefs in their abili-
ties than the females.  

Recently, other researchers have begun to study 
males and females doing programming activities, look-
ing specifically at gender. Kelleher et al.’s work on 
gender and programming environments [12] has fo-
cused on middle school girls, and the types of envi-
ronments that encourage computer programming. They 
found that girls become more engaged in programming 
and enjoy it more when the programming environment 
is designed for story-telling [12].  

 A few interview-style studies of end-user pro-
grammers in their “real lives” have also considered 
gender, for example with end-user web developers and 
programming in the home [15, 16]. Rode et al.’s re-
search on home programming found different catego-
ries of appliances that were more likely to be pro-
grammed by males (e.g. entertainment devices) and by 
females (e.g. kitchen appliances). Their study involved 
both a real-world environment (of various home appli-
ances) and real-world users. Our study uses a real-
world environment and real-world population, but the 
set-up is lab- and task-based, not interview-based. 

4. Study Design 
As mentioned in the Introduction, we replicated the 

gender-debugging study’s procedures to the extent 
possible [2]. (This is why we used a controlled lab 
study instead of observing real-world activity.) 

4.1 Participants  
We recruited participants from Microsoft’s reposi-

tory of Seattle-area residents interested in being part of 
a study. (For their participation they could choose a 
piece of Microsoft software.).In order to be eligible to 
participate in this study, each participant had to meet 
the requirements of Table 1.  

In total our participants were 21 males, 23 females. 
For these participants there were no gender differences 
in age, spreadsheet experience, programming experi-
ence, and education. Most participants (33/44) consid-
ered themselves Excel “intermediates.” Median ages 
were 48 for males and 44 for females. Education was 
primarily at the baccalaureate level. Only 9 participants 
(6 males and 3 females) had never created a spread-
sheet for professional use. 

 
Figure 1. The experimental environment (Forms/3 [5]) 
used in the gender-debugging study. The features in-
cluded allowing users to check-off correct values x-out 
incorrect values (not shown). These actions caused cells’ 
borders and colors to change, reflecting the system’s rea-
soning about “testedness” and likelihood of formula er-
rors. Users could also see dataflow relationship between 
cells using arrows. 
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4.2 Environment  
The experiment took place using the real-world en-

vironment of Microsoft Excel 2001. Because Excel is 
the mostly widely used end-user programming lan-
guage, this environment is an ideal choice for examin-
ing the generalization of the gender-debugging study 
results.  

To as closely as possible replicate the purpose of 
the gender-debugging study, this study was designed 
with the same end-user software engineering objec-
tives. We thus focused on factors and features in Excel 
that would promote the reliability of the spreadsheet 
formulas. Excel’s audit toolbar feature has several fea-
tures that aid users in ensuring reliability, and allow 
them to engage in end-user software engineering ac-
tivities. As shown in Figure 2, the audit toolbar con-
tains 12 buttons. Five of these (numbers 2-6 in Figure 
2) support operations with dataflow arrows. Two 
(numbers 1 and 7) relate to Excel’s error checking of 
cells flagged as being inconsistent or otherwise suspi-
cious. Two (numbers 9 and 10) relate to Excel’s “vali-
dation” feature, in which users can check if any of their 
cells’ values violate expected ranges (also set by the 
user). Finally, number 11 is for watching cell’s values 
that may be off-screen or on another sheet all together; 
and number 12, “evaluate formula,” allows a user to go 
step-by-step in evaluating a formula. 

Although we focused on the audit toolbar, we did 
not restrict the participants to only these features. In 
comparison to the gender-debugging study (with only 

4 features – see Figure 1), participants in this study had 
to choose among hundreds of Excel features. 

4.3 Tutorial  
The tutorial was designed under the same require-

ments as the gender-debugging study [2]. As with the 
gender-debugging study’s tutorial, it was hands-on, 
and lasted about 30 minutes. Its purposes were to (1) 
focus participants’ attention on the goal of formula 
reliability, (2) teach features in the “taught” category, 
and (3) also call attention to (but not teach) features in 
the “untaught” category. 

The taught features were the arrows (numbers 2-6 
from Figure 2). For these features, the instructor de-
scribed how to use the feature and its feedback once 
used. The taught features were used multiple times 
during the study. The untaught features singled out by 
the instructor were the error checking buttons and the 
evaluate formula button (numbers 1 and 12). Users 
were encouraged to explore all audit toolbar features. 

Throughout the tutorial, participants learned to use 
the taught features, and experimented as they wished 
with the untaught ones focusing on the reliability of the 
spreadsheet as they worked. They also learned about 

 

Table 1: The minimum requirements participants had to meet in order to participate in the study. 

Type Requirement Rationale 
Age 20-60: 60 was the upper limit. To generalize, we wanted a wide range of ages. 

Upper limit was set to avoid confounding factors 
due to deteriorating eyesight and other cognitive 
factors that occur with age.  

Profession Participants classifying themselves as a software 
developer, IT professional, computer engineer, or 
electrical engineer were disqualified.  

Our interest was in end-user programmers. These 
professions are closer to professional programming 
than to end-user programming. 

Excel  
experience 

Participants could classify their Excel experience 
as: beginner, intermediate, advanced, or expert. 
Answering “no experience” disqualified them. 

Since the population of interest to us is people al-
ready engaged in this type of end-user programming, 
some prior experience with Excel was required. 

Programming 
background 

Participants who had taken 2 or more courses in 
Java- and/or Perl- like programming were disquali-
fied. (Web programming and Visual Basic were 
also allowed.)  

Some programming coursework was allowed be-
cause, given modern business degree requirements, 
young business adults have usually taken 1-2 pro-
gramming courses in high school and/or college.  

Experience with 
macros 

Participants who had programmed Excel macros 
were disqualified. 

This level of sophistication with Excel is beyond 
that of many business users. 

Disqualifying 
features 

If participants had previously used data validation, 
the watch window, or evaluate formula they were 
disqualified.  

We wanted to analyze the use of these specific fea-
tures without the participants having prior knowl-
edge of them. 

Qualifying  
Features 

Participants had to have used three or more of the 
functions from the following list: average, count, 
countif, hlookup, if, indirect, lookup, max, min, 
round, sum, and sumif.  

To avoid spreadsheet illiteracy as a confound, it was 
important to ensure that participants had some expe-
rience with reasonably complicated formulas. 

 

1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12

 
Figure 2: To stay with the theme of end-user software 
engineering the experiment emphasized the use of the 
features in the audit toolbar to aid formula reliability. 

121



   

the “IF” function in Excel, because in previous studies, 
a number of participants have stumbled on its use, and 
we wanted to avoid introducing “noise” relating to 
misunderstandings of IF into our data.  

The spreadsheet they worked on during the tutorial 
came from the EUSES corpus of real-world spread-
sheets [10], with slight modifications for tutorial suit-
ability. The spreadsheet was a learning styles question-
naire; participants’ task during the tutorial was to in-
troduce two new rows for two new learning styles 
questions – which would then have to be accounted for 
in several downstream formulas. One of these was 
completed step-by-step during the tutorial. This main-
tenance-style task was designed to be similar to one of 
the tasks in the main part of the experiment.  

At the end of the tutorial, once one of the modifica-
tions had been made, the participants had several min-
utes to explore the features they had just learned about 
and to make the second modification (add the next 
question) to the spreadsheet. 

4.4 Main spreadsheet and tasks  
The main experiment required participants to make 

two modifications to a grade book spreadsheet. This 
spreadsheet, also obtained from the EUSES Spread-
sheet Corpus of real-world spreadsheets [10], is shown 
in Figure 3. This represents a situation when someone 
has to work with a spreadsheet they did not create. 

We chose to make the tasks modification tasks—
instead of strictly debugging as in the gender-
debugging study—for generalization purposes. Modi-
fication includes debugging, creating new code, and, 
ideally, testing it.  

The modification tasks were designed with two cri-
teria in mind. First, they needed to be grounded in the 
real world. For this reason, we drew the spreadsheet 

and the task ideas from the EUSES Corpus of real-
world spreadsheets. Second, the tasks needed to be 
complicated enough to warrant use of the auditing 
toolbar features. If the modification tasks were too 
easy, we feared there would be no reason for partici-
pants to consider use of these features.  

The first modification task (#1) was drawn directly 
from a second real-world spreadsheet from the corpus, 
in which the teacher was incorporating lab assignments 
into the students’ grade. The second modification (#2) 
was to solve an error proneness problem with the cur-
rent spreadsheet. Without the second modification, 
teachers would have to manually override formulas for 
students with waived homework assignments; the 
modification was thus to instead change the formulas 
so that they could calculate the grades for any student 
with or without waived homeworks. 

4.5 Questionnaires  
A pre-session questionnaire collected participant 

background data. It also included self-efficacy ques-
tions based on a slightly modified version of Compeau 
and Higgins’ validated scale [7]; the modifications 
made the questionnaire task-specific to spreadsheet 
modifications. Participants were asked to answer on a 
five-point Likert scale their level of agreement with the 
statements. For example, “…I could modify [a] spread-
sheet to change how it calculates formulas and ensure 
it works properly… if there was no one around to tell 
me what to do as I go…” and “…if I had seen someone 
else using it before trying it myself.”  

The following background data were collected: 
gender, degree program, highest degree completed, 
current job title, programming experience, previous 
spreadsheet experience, professional spreadsheet expe-
rience, and whether English was their primary lan-
guage. We did not collect data on other factors that 
might seem relevant, such as mathematical ability, 
because the population of interest was spreadsheet us-
ers (other than trained programmers), regardless of any 
other talents they may have.  

Following the experiment a post-session question-
naire assessed comprehension of the audit toolbar fea-
tures via 22 multiple choice and true/false questions. 

5. Results that Generalized 

5.1 Effectiveness 

Gender-Debugging Study Result: Females’ self-
efficacy was predictive of their effectiveness at us-
ing the debugging features (which was not the case 
for the males). 
To analyze this question, we used the measure pos-

sible with the data that was most related to effective-
ness with the debugging features. This was a measure 

 
Figure 3. A snapshot of part of the grade book spread-
sheet from the EUSES Spreadsheet Corpus [10]. Partici-
pants’ tasks were to make modification to formulas, and 
add a new lab section. Figure is shrunk and cropped to 
give a sense of the overall size.  
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of success on the task – specifically how much of the 
two tasks were attempted and/or completed. To deter-
mine “how much” we divided the tasks into small sub-
tasks. Points were assigned for correctly completing 
tasks (even if completed in unexpected ways), with 
partial credit for (incorrectly) attempting completion of 
the subtask. The sum of points is the “task success.” 

Females’ self-efficacy was a predictive indicator of 
their task success (linear regression: F(1,21)=7.2, 
ß=0.47, R2=0.26, p<0.01). Males’ self-efficacy, how-
ever, was not a significant predictor of their task suc-
cess (linear regression: F(1,19)=2.19, ß=0.15, R2=0.10, 
p<0.16). Figure 4 shows the males’ and females’ rela-
tionships between self-efficacy and task success. These 
findings are consistent with the above gender-
debugging study result.  

Self-efficacy was also a significant predictor of task 
success for all participants (F(1,42)=6.99, ß=0.24, 
R2=0.14, p<0.01), but this seems due to the females. 
This R2 values—a measure of how much of the vari-
ance in task success self-efficacy described—in the 
preceding paragraph show that the analysis provides a 
better fit to the female data than with the combined 
group. 

5.2 Comprehension 

Gender-Debugging Study Result: No difference in 
the males’ and females’ ability to learn the new fea-
tures. 
One possible explanation for the result of Section 

5.1 is that the females made better judgments than the 
males did regarding their abilities to understand and 
use the features effectively.  

In the gender-debugging study, this was not the 
case. A comprehension post-test showed that there was 
no difference in males’ and females’ understanding of 
how the debugging features worked, or interpretation 
of their feedback, etc. In the gender-debugging study 
females’ low self-efficacy was a self-fulfilling proph-
ecy: low belief in their ability impacted their willing-
ness to engage with the features, although their under-
standing would not have predicted this difference. 

Turning to the current study, the comprehension 
post-test also showed no difference in males’ and fe-
males’ comprehension of the audit toolbar features 
with females scoring a median of 12 points (22 possi-
ble), males a median of 11 (t-test: t=0.72, df=42, 
p<0.47). Furthermore, self-efficacy also did not predict 
comprehension for either gender (linear regression: 
males: F(1,19)=0.16, ß=-0.04, R2=0.008, p<0.69; fe-
males: F(1,21)=0.56, ß=0.12, R2=0.03, p<0.46). These 
results suggest that, similar to the gender-debugging 

study, females’ self-efficacy was more of a self-
fulfilling prophecy (regarding their task outcomes) 
than an accurate assessment of abilities. 

5.3 Familiar Features 

Gender-Debugging Study Result: Females had a 
higher adoption rate of the Type Familiar feature 
(formula edits) than the males did.  
Familiar features were those features not defined as 

taught or untaught features (see Section 4.3). The cate-
gory included formula and value manual edits (i.e., 
without using replicate features), and basic features 
such as bold, copy/paste, and insert function. A t-test 
revealed no gender differences in the overall use of the 
familiar features (t-test: t=0.51, df=42, p<0.62). But, as 
Figure 5 clearly suggests, females’ and males’ relation-
ships between their self-efficacy and use of the familiar 
features differed. Females’ self-efficacy was inversely 
predictive of their use of these features: as their self-
efficacy decreased their use of the familiar features 
increased (linear regression: F(1,21)=10.08, ß=-15.8, 
R2=0.32, p<0.005). For males, the relationship is not 
significant (F(1,19)=0.49, ß=-2.65, R2=0.03, p<0.49).  

The regression relationship for the females is con-
sistent with the gender-debugging study. Specifically, 
low self-efficacy females concentrated more of their 
efforts on the familiar features, particularly when com-
pared to the high self-efficacy females.  
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Figure 5. For the females (light), lower self-efficacy was a 
significant predictor of higher usage of familiar features. 
For the males (dark), there was no relationship.  

0

5

10

15

20

15 20 25 30 35 40 45 50

Self-Efficacy

T
a

s
k

 S
u

c
c

e
s

s

 

Figure 4. For the females (light), self-efficacy predicted 
task performance. This relationship did not hold for the 
males (dark).  
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Closer scrutiny of these relationships showed that 
they were almost entirely due to (manual) value edits. 
Unlike the gender-debugging study, which had only 
one feature classified as familiar—formula edits, not 
value edits—in this study, there were several groups 
classified as such, as shown in Table 2. (The role of 
values was different in the previous study, due to the 
connection with a testing tool.) 

Females’ self-efficacy inversely predicted use of 
these manual value edits (but no other sub-category), 
as shown in Figure 6 (linear regression: edit values: 
F(1,21)=12.08, ß=-17.22, R2=0.37, p<0.002; edit for-
mulas: F(1,21)=2.10, ß=1.14, R2=0.09, p<0.16; other 
features: F(1,21)=0.03, ß=0.14, R2=0.001, p<0.86). For 
males, self-efficacy did not predict any use of the three 
sub-categories (linear regression: edit values: 
F(1,19)=0.32, ß=-1.9, R2=0.02, p<0.58; edit formulas: 
F(1,19)=0.21, ß=-0.44, R2=0.01, p<0.65; other fea-
tures: F(1,19)=0.08, ß=-0.29, R2=0.004, p<0.78).  

The distinction between values entered manually 
and those entered using replicate (e.g., by copy/pasting 
to several cells, fill functions, and the cross bar in the 
lower-right corner of a cell) provided insights into the 
females’ behaviors. In fact, values entered using repli-
cate were predicted by self-efficacy for the females, 
but the relationship is opposite of the manual value 
edits. Shown in Figure 7, self-efficacy is a predictive 
indicator for the percentage of females’ total value 
edits that are filled using replicate, but not so for the 
males (linear regression: males: F(1,19)=2.37, ß=1.17, 
R2=0.11, p<0.14; females: F(1,21)=6.26, ß=3.9, 
R2=0.23, p<0.02). This same pattern is consistent for 
formula edits entered using replicate (linear regression: 
males: F(1,19)=0.94, ß=2.19, R2=0.05, p<0.34; fe-
males: F(1,21)=9.05, ß=14.6, R2=0.30, p<0.007). 

Self-efficacy theory provides an interpretation for 
this difference. According to self-efficacy theory “peo-
ple tend to avoid tasks and situations they believe ex-
ceed their capabilities, but they undertake and perform 
assuredly activities they judge themselves capable of 
handling” [1]. From this perspective, low self-efficacy 
females spending their time manually entering values 
may be avoiding a challenging part of the task. 

For example, one aspect of task #1 (see Section 
4.4), providing additional columns, could be inter-
preted to mean that many data values should be typed 
in. Another subtask was to write an “IF” formula, ar-
guably the most challenging sub-task of task #1. Of the 

10 low self-efficacy females (defined as females with 
self-efficacy below the median of 40), only 1 attempted 
the “IF” (unsuccessfully), compared with the high self-
efficacy females of whom 6 of the 13 made the change 
correctly: a statistically significant result (t-test: t=2.3, 
df=21, p<0.03). This result suggests that low self-
efficacy females, in avoiding a subtask they believed 
exceeded their capabilities, focused on the part of the 
task they knew they could do—manually entering val-
ues. 

6. Unconfirmed Results  
Some of the gender-debugging study results were 

not confirmed. Those are discussed briefly here.  
Gender-Debugging Study Result: females had sig-
nificantly lower self-efficacy than the males. 
In the current study, both males and females had a 

median self-efficacy of 40 (t-test: t=0.41, df=42, 
p<0.68). We also found no gender differences in self-
efficacy in a previous study [3]. For researchers and 
designers concerned about gender differences, the bot-
tom line is that no assumptions should be made regard-
ing whether females will or will not have lower self-
efficacy than the males. Even so, for females, low self-
efficacy when present had more detrimental effects 
than for low self-efficacy males. 

Table 2. Mean (std. dev.) for the components of the famil-
iar features. No significant gender differences in usage.  

Familiar Features Males Females 
Value (manual) edits 125.1 (111.8) 151.7 (124.3) 
Formula (manual) edits 29.5 (31.5) 26.0 (16.5) 
Other basic features  28.0 (33.5) 25.2 (15.8) 
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Figure 6. Self-efficacy (inversely) predicts value edits for 
females (light), but not for males (dark).  
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Figure 7. Self-efficacy predicts percentage of value edits 
filled using replicate for the females (light), but not the 
males (dark).  
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Gender-Debugging Study Result: Males were more 
willing to adopt the new features: they performed 
significantly more Type Taught actions than fe-
males. Furthermore, significantly more males used 
Type Untaught features than females did. 
For the type taught and untaught features, there 

were no statically significant gender differences in 
usage (t-test: taught: t=-0.76, df=42, p<0.45; untaught: 
t=0.065, df=42, p<0.95). However, the relationship 
between self-efficacy and untaught feature usage is 
revealing. Figure 8 shows the suggestive relationships, 
and how those differ for the males and females. For the 
females, their self-efficacy was suggestively predictive 
of untaught feature usage, but for the males suggestive 
relationship is the opposite (linear regression: males: 
F(1,19)=0.41, ß=-0.08, R2=0.02, p<0.53; females: 
F(1,21)=1.92, ß=0.21, R2=0.084, p<0.18). In essence, 
gender differences in the use of untaught features were 
not confirmed for a commercial spreadsheet environ-
ment.  

Gender-Debugging Study Result: no significant dif-
ference between the females’ and males’ perform-
ance in fixing seeded bugs, but the females intro-
duced significantly more bugs than the males did.  
There was no gender difference in task success: 

males and females scored a median of 10 and 9 points 
respectively (t-test: t=0.46, df=42, p<0.65). In the gen-
der-debugging study the gender differences in intro-
duced bugs may be due to the females’ lower self-
efficacy in that study. A subsequent study also found 
no gender differences in performance [3]. These find-
ings, in combination with our original results, amount 
to this: when there are no differences in self-efficacy, 
there is no evidence of lower task performance by fe-
male end-user programmers. 

7. Discussion 
This work has generalized one particular study. An-

other recent study we did investigated “tinkering” as 
another interesting behavior in end-user programming 
environments [3]. We would have liked to consider its 
applicability to Excel features, but there was not 
enough activity on any one feature. Overall, partici-
pants used 61 different Excel features, with a median 
of 12 different features per participant. 

A central outcome from the current study is that 
neither gender alone nor self-efficacy alone was a par-
ticularly useful predictor of the outcomes for this task 
of spreadsheet maintenance. Rather, the impact of self-
efficacy on behavior was different for male than for 
female end-user programmers. This outcome is consis-
tent with our other studies of end-user software engi-
neering tasks as well [2, 3, 4].  

Because this phenomenon is consistently present in 
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Figure 8. Notice that the suggested relationship between 
self-efficacy and untaught feature usage is nearly the op-
posite for the males (dark) and females (light).  

1. Choose an environment, preferably one that sup-
ports logging (for easy data capture). 
Our study: We chose Excel. 
Alternatives for replication/generalization: Other 
environments.  

2. Choose participants. Ensure that their experience 
level does not interfere with your choice of features 
to study. 
Our study: Real end-user developers, familiar with 
Excel, subject to the limitations described in Section 
4.1.  
Alternatives for replication/generalization: End-user 
developers with at least some prior experience with 
the environment. 

3. Choose a task for the participants to complete.  
Our study: Modification task, with both the original 
program and the modification ideas drawn from 
real-world spreadsheets from the EUSES Spread-
sheet Corpus. 
Alternatives for replication: Different spreadsheets 
from the same corpus; programs drawn from some 
other corpus of software developed by end users.  
Alternatives for generalization: Debugging, with 
bugs harvested from other end users; some other 
end-user software development task, such as com-
prehending, reusing, testing, .... 

4. Create a tutorial that teaches the “taught” features, 
briefly calls attention to the “untaught” features, and 
illustrates the correspondence between the useful-
ness of features and the task the participants are do-
ing.  
Our study: Described in Section 4.3. 
Alternatives for generalization: An on-line self-
study guide. 

5. Create a pre-task and post-task questionnaire.  
Our study: Described in Section 4.5. 
Alternatives for generalization: Questionnaire could 
be tailored for different research goals.  

 

Figure 9. How to replicate or generalize the experiment in 
other environments.  
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our studies, including this one showing its presence in 
a commercial environment, there is now significant 
evidence that it is real, at least for spreadsheets. To 
encourage other researchers interested in exploring its 
applicability to other end-user programming environ-
ments, Figure 9 summarizes how to repeat it. 

8. Conclusion  
We have presented our process and subsequent re-

sults of replicating and generalizing the gender-
debugging study that first revealed gender differences 
in end-user programming environments. We have 
found that several of the results from that study gener-
alize to the commercial environment, namely: 
• Females’ self-efficacy predicted task success, but 

the same did not hold true for the males. 
• Low self-efficacy females were more engaged 

with the type familiar features, particularly value 
edits. Self-efficacy theory suggests that they may 
have avoided more challenging aspects of the 
tasks. (Males’ usage did not suggest this same ex-
planation.) 

• The above results cannot be attributed to females 
being better judges of their weaknesses. Females’ 
comprehension of the software features were no 
different than the males’ and were not predicted by 
self-efficacy.  

This is the first study in a commercial environment, 
but the fourth study in total [2, 3, 4] in which we have 
found that the effects of self-efficacy play out differ-
ently for male and female end-user programmers. 
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