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Abstract  

 
During maintenance, professional developers gen-

erate and test many hypotheses about program behav-
ior, but they also spend much of their time navigating 
among classes and methods. Little is known, however, 
about how professional developers navigate source 
code and the extent to which their hypotheses relate to 
their navigation. A lack of understanding of these is-
sues is a barrier to tools aiming to reduce the large 
fraction of time developers spend navigating source 
code. In this paper, we report on a study that makes 
use of information foraging theory to investigate how 
professional developers navigate source code during 
maintenance. Our results showed that information for-
aging theory was a significant predictor of the devel-
opers’ maintenance behavior, and suggest how tools 
used during maintenance can build upon this result, 
simply by adding word analysis to their reasoning sys-
tems.  

1. Introduction  

Recent research has shown that programmers spend 
up to 35% of their time navigating source code [8, 12]. 
Much code navigation done by programmers occurs 
when they are scanning source code trying to find the 
pieces that are important for their current task [8]. Un-
derstanding more about how programmers navigate can 
inform tools that facilitate code navigation during 
maintenance. 

There is a long history of research in program de-
bugging (e.g., [4, 7, 20]), a task which is central to 
maintenance. This work has resulted in a general con-
sensus that developers, one way or another, develop 
hypotheses, and then follow these hypotheses to per-
form their tasks. 

In this paper, we explore the proposition that these 
hypotheses have linguistic relationships to the words 
with which a bug or feature request was originally de-
scribed, and further that these linguistic relationships 

can help determine the terms they will search for in the 
source code and to which files they will navigate.  

In essence, we are interested in the applicability of 
information foraging theory to program maintenance. 
Information foraging theory has emerged in the last 
decade as a way to explain how people seek, gather, 
and make use of information [17]. It is based on opti-
mal foraging theory, a theory of how predators and 
prey behave in the wild. In the domain of information 
technology, the predator is the person in need of in-
formation and the prey is the information itself. The 
predator/prey model, when translated to the informa-
tion technology domain, has been shown to mathe-
matically model which web pages human information 
foragers select on the web [15], and therefore has be-
come extremely useful as a practical tool for web site 
design and evaluation [5, 14, 18].  

Can information foraging theory also be used as the 
basis for tools to support navigation in maintenance? 
That is, is much of maintenance a foraging task, in 
which programmers follow scent in order to navigate 
to patches of code?  

In this paper, we describe a study of professional 
programmers maintaining a real-world program. We 
studied two types of maintenance situations. The first 
was finding and fixing the part of the program not 
working correctly (a bug). The second was adding 
missing functionality, which involved finding a sensi-
ble place in the code (a hook) at which to insert new 
code that can provide this functionality. Our study in-
vestigates whether techniques used in information for-
aging theory can model programmers’ behavior in 
these two situations. 

2. Background and Related Work 

In Ko et al.’s investigation of developer behavior 
during software maintenance, the participants—student 
developers working in Eclipse with nine source files—
spent 35% of their time navigating source code [12]. 
This surprising result made clear the importance of 
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trying to understand how programmers go about navi-
gating, and how to help them save time while doing so. 
This finding led to the development of a model of pro-
gram understanding [12], which proposes that the cues 
(e.g., identifier names, comments, and documentation) 
in an environment are central to searching, relating, 
and navigating code in software maintenance and de-
bugging. Although they did not investigate scent per 
se, their model is philosophically similar to informa-
tion foraging theory.  

DeLine et al. [8] conducted empirical work into 
problems arising in professional developers’ naviga-
tions through unfamiliar code. Their work turned up 
two major problems: developers needed to scan a lot of 
the source code to find the important pieces (echoing 
the finding of [12]), and they tended to get lost while 
exploring. These results inspired the idea to combine 
collaborative filtering and computational “wear” from 
users’ interaction histories into a concept called “wear-
based filtering.” They developed this idea in their 
Team Tracks system [8] with the goal of easing pro-
gram comprehension and reducing the cost of naviga-
tion by showing the source code navigations of fellow 
development team members. Team Tracks shows re-
lated items to the selected one (most frequently visited 
before/after), and favorite classes (collectively navi-
gated to most often). Results from both a laboratory 
and a field study showed that sharing navigation data 
helped ease program comprehension and navigation.  

The Hipikat system [6] also provides search for 
code-related artifacts. It is based on the notion of rela-
tionships among artifacts, which are derived through 
“project memory,” which remembers paths traversed 
by earlier members of a team, and textual similarity. 
The textual similarity part is a hand-crafted textual 
similarity matcher that assigns weights to words based 
on global prevalence of the word in the repository and 
local prevalence of the word to the document. Evalua-
tions showed that Hipikat was able to provide a useful 
pointer to relevant files, and further that newcomers 
can use the information presented by Hipikat to 
achieve results comparable in quality and correctness 
to those of more experienced members of the team.  

Regarding textual analysis of the words in bug re-
ports themselves, [11] analyzed 200,000+ Open Source 
bug report titles. They were able to ascertain patterns 
in the structure of these titles, with implications for 
how to automatically tell different kinds of bugs apart. 
Their findings most relevant to our work included the 
fact that 54% of nouns were proper nouns referring to 
code, project, or file entities. Nine common verbs 
played a grammatical mood role, but other verbs often 
had an identification role, such as identifying computa-
tional operations (e.g., “open”). Adverbs, adjectives, 
and prepositions did not directly identify entities. 

Information foraging theory has a strong relation-
ship with textual analysis. It makes its predictions 
based on proximal cues associated with links. Proximal 
cues are, as the term implies, cues that are near a link. 
Examples include link text, URL name, and surround-
ing text and graphics. Cues serve as scent as to where 
the prey might be hiding. Diet is also important in for-
aging: an animal would like to get the most nutrients 
for as little effort as possible. Because some locations 
(patches) have a greater density of prey than others, 
animals use cues such as the strength of the scent of the 
prey to decide where to spend their time.   

Information scent is calculated by analysis of the 
words in the text surrounding a link in the SNIF-ACT 
information foraging model [16]. The information for-
aging computations are based on the ACT spreading 
activation cognitive architecture [1]. In spreading acti-
vation models, the content of long-term human mem-
ory (LTM) is modeled by a network of nodes, where 
each node is a chunk of information, and links repre-
sent associations between information chunks. Chunks 
that have been experienced together in the past have 
stronger associations than chunks that have not com-
monly co-occurred. At any point in time, a chunk has a 
certain level of activation; the more recently experi-
enced, the greater the activation. A chunk’s activation 
level at the first point in time of interest is referred to 
as its base-level activation.  

When the hypothetical user modeled by SNIF-ACT 
looks at a web page, the page contents activate nodes 
in the network. This activation spreads to related 
nodes, spreading more to nodes that have a strong as-
sociation. Thus, the final activation of a chunk is de-
termined by its base-level activation, plus the activa-
tion it receives from chunks associated with it. At any 
point in time, the hypothetical user’s working memory 
comprises active nodes in LTM, together with a repre-
sentation of their current information need. The content 
of working memory then determines which actions will 
be selected. Thus, the hypothetical user will choose to 
click on links on the web page whose proximal cues 
correspond to both the currently most active nodes in 
LTM, and to their current information need. If how-
ever, the activation due to the web page is less than a 
certain threshold, the user may choose to leave that 
information patch altogether.  

This spreading activation model has been shown to 
model the actual search behavior of web users [16], 
showing that linguistic knowledge and analysis of lin-
guistic relatedness and salience are fundamental to how 
users navigate web information. 

3. Empirical Study 

The goal of this study was to ascertain whether in-
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formation foraging theory could be applied to the pre-
diction and understanding of developers’ behaviors 
during the maintenance activities of fixing a bug and 
adding new functionality. 

3.1 Design, Participants, and Materials 

We recruited 12 professional programmers from 
IBM. We required that each have at least two years 
experience programming Java, used Java for the major-
ity of their software development, were familiar with 
Eclipse and bug tracking tools, and felt comfortable 
with searching, browsing, and finding bugs in code for 
a 3-hour period of time. 

We searched for a program that met several criteria: 
we needed access to the source code, it needed to be 
written in Java, and it needed to be editable and execu-
table through Eclipse, a standard Java IDE. We se-
lected RSSOwl, an open source  news reader  that is 
one of the most actively maintained and downloaded 
projects hosted at Sourceforge.net.  The popularity of 
newsreaders and the similarity of its UI to email clients 
meant that our participants would understand the func-
tionality and interface after a brief introduction,  ensur-
ing that our participants could begin using and testing 
the program immediately.   

  RSSOwl (Figure 1) consists of three main panels: 
to the left, users may select news feeds from their fa-
vorites, to the upper right, users can review newsfeed 

headlines. On selecting a headline, the story appears in 
the lower right panel of the application window. 

Having decided upon the program, we also needed 
issues (bug reports) for our participants to work on 
during the study. Since we were  interested in source 
code navigation and not the actual bug fixes, we 
wanted to ensure that the issue could not be solved 
within the duration of the session. We also decided that 
one issue should be about fixing erroneous code and 
the other about providing a missing feature. From these 
requirements, we selected two issues: 1458101: 
“HTML entities in titles of atom items not decoded”  
and 1398345: “Remove Feed Items Based on Age.”  
We will refer to the first as issue B (“Bug”) and the 
second as issue MF (“Missing Feature”). Each partici-
pant worked on both issues, and we counterbalanced 
the ordering of issues among subjects to control for 
learning effects. The former involves finding and fix-
ing a bug, and the latter involves inserting missing 
functionality, requiring the search for a hook. 

The issues we assigned to developers were open is-
sues in RSSOwl. We considered looking at closed is-
sues whose solution we could examine, but this would 
have meant locating an older version of RSSOwl for 
participants to work on, and would have required us to 
ensure that participants would not find the solution 
accidentally by browsing the web. Therefore, we de-
cided that our participants would work on open issues, 
cognizant of the risk that RSSOwl’s own developers 
could close the issues during the study, updating the 
web-available solution with the correct code in the 
process. (Fortunately, this did not happen.) 

3.2. Procedure 

We observed each participant for three hours. Upon 
their arrival, after participants filled out initial paper 
work, we briefly described what RSSOwl is, and ex-
plained to our participants that we wanted them to try 
to find and possibly fix issues that we assigned to 
them. We then set up the instant messenger so that 
participants could contact us remotely. Then we ex-
cused ourselves from the room. 

We recorded electronic transcripts and video of 
each session using Morae screen and event log capture 
software. We archived the changes they made, if any. 
The electronic transcripts and source code served as 
the data sources we used in our analysis. 

4. Results  

Information foraging theory consists of three major 
components: information patches, information scent, 
and information diet. In addition, there is the concept 
of the prey itself, namely the ultimate information goal. 

 
Figure 1. RSSOwl, an RSS/RDF/Atom news reader. 
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In adapting information foraging theory to mainte-
nance tasks, we assume that the prey is the place(s) in 
the source code where the corrections need to be made. 
Information patches are the places in the source code 
in which the prey might hide. We begin by considering 
patches, and then investigate whether the prey’s scent 
can be approximated linguistically, and whether the 
notion of diet, which pertains to perceived profitability 
of following scents to one patch instead of another, 
appears to be present. 

4.1 A Prerequisite: Patches 

Do information foraging theory’s patches apply to 
maintenance? Narrowing down the search is part of 
maintenance, and conceptually, this seems to be the 
same thing as defining the relevant information patch.  

To see whether this intuitive notion of patches is in-
deed consistent with maintenance, we will take the 
view that patches can be considered to consist of (Java) 
classes. Information foraging theory should predict that 
participants would spend most of their time visiting 
only a small fraction of the patches available to them.  

Participants’ individual visits were indeed consis-
tent with this prediction. Participants concentrated their 
attention on a tiny fraction of the classes available in 
RSSOwl. Out of 193 classes in RSSOwl, participants 
examined an average of only 5% and 9% of the classes 
for issues B and MF, respectively, with a standard de-
viation of 3% and 6%, respectively. 

Consensus results were also consistent with the no-
tion of patches. We counted how many participants 
visited the same classes as a measure of consensus 
(Table 1). Depending on where the threshold is set as 

to how many participants must agree for consensus, the 
agreed-upon patches consisted of 2 to 42 of the classes 
(1% to 22% of the total). For example, for issue MF, 
the same two classes were visited by 8 of the partici-
pants. For issue B and MF, 144 and 100 classes, re-
spectively, were never touched by any participant. 
Given these individual and consensus results, it is clear 
that the notion of patches at the granularity of classes 
was consistent with maintenance behavior. 

Note that the agreed-upon patch size was smaller 
for issue B than for issue MF (Mann-Whitney, 
U=1344.5, p < 0.001). It is possible that this is because 
our feature request could be implemented in a greater 
variety of ways and in a greater variety of locations, 
which was the case for participants’ handling of the 
issues in this study.  

We also did a cluster analysis to see if the source 
code words would cluster related classes together, and 
thus possibly be an indicator of the scent of the patch. 
The result was that classes did indeed cluster into 
groups based on the functionality they implement. The 
dendogram in Figure 2 points out several examples.  

Having satisfied ourselves as to the prerequisite no-
tion of patches being consistent with the navigation 
behavior we observed, we proceeded to the questions 
of scent and diet. 

4.2 Information Scent 

Given the presence of a few patches that so many 
participants agreed were worth visiting, the next ques-
tion is whether the information scent, computed from 
words in the bug reports, leads to those patches: 

RQ 1: Do the words in bug reports predict to which 
source code classes (patches) developers navigate?  

We began with the words in the bug reports. We fil-
tered out all words except nouns and verbs, based on 
the findings of Ko et al.’s linguistic analysis of bug 

≥N participants 
viewed the same 
classes:  

Classes viewed 
for Issue B  

Classes viewed 
for Issue MF  

≥6 participants  
2 classes (1%) 

(NewsItem, 
StringShop) 

5 classes (3%) 
(GUI, RSSOwl-

Loader, 
NewsItem, Chan-
nel, ArchiveMan-

ager) 

≥5 participants  7 classes (4%) 9 classes (5%) 

≥4 participants  11 classes (6%) 17 classes (9%) 

≥3 participants 15 classes (8%) 23 classes (12%) 

≥2 participants  24 classes (12%) 42 classes (22%) 

Table 1. Degree of consensus in exactly where the 
source code “patches” were. Counts are of the 
same classes visited by N participants. 

 
Figure 2. Dendogram of patches grouped by words. 
For example, “A” is the set of dialog box classes, 
“B” the sorting classes, “C” the parsing classes, 
“D” the popups, and “E” the internationalization. 
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report titles [11], which revealed that identification 
words were the nouns and verbs. Ko et al. also pointed 
to nine common verbs that did not contain identifying 
information (e.g., “is”), so we filtered out those nine as 
well. After filtering, we then computed how well the 
words in each bug report predicted where participants 
would navigate. 

We computed participants’ navigation choices in 
two ways. In our first comparison, the dependent vari-
able was the total number of visits made to each of the 
193 classes. In our second comparison, the dependent 
variable was participant consensus, the extent to which 
scent predicted the most popular source files in terms 
of the number of participants who visited them.   

Interword correlation was the basis of both calcula-
tions, just as in Pirolli’s information foraging calcula-
tions of interword correlation [15]. Thus, terms in 
documents were weighted according to the term-
frequency inverse document frequency (TF-IDF) for-
mula, commonly used in information retrieval systems, 
shown below [2].  
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where wi,q is the weight of word i in the query (bug 
report). 

For predictive questions such as RQ1, linear regres-
sion is the appropriate test.  The interword correlation 
between nouns and verbs in the bug report and words 
in each class was a significant predictor of participants’ 
visits to those classes (p < .001). It was also a signifi-
cant predictor of the consensus among developers as to 
which classes were relevant (p < .001). See Table 2. 
We also tested weighting class names higher than other 
words, given that most information retrieval systems 
assign higher weights to documents that have query 
key words in their titles, but we found that doing so did 
not affect the predictive power of the model. 

These results suggest that source files were being 
selected at least in part on the basis of the words they 

contained relative to the words in the bug reports. 

4.3 Diet 

For information foraging theory, a central problem 
in information sense-making is the allocation of atten-
tion. This comes out especially in the notion of diet. 

The information foraging notion of diet is that there 
is a principle of lost opportunity, which states that by 
handling lower-ranked items in the diet, one would 
lose the opportunity to go after higher-ranked items. 
The diet model says that, for this reason, people will 
pursue the most profitable items (gain from informa-
tion per amount of time to deal with the information). 
Diet in information foraging theory has much in com-
mon with Blackwell’s model of attention investment 
[3], which posits that people weigh costs, benefits, and 
risks of choosing which computer features to use and 
how to spend the time and attention available for the 
task.  

Diet focuses on profitability. We emphasize that the 
aspect of interest is perceived profitability, which may 
not be true profitability. Thus, we must turn to our par-
ticipants for where they perceived highest profitability 
to lie.  

So far, we have shown that participants were likely 
to visit patches where the scent, originating in the bug 
report’s words, took them. The research question in 
this section asks whether those files were the profitable 
places to visit, from the perspective of the participants. 
If they spent significant amounts of time in a file, we 
will take that to mean that this was indeed a place they 
deemed worthy of their attention.  

RQ2: Do the words in bug reports predict the pro-
portion of total time developers will spend in a particu-
lar file?  

For this research question, we were interested in de-
termining the extent to which interword correlation 
predicted where participants would allocate their time. 
As shown in Table 3, the interword correlation among 
bug reports and source files explained 27% to 31% of 
how the participants allocated their time among 

 

Explanatory → 
Response 

Issue B Issue MF  

Interword 
correlation → 
Visits 

R2 = 0.287, 
F(1,191) = 78.17, 
p < 0.001  

R2 = 0.311, 
F(1,191) = 87.45, 
p < 0.001 

Interword 
correlation → 
Consensus 

R2 = 0.267, 
F(1,191) = 70.9, 
p < 0.001  

R2 = 0.309, 
F(1,191) = 87.03, 
p < 0.001 

Table 2: Interword correlation as predictor of visits 
and consensus using linear regression.  
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classes. Figure 3 demonstrates the extent to which they 
focused on just a few classes. 

4.4 Information Scent and Hypotheses 

Did the words in bug reports predict where partici-
pants were trying to go? For example, they may have 
been visiting and spending time in certain files in a 
quest for information they did not find there.  

Prior research into debugging suggests that pro-
grammers form hypotheses about the reasons and 
places relevant to the bugs, and that much of debug-
ging revolves around attempts to confirm, refine, or 
refute those hypotheses [4, 10, 20].  

Hypotheses about places were sometimes expressed 
explicitly, i.e., when participants typed in query 
strings. We decided to consider evidence of where they 
were trying to go by considering the contents of their 
query strings. Thus, we measured whether the words in 
bug reports predict participants’ search query words.  

RQ3: Do the words in bug reports predict the vo-
cabulary of the queries developers made?  

For both issues, the most commonly used words 
found in queries were indeed found in the words of the 
bug reports. Using the words in the bug report as a 
model of the words participants used in their queries, 
we found that for both issues, the bug report was 
predictive of the query words. (Issue B: F(1,98) = 
6.669, R2 = 0.05, p = 0.0113. Issue MF: F(1,78) = 
32.49, R2 = 0.285, p < 0.001.) Even though there was a 
significant relationship between the words in the bug 
reports and the queries in both issues, in the case of 
issue B, the relatively low R2 value shows that there 
were many other factors at work as well. In the case of 
issue MF, the predictive value was moderately strong.  

It surprised us that the vocabulary of the feature re-
quest predicted the words in searches for the new fea-
ture hook better than the vocabulary of the bug report 
predicted words in searches for the buggy code, given 
that, as discussed in section 4.1, participants reached 
consensus on fewer classes for the bug report. Further 
analysis revealed that participants found suitable hooks 
(GUI.java, RSSOwlLoader.java, etc.) using fewer que-
ries and a more limited vocabulary than used in pursu-
ing the bug. Once this hook was found, participants 
diverged in their subsequent navigation in pursuit of 

different ways to implement or address the feature re-
quest.   

Essentially, we are proposing that the hypotheses 
that the participants generated were determined not 
only by their past experience with how programming 
functionality is implemented, but also by the words 
that were used in the bug reports. That is, their hy-
potheses were in part shaped by the vocabulary choices 
of the bug reports. Similar effects of problem descrip-
tion on problem-solving strategy have been found in 
other problem solving domains [9].  

5. Discussion 

The goal of this experiment has been to contribute 
to prediction of developers’ behavior, and the results 
showed significant relationships between word-based 
predictions and the participants’ actual behavior. How-
ever, as the R-squared values show, the linguistic pre-
dictions did not explain all of their behavior.  

R-squared values can range from 0 to 1. In studies 
of human behavior, R-squared values are common in 
the .09 to .25 range [13]. With one exception (.05), our 
R-squared values ranged from .26 to .31. Such R-
squared values indicate, of course, that a great deal of 
the humans’ behavior was not accounted for. That is to 
be expected because, first, there is inherent measure-
ment error in attempting to measure human behavior 
and, second, it is not realistic to expect a single vari-
able to account for all of their behavior.  

Even so, the significant predictive relationship word 
analysis had with participants’ navigation has useful 
implications for the design of future tools, as we dis-
cuss in the next section. In addition, these results pro-
vide independent evidence about the premises behind 
current systems like Team Tracks and Hipikat. The 
designers of these systems have conducted studies, but 
our study is independent, not conducted by the design-
ers of Hipikat or Team Tracks.  

Explanatory → 
Response 

Issue B Issue MF 

Interword 
correlation → 
Time span 

R2 = 0.27, 
F(1,191) = 72.53, 
p < 0.001  

R2 = 0.310, 
F(1,191) = 87.21, 
p < 0.001  

Table 3: Interword correlation as predictor of par-
ticipants’ allocation of time among classes using 
linear regression. 

Figure 3: Total time spent in all 49 classes visited 
by anyone for Issue B.  (Many are too low to regis-
ter.) The steep drop-off in time spent shows the 
intense focus on just a few highly ranked classes.  
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Specifically, the results showed that the bug reports 
predicted the vocabulary of the queries participants 
used to find appropriate source code. This supports the 
concept of including textual analysis, used in systems 
like Hipikat. The R-squared values also showed that 
word analysis alone was unlikely to be enough, sup-
porting the concept behind both Hipikat and Team 
Tracks that multiple sources of information are needed 
to make good navigation predictions, and that a single 
source is unlikely to have high enough accuracy. 

Both Hipikat and Team Tracks make use of collec-
tive knowledge through approaches such as navigation 
path “wear” and class popularity. Our results support 
this design choice too, showing that participants collec-
tively narrowed their focus on the same files. But given 
that participants reached more consensus for the bug 
than for the feature request, such systems may be able 
to improve further by factoring in which type of issue 
(bug or feature request) a developer is working on.  

Turning to theoretical underpinnings, our results are 
consistent with a number of existing theories, and shed 
further light upon the way developers go about debug-
ging and maintenance.  

First, our results are consistent with the well-
established idea of hypothesis formation as a basis of 
debugging [4, 10, 20]. In our results, vocabulary in the 
bug reports predicted vocabulary in the queries, sug-
gesting the possibility of queries as a surrogate for hy-
potheses about “subject areas” in the source code 
where work will be needed. Further, the places to 
which participants navigated as a result of their queries 
were the “right” places for investigating their hypothe-
ses, as evidenced by the fact that they spent significant 
time in the files once they had gotten there. Note also 
that vocabulary did not explain all of participants’ 
navigation behavior, which is consistent with the idea 
of hypothesis formation as well, since it is unlikely that 
all of the vocabulary of suitable hypotheses would be 
present in a bug report. 

Second, our results are consistent with beacons [19] 
and with Ko et al.’s model of searching, relating, and 
collecting [12]. The work on beacons emphasizes the 
importance of cues in comprehension, though beacons 
are at a finer granularity than what we examined. Ko et 
al.’s model is related to information foraging theory in 
its emphasis on the importance of cues in the environ-
ment. Our results further refine what goes on in the 
“search” aspect that leads developers to the right places 
for relating and collecting. 

The consistency of our findings with information 
foraging theory itself has interesting implications. 
Namely, it points to the possibility of a cognitive 
model that can be used to understand program naviga-
tion. Just as Pirolli et al. [15] extended their initial 
static analysis of web navigation into the dynamic 

SNIF-ACT model, we can use the static analyses pre-
sented here as the basis for creating a dynamic model 
of scent-following behavior in maintenance. Develop-
ing such a model in the context of programming may 
promote understanding of how well a particular piece 
of code and/or bug report will enable foraging. It could 
also be used as the basis for tools to help programmers 
navigate more optimally, as we discuss next. 

6. Practical Implications 

Being able to predict programmers’ navigation from 
analysis of the interword correlation of words in the 
bug reports and words in class files and queries has 
practical implications in at least three areas: for tools to 
help programmers debug, in helping programmers and 
testers write better bug reports, and in analyzing the 
usefulness of programmers’ word choices in their code. 

Regarding uses in tools, navigation tools could add 
analysis of the interword correlation between words in 
bug reports and source code to suggest classes that are 
most pertinent to the bug report. This may be as simple 
as providing a list of classes ordered by interword cor-
relation, or could go further. For example, the linguis-
tic analysis could contribute other mechanisms for rea-
soning about navigation recommendations, such as 
Team Tracks’ devices. Fault localization tools could 
also benefit.  Fault localization tools make their best 
guess as to where the bugs in source code may be lurk-
ing. These guesses often make use of multiple sources 
of information. Adding word analysis as another 
source of information could improve their ability to 
pinpoint the fault. 

Some bug reports are better than others in enabling 
a programmer to find the bug’s location. Our study 
suggests that the use of nouns and verbs that are the 
same as (or strongly associated with) words in the class 
files will help the programmer find source code loca-
tions relevant to the bug. This could be used as the 
basis of a usability analysis of bug reports, analogous 
to the information-foraging-based Bloodhound usabil-
ity analysis tool [5] for web sites.   

In a similar manner, analysis of the scent emanating 
from the source files could be used to help program-
mers write more navigable source code. Scent depends 
on what is considered to be the prey. Existing docu-
mentation, such as requirements or documents describ-
ing the application domain, could be used to define the 
different possible prey, and interword correlation be-
tween the documentation and the source code would 
provide an assessment of scent in the source code rele-
vant to that prey. One possible use could be to auto-
matically assess names a programmer chooses for 
classes, methods, and variables when writing code, or 
even the word choices in his or her comments.  
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We have mentioned the potential of word analysis 
for contributing to existing tools’ sources of informa-
tion. The other direction is possible too: these sources 
of information could contribute to word analysis. For 
example, historic data about which class files were 
modified in order to close which bug report could pro-
vide application-specific insights into word relation-
ships. These insights could be used to weight associa-
tion strength between words that co-occur in that ap-
plication’s class files and its bug reports.  

The implications discussed above draw on the spe-
cific word analysis techniques used in our study. Taken 
more generally, we anticipate that information foraging 
theory will have an even broader set of implications 
concerning how to increase the scent of documentation 
and code for different programming tasks, offering a 
wealth of design implications for programming arti-
facts and tools. 

7. Conclusion 

 In this study, we considered, from the perspective 
of information foraging theory, the linguistic relation-
ships between hypotheses, words in two particular bug 
reports, and professional developers’ navigation 
through source code as they attempted to fix the bugs.  

We found that the central tenet of information for-
aging theory, that of following scent to patches, was a 
significant predictor of our participants’ navigation 
choices. This was true for both of the bugs we consid-
ered; that is, it occurred both in searching for a bug in 
source code and in searching for a place to “hook” new 
code to support a missing feature. Specifically, we 
found statistical evidence of the three components of 
information foraging theory: of patches, of following 
scent, and of the pursuit of profitability (diet). We also 
found statistical ties between words in bug reports and 
participants’ queries, a partial approximation of their 
hypotheses about locations for fixing the bugs.  

This study is far from the last word, and there are 
many possibilities for follow-up research and refine-
ment. Still, the practical implications are clear: the re-
sults strongly suggest how tools used in maintenance 
can make use of these findings, simply by adding word 
analysis to their reasoning systems. 
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