
Scents in Programs:
Does Information Foraging Theory Apply to Program Maintenance?

Joseph Lawrance
Oregon State University

School of EECS
Corvallis, Oregon 97331

lawrance@cs.orst.edu

Rachel Bellamy
IBM T.J. Watson Research

19 Skyline Drive
Hawthorne, New York 10532

rachel@us.ibm.com

Margaret Burnett
Oregon State University

School of EECS
Corvallis, Oregon 97331

burnett@cs.orst.edu

Abstract

During maintenance, professional developers gen-

erate and test many hypotheses about program behav-
ior, but they also spend much of their time navigating
among classes and methods. Little is known, however,
about how professional developers navigate source
code and the extent to which their hypotheses relate to
their navigation. A lack of understanding of these is-
sues is a barrier to tools aiming to reduce the large
fraction of time developers spend navigating source
code. In this paper, we report on a study that makes
use of information foraging theory to investigate how
professional developers navigate source code during
maintenance. Our results showed that information for-
aging theory was a significant predictor of the devel-
opers’ maintenance behavior, and suggest how tools
used during maintenance can build upon this result,
simply by adding word analysis to their reasoning sys-
tems.

1. Introduction

Recent research has shown that programmers spend
up to 35% of their time navigating source code [8, 12].
Much code navigation done by programmers occurs
when they are scanning source code trying to find the
pieces that are important for their current task [8]. Un-
derstanding more about how programmers navigate can
inform tools that facilitate code navigation during
maintenance.

There is a long history of research in program de-
bugging (e.g., [4, 7, 20]), a task which is central to
maintenance. This work has resulted in a general con-
sensus that developers, one way or another, develop
hypotheses, and then follow these hypotheses to per-
form their tasks.

In this paper, we explore the proposition that these
hypotheses have linguistic relationships to the words
with which a bug or feature request was originally de-
scribed, and further that these linguistic relationships

can help determine the terms they will search for in the
source code and to which files they will navigate.

In essence, we are interested in the applicability of
information foraging theory to program maintenance.
Information foraging theory has emerged in the last
decade as a way to explain how people seek, gather,
and make use of information [17]. It is based on opti-
mal foraging theory, a theory of how predators and
prey behave in the wild. In the domain of information
technology, the predator is the person in need of in-
formation and the prey is the information itself. The
predator/prey model, when translated to the informa-
tion technology domain, has been shown to mathe-
matically model which web pages human information
foragers select on the web [15], and therefore has be-
come extremely useful as a practical tool for web site
design and evaluation [5, 14, 18].

Can information foraging theory also be used as the
basis for tools to support navigation in maintenance?
That is, is much of maintenance a foraging task, in
which programmers follow scent in order to navigate
to patches of code?

In this paper, we describe a study of professional
programmers maintaining a real-world program. We
studied two types of maintenance situations. The first
was finding and fixing the part of the program not
working correctly (a bug). The second was adding
missing functionality, which involved finding a sensi-
ble place in the code (a hook) at which to insert new
code that can provide this functionality. Our study in-
vestigates whether techniques used in information for-
aging theory can model programmers’ behavior in
these two situations.

2. Background and Related Work

In Ko et al.’s investigation of developer behavior
during software maintenance, the participants—student
developers working in Eclipse with nine source files—
spent 35% of their time navigating source code [12].
This surprising result made clear the importance of

2007 IEEE Symposium on Visual Languages and Human-Centric Computing

0-7695-2987-9/07 $25.00 © 2007 IEEE
DOI 10.1109/VLHCC.2007.25

15

trying to understand how programmers go about navi-
gating, and how to help them save time while doing so.
This finding led to the development of a model of pro-
gram understanding [12], which proposes that the cues
(e.g., identifier names, comments, and documentation)
in an environment are central to searching, relating,
and navigating code in software maintenance and de-
bugging. Although they did not investigate scent per
se, their model is philosophically similar to informa-
tion foraging theory.

DeLine et al. [8] conducted empirical work into
problems arising in professional developers’ naviga-
tions through unfamiliar code. Their work turned up
two major problems: developers needed to scan a lot of
the source code to find the important pieces (echoing
the finding of [12]), and they tended to get lost while
exploring. These results inspired the idea to combine
collaborative filtering and computational “wear” from
users’ interaction histories into a concept called “wear-
based filtering.” They developed this idea in their
Team Tracks system [8] with the goal of easing pro-
gram comprehension and reducing the cost of naviga-
tion by showing the source code navigations of fellow
development team members. Team Tracks shows re-
lated items to the selected one (most frequently visited
before/after), and favorite classes (collectively navi-
gated to most often). Results from both a laboratory
and a field study showed that sharing navigation data
helped ease program comprehension and navigation.

The Hipikat system [6] also provides search for
code-related artifacts. It is based on the notion of rela-
tionships among artifacts, which are derived through
“project memory,” which remembers paths traversed
by earlier members of a team, and textual similarity.
The textual similarity part is a hand-crafted textual
similarity matcher that assigns weights to words based
on global prevalence of the word in the repository and
local prevalence of the word to the document. Evalua-
tions showed that Hipikat was able to provide a useful
pointer to relevant files, and further that newcomers
can use the information presented by Hipikat to
achieve results comparable in quality and correctness
to those of more experienced members of the team.

Regarding textual analysis of the words in bug re-
ports themselves, [11] analyzed 200,000+ Open Source
bug report titles. They were able to ascertain patterns
in the structure of these titles, with implications for
how to automatically tell different kinds of bugs apart.
Their findings most relevant to our work included the
fact that 54% of nouns were proper nouns referring to
code, project, or file entities. Nine common verbs
played a grammatical mood role, but other verbs often
had an identification role, such as identifying computa-
tional operations (e.g., “open”). Adverbs, adjectives,
and prepositions did not directly identify entities.

Information foraging theory has a strong relation-
ship with textual analysis. It makes its predictions
based on proximal cues associated with links. Proximal
cues are, as the term implies, cues that are near a link.
Examples include link text, URL name, and surround-
ing text and graphics. Cues serve as scent as to where
the prey might be hiding. Diet is also important in for-
aging: an animal would like to get the most nutrients
for as little effort as possible. Because some locations
(patches) have a greater density of prey than others,
animals use cues such as the strength of the scent of the
prey to decide where to spend their time.

Information scent is calculated by analysis of the
words in the text surrounding a link in the SNIF-ACT
information foraging model [16]. The information for-
aging computations are based on the ACT spreading
activation cognitive architecture [1]. In spreading acti-
vation models, the content of long-term human mem-
ory (LTM) is modeled by a network of nodes, where
each node is a chunk of information, and links repre-
sent associations between information chunks. Chunks
that have been experienced together in the past have
stronger associations than chunks that have not com-
monly co-occurred. At any point in time, a chunk has a
certain level of activation; the more recently experi-
enced, the greater the activation. A chunk’s activation
level at the first point in time of interest is referred to
as its base-level activation.

When the hypothetical user modeled by SNIF-ACT
looks at a web page, the page contents activate nodes
in the network. This activation spreads to related
nodes, spreading more to nodes that have a strong as-
sociation. Thus, the final activation of a chunk is de-
termined by its base-level activation, plus the activa-
tion it receives from chunks associated with it. At any
point in time, the hypothetical user’s working memory
comprises active nodes in LTM, together with a repre-
sentation of their current information need. The content
of working memory then determines which actions will
be selected. Thus, the hypothetical user will choose to
click on links on the web page whose proximal cues
correspond to both the currently most active nodes in
LTM, and to their current information need. If how-
ever, the activation due to the web page is less than a
certain threshold, the user may choose to leave that
information patch altogether.

This spreading activation model has been shown to
model the actual search behavior of web users [16],
showing that linguistic knowledge and analysis of lin-
guistic relatedness and salience are fundamental to how
users navigate web information.

3. Empirical Study

The goal of this study was to ascertain whether in-

16

formation foraging theory could be applied to the pre-
diction and understanding of developers’ behaviors
during the maintenance activities of fixing a bug and
adding new functionality.

3.1 Design, Participants, and Materials

We recruited 12 professional programmers from
IBM. We required that each have at least two years
experience programming Java, used Java for the major-
ity of their software development, were familiar with
Eclipse and bug tracking tools, and felt comfortable
with searching, browsing, and finding bugs in code for
a 3-hour period of time.

We searched for a program that met several criteria:
we needed access to the source code, it needed to be
written in Java, and it needed to be editable and execu-
table through Eclipse, a standard Java IDE. We se-
lected RSSOwl, an open source news reader that is
one of the most actively maintained and downloaded
projects hosted at Sourceforge.net. The popularity of
newsreaders and the similarity of its UI to email clients
meant that our participants would understand the func-
tionality and interface after a brief introduction, ensur-
ing that our participants could begin using and testing
the program immediately.

 RSSOwl (Figure 1) consists of three main panels:
to the left, users may select news feeds from their fa-
vorites, to the upper right, users can review newsfeed

headlines. On selecting a headline, the story appears in
the lower right panel of the application window.

Having decided upon the program, we also needed
issues (bug reports) for our participants to work on
during the study. Since we were interested in source
code navigation and not the actual bug fixes, we
wanted to ensure that the issue could not be solved
within the duration of the session. We also decided that
one issue should be about fixing erroneous code and
the other about providing a missing feature. From these
requirements, we selected two issues: 1458101:
“HTML entities in titles of atom items not decoded”
and 1398345: “Remove Feed Items Based on Age.”
We will refer to the first as issue B (“Bug”) and the
second as issue MF (“Missing Feature”). Each partici-
pant worked on both issues, and we counterbalanced
the ordering of issues among subjects to control for
learning effects. The former involves finding and fix-
ing a bug, and the latter involves inserting missing
functionality, requiring the search for a hook.

The issues we assigned to developers were open is-
sues in RSSOwl. We considered looking at closed is-
sues whose solution we could examine, but this would
have meant locating an older version of RSSOwl for
participants to work on, and would have required us to
ensure that participants would not find the solution
accidentally by browsing the web. Therefore, we de-
cided that our participants would work on open issues,
cognizant of the risk that RSSOwl’s own developers
could close the issues during the study, updating the
web-available solution with the correct code in the
process. (Fortunately, this did not happen.)

3.2. Procedure

We observed each participant for three hours. Upon
their arrival, after participants filled out initial paper
work, we briefly described what RSSOwl is, and ex-
plained to our participants that we wanted them to try
to find and possibly fix issues that we assigned to
them. We then set up the instant messenger so that
participants could contact us remotely. Then we ex-
cused ourselves from the room.

We recorded electronic transcripts and video of
each session using Morae screen and event log capture
software. We archived the changes they made, if any.
The electronic transcripts and source code served as
the data sources we used in our analysis.

4. Results

Information foraging theory consists of three major
components: information patches, information scent,
and information diet. In addition, there is the concept
of the prey itself, namely the ultimate information goal.

Figure 1. RSSOwl, an RSS/RDF/Atom news reader.

17

In adapting information foraging theory to mainte-
nance tasks, we assume that the prey is the place(s) in
the source code where the corrections need to be made.
Information patches are the places in the source code
in which the prey might hide. We begin by considering
patches, and then investigate whether the prey’s scent
can be approximated linguistically, and whether the
notion of diet, which pertains to perceived profitability
of following scents to one patch instead of another,
appears to be present.

4.1 A Prerequisite: Patches

Do information foraging theory’s patches apply to
maintenance? Narrowing down the search is part of
maintenance, and conceptually, this seems to be the
same thing as defining the relevant information patch.

To see whether this intuitive notion of patches is in-
deed consistent with maintenance, we will take the
view that patches can be considered to consist of (Java)
classes. Information foraging theory should predict that
participants would spend most of their time visiting
only a small fraction of the patches available to them.

Participants’ individual visits were indeed consis-
tent with this prediction. Participants concentrated their
attention on a tiny fraction of the classes available in
RSSOwl. Out of 193 classes in RSSOwl, participants
examined an average of only 5% and 9% of the classes
for issues B and MF, respectively, with a standard de-
viation of 3% and 6%, respectively.

Consensus results were also consistent with the no-
tion of patches. We counted how many participants
visited the same classes as a measure of consensus
(Table 1). Depending on where the threshold is set as

to how many participants must agree for consensus, the
agreed-upon patches consisted of 2 to 42 of the classes
(1% to 22% of the total). For example, for issue MF,
the same two classes were visited by 8 of the partici-
pants. For issue B and MF, 144 and 100 classes, re-
spectively, were never touched by any participant.
Given these individual and consensus results, it is clear
that the notion of patches at the granularity of classes
was consistent with maintenance behavior.

Note that the agreed-upon patch size was smaller
for issue B than for issue MF (Mann-Whitney,
U=1344.5, p < 0.001). It is possible that this is because
our feature request could be implemented in a greater
variety of ways and in a greater variety of locations,
which was the case for participants’ handling of the
issues in this study.

We also did a cluster analysis to see if the source
code words would cluster related classes together, and
thus possibly be an indicator of the scent of the patch.
The result was that classes did indeed cluster into
groups based on the functionality they implement. The
dendogram in Figure 2 points out several examples.

Having satisfied ourselves as to the prerequisite no-
tion of patches being consistent with the navigation
behavior we observed, we proceeded to the questions
of scent and diet.

4.2 Information Scent

Given the presence of a few patches that so many
participants agreed were worth visiting, the next ques-
tion is whether the information scent, computed from
words in the bug reports, leads to those patches:

RQ 1: Do the words in bug reports predict to which
source code classes (patches) developers navigate?

We began with the words in the bug reports. We fil-
tered out all words except nouns and verbs, based on
the findings of Ko et al.’s linguistic analysis of bug

≥N participants
viewed the same
classes:

Classes viewed
for Issue B

Classes viewed
for Issue MF

≥6 participants
2 classes (1%)

(NewsItem,
StringShop)

5 classes (3%)
(GUI, RSSOwl-

Loader,
NewsItem, Chan-
nel, ArchiveMan-

ager)

≥5 participants 7 classes (4%) 9 classes (5%)

≥4 participants 11 classes (6%) 17 classes (9%)

≥3 participants 15 classes (8%) 23 classes (12%)

≥2 participants 24 classes (12%) 42 classes (22%)

Table 1. Degree of consensus in exactly where the
source code “patches” were. Counts are of the
same classes visited by N participants.

Figure 2. Dendogram of patches grouped by words.
For example, “A” is the set of dialog box classes,
“B” the sorting classes, “C” the parsing classes,
“D” the popups, and “E” the internationalization.

18

report titles [11], which revealed that identification
words were the nouns and verbs. Ko et al. also pointed
to nine common verbs that did not contain identifying
information (e.g., “is”), so we filtered out those nine as
well. After filtering, we then computed how well the
words in each bug report predicted where participants
would navigate.

We computed participants’ navigation choices in
two ways. In our first comparison, the dependent vari-
able was the total number of visits made to each of the
193 classes. In our second comparison, the dependent
variable was participant consensus, the extent to which
scent predicted the most popular source files in terms
of the number of participants who visited them.

Interword correlation was the basis of both calcula-
tions, just as in Pirolli’s information foraging calcula-
tions of interword correlation [15]. Thus, terms in
documents were weighted according to the term-
frequency inverse document frequency (TF-IDF) for-
mula, commonly used in information retrieval systems,
shown below [2].

ijiji idffw !=
,,

where
jvv

ji

ji
freq

freq
f

,

,

,
max!

= and
i

i
n

N
idf log=

Here, fi,j is the frequency of word i in document j
(normalized with respect to the most frequently occur-
ring word v in a document), idfi is the inverse docu-
ment frequency, and wi,j is the weight of word i in
document dj. The interword correlation between source
files and each bug report was then computed via cosine
similarity (also commonly used in information retrieval
systems), as shown below:

!!

!

==

=

"

"

=
"

#
=

t

i

qi

t

i

ji

t

i

qiji

j

j

j

ww

ww

qd

qd
qdsim

1

2

,

1

2

,

1

,,

),(

where wi,q is the weight of word i in the query (bug
report).

For predictive questions such as RQ1, linear regres-
sion is the appropriate test. The interword correlation
between nouns and verbs in the bug report and words
in each class was a significant predictor of participants’
visits to those classes (p < .001). It was also a signifi-
cant predictor of the consensus among developers as to
which classes were relevant (p < .001). See Table 2.
We also tested weighting class names higher than other
words, given that most information retrieval systems
assign higher weights to documents that have query
key words in their titles, but we found that doing so did
not affect the predictive power of the model.

These results suggest that source files were being
selected at least in part on the basis of the words they

contained relative to the words in the bug reports.

4.3 Diet

For information foraging theory, a central problem
in information sense-making is the allocation of atten-
tion. This comes out especially in the notion of diet.

The information foraging notion of diet is that there
is a principle of lost opportunity, which states that by
handling lower-ranked items in the diet, one would
lose the opportunity to go after higher-ranked items.
The diet model says that, for this reason, people will
pursue the most profitable items (gain from informa-
tion per amount of time to deal with the information).
Diet in information foraging theory has much in com-
mon with Blackwell’s model of attention investment
[3], which posits that people weigh costs, benefits, and
risks of choosing which computer features to use and
how to spend the time and attention available for the
task.

Diet focuses on profitability. We emphasize that the
aspect of interest is perceived profitability, which may
not be true profitability. Thus, we must turn to our par-
ticipants for where they perceived highest profitability
to lie.

So far, we have shown that participants were likely
to visit patches where the scent, originating in the bug
report’s words, took them. The research question in
this section asks whether those files were the profitable
places to visit, from the perspective of the participants.
If they spent significant amounts of time in a file, we
will take that to mean that this was indeed a place they
deemed worthy of their attention.

RQ2: Do the words in bug reports predict the pro-
portion of total time developers will spend in a particu-
lar file?

For this research question, we were interested in de-
termining the extent to which interword correlation
predicted where participants would allocate their time.
As shown in Table 3, the interword correlation among
bug reports and source files explained 27% to 31% of
how the participants allocated their time among

Explanatory →
Response

Issue B Issue MF

Interword
correlation →
Visits

R2 = 0.287,
F(1,191) = 78.17,
p < 0.001

R2 = 0.311,
F(1,191) = 87.45,
p < 0.001

Interword
correlation →
Consensus

R2 = 0.267,
F(1,191) = 70.9,
p < 0.001

R2 = 0.309,
F(1,191) = 87.03,
p < 0.001

Table 2: Interword correlation as predictor of visits
and consensus using linear regression.

19

classes. Figure 3 demonstrates the extent to which they
focused on just a few classes.

4.4 Information Scent and Hypotheses

Did the words in bug reports predict where partici-
pants were trying to go? For example, they may have
been visiting and spending time in certain files in a
quest for information they did not find there.

Prior research into debugging suggests that pro-
grammers form hypotheses about the reasons and
places relevant to the bugs, and that much of debug-
ging revolves around attempts to confirm, refine, or
refute those hypotheses [4, 10, 20].

Hypotheses about places were sometimes expressed
explicitly, i.e., when participants typed in query
strings. We decided to consider evidence of where they
were trying to go by considering the contents of their
query strings. Thus, we measured whether the words in
bug reports predict participants’ search query words.

RQ3: Do the words in bug reports predict the vo-
cabulary of the queries developers made?

For both issues, the most commonly used words
found in queries were indeed found in the words of the
bug reports. Using the words in the bug report as a
model of the words participants used in their queries,
we found that for both issues, the bug report was
predictive of the query words. (Issue B: F(1,98) =
6.669, R2 = 0.05, p = 0.0113. Issue MF: F(1,78) =
32.49, R2 = 0.285, p < 0.001.) Even though there was a
significant relationship between the words in the bug
reports and the queries in both issues, in the case of
issue B, the relatively low R2 value shows that there
were many other factors at work as well. In the case of
issue MF, the predictive value was moderately strong.

It surprised us that the vocabulary of the feature re-
quest predicted the words in searches for the new fea-
ture hook better than the vocabulary of the bug report
predicted words in searches for the buggy code, given
that, as discussed in section 4.1, participants reached
consensus on fewer classes for the bug report. Further
analysis revealed that participants found suitable hooks
(GUI.java, RSSOwlLoader.java, etc.) using fewer que-
ries and a more limited vocabulary than used in pursu-
ing the bug. Once this hook was found, participants
diverged in their subsequent navigation in pursuit of

different ways to implement or address the feature re-
quest.

Essentially, we are proposing that the hypotheses
that the participants generated were determined not
only by their past experience with how programming
functionality is implemented, but also by the words
that were used in the bug reports. That is, their hy-
potheses were in part shaped by the vocabulary choices
of the bug reports. Similar effects of problem descrip-
tion on problem-solving strategy have been found in
other problem solving domains [9].

5. Discussion

The goal of this experiment has been to contribute
to prediction of developers’ behavior, and the results
showed significant relationships between word-based
predictions and the participants’ actual behavior. How-
ever, as the R-squared values show, the linguistic pre-
dictions did not explain all of their behavior.

R-squared values can range from 0 to 1. In studies
of human behavior, R-squared values are common in
the .09 to .25 range [13]. With one exception (.05), our
R-squared values ranged from .26 to .31. Such R-
squared values indicate, of course, that a great deal of
the humans’ behavior was not accounted for. That is to
be expected because, first, there is inherent measure-
ment error in attempting to measure human behavior
and, second, it is not realistic to expect a single vari-
able to account for all of their behavior.

Even so, the significant predictive relationship word
analysis had with participants’ navigation has useful
implications for the design of future tools, as we dis-
cuss in the next section. In addition, these results pro-
vide independent evidence about the premises behind
current systems like Team Tracks and Hipikat. The
designers of these systems have conducted studies, but
our study is independent, not conducted by the design-
ers of Hipikat or Team Tracks.

Explanatory →
Response

Issue B Issue MF

Interword
correlation →
Time span

R2 = 0.27,
F(1,191) = 72.53,
p < 0.001

R2 = 0.310,
F(1,191) = 87.21,
p < 0.001

Table 3: Interword correlation as predictor of par-
ticipants’ allocation of time among classes using
linear regression.

Figure 3: Total time spent in all 49 classes visited
by anyone for Issue B. (Many are too low to regis-
ter.) The steep drop-off in time spent shows the
intense focus on just a few highly ranked classes.

20

Specifically, the results showed that the bug reports
predicted the vocabulary of the queries participants
used to find appropriate source code. This supports the
concept of including textual analysis, used in systems
like Hipikat. The R-squared values also showed that
word analysis alone was unlikely to be enough, sup-
porting the concept behind both Hipikat and Team
Tracks that multiple sources of information are needed
to make good navigation predictions, and that a single
source is unlikely to have high enough accuracy.

Both Hipikat and Team Tracks make use of collec-
tive knowledge through approaches such as navigation
path “wear” and class popularity. Our results support
this design choice too, showing that participants collec-
tively narrowed their focus on the same files. But given
that participants reached more consensus for the bug
than for the feature request, such systems may be able
to improve further by factoring in which type of issue
(bug or feature request) a developer is working on.

Turning to theoretical underpinnings, our results are
consistent with a number of existing theories, and shed
further light upon the way developers go about debug-
ging and maintenance.

First, our results are consistent with the well-
established idea of hypothesis formation as a basis of
debugging [4, 10, 20]. In our results, vocabulary in the
bug reports predicted vocabulary in the queries, sug-
gesting the possibility of queries as a surrogate for hy-
potheses about “subject areas” in the source code
where work will be needed. Further, the places to
which participants navigated as a result of their queries
were the “right” places for investigating their hypothe-
ses, as evidenced by the fact that they spent significant
time in the files once they had gotten there. Note also
that vocabulary did not explain all of participants’
navigation behavior, which is consistent with the idea
of hypothesis formation as well, since it is unlikely that
all of the vocabulary of suitable hypotheses would be
present in a bug report.

Second, our results are consistent with beacons [19]
and with Ko et al.’s model of searching, relating, and
collecting [12]. The work on beacons emphasizes the
importance of cues in comprehension, though beacons
are at a finer granularity than what we examined. Ko et
al.’s model is related to information foraging theory in
its emphasis on the importance of cues in the environ-
ment. Our results further refine what goes on in the
“search” aspect that leads developers to the right places
for relating and collecting.

The consistency of our findings with information
foraging theory itself has interesting implications.
Namely, it points to the possibility of a cognitive
model that can be used to understand program naviga-
tion. Just as Pirolli et al. [15] extended their initial
static analysis of web navigation into the dynamic

SNIF-ACT model, we can use the static analyses pre-
sented here as the basis for creating a dynamic model
of scent-following behavior in maintenance. Develop-
ing such a model in the context of programming may
promote understanding of how well a particular piece
of code and/or bug report will enable foraging. It could
also be used as the basis for tools to help programmers
navigate more optimally, as we discuss next.

6. Practical Implications

Being able to predict programmers’ navigation from
analysis of the interword correlation of words in the
bug reports and words in class files and queries has
practical implications in at least three areas: for tools to
help programmers debug, in helping programmers and
testers write better bug reports, and in analyzing the
usefulness of programmers’ word choices in their code.

Regarding uses in tools, navigation tools could add
analysis of the interword correlation between words in
bug reports and source code to suggest classes that are
most pertinent to the bug report. This may be as simple
as providing a list of classes ordered by interword cor-
relation, or could go further. For example, the linguis-
tic analysis could contribute other mechanisms for rea-
soning about navigation recommendations, such as
Team Tracks’ devices. Fault localization tools could
also benefit. Fault localization tools make their best
guess as to where the bugs in source code may be lurk-
ing. These guesses often make use of multiple sources
of information. Adding word analysis as another
source of information could improve their ability to
pinpoint the fault.

Some bug reports are better than others in enabling
a programmer to find the bug’s location. Our study
suggests that the use of nouns and verbs that are the
same as (or strongly associated with) words in the class
files will help the programmer find source code loca-
tions relevant to the bug. This could be used as the
basis of a usability analysis of bug reports, analogous
to the information-foraging-based Bloodhound usabil-
ity analysis tool [5] for web sites.

In a similar manner, analysis of the scent emanating
from the source files could be used to help program-
mers write more navigable source code. Scent depends
on what is considered to be the prey. Existing docu-
mentation, such as requirements or documents describ-
ing the application domain, could be used to define the
different possible prey, and interword correlation be-
tween the documentation and the source code would
provide an assessment of scent in the source code rele-
vant to that prey. One possible use could be to auto-
matically assess names a programmer chooses for
classes, methods, and variables when writing code, or
even the word choices in his or her comments.

21

We have mentioned the potential of word analysis
for contributing to existing tools’ sources of informa-
tion. The other direction is possible too: these sources
of information could contribute to word analysis. For
example, historic data about which class files were
modified in order to close which bug report could pro-
vide application-specific insights into word relation-
ships. These insights could be used to weight associa-
tion strength between words that co-occur in that ap-
plication’s class files and its bug reports.

The implications discussed above draw on the spe-
cific word analysis techniques used in our study. Taken
more generally, we anticipate that information foraging
theory will have an even broader set of implications
concerning how to increase the scent of documentation
and code for different programming tasks, offering a
wealth of design implications for programming arti-
facts and tools.

7. Conclusion

 In this study, we considered, from the perspective
of information foraging theory, the linguistic relation-
ships between hypotheses, words in two particular bug
reports, and professional developers’ navigation
through source code as they attempted to fix the bugs.

We found that the central tenet of information for-
aging theory, that of following scent to patches, was a
significant predictor of our participants’ navigation
choices. This was true for both of the bugs we consid-
ered; that is, it occurred both in searching for a bug in
source code and in searching for a place to “hook” new
code to support a missing feature. Specifically, we
found statistical evidence of the three components of
information foraging theory: of patches, of following
scent, and of the pursuit of profitability (diet). We also
found statistical ties between words in bug reports and
participants’ queries, a partial approximation of their
hypotheses about locations for fixing the bugs.

This study is far from the last word, and there are
many possibilities for follow-up research and refine-
ment. Still, the practical implications are clear: the re-
sults strongly suggest how tools used in maintenance
can make use of these findings, simply by adding word
analysis to their reasoning systems.

Acknowledgments

This study was supported in part by IBM Research,
by the EUSES Consortium via NSF ITR-0325273, and
by an IBM International Faculty Award.

References

[1] Anderson, J. R., Bothell, D., Byrne, M., Douglass, D.,

Lebiere, C. and Qin, Y. An integrated theory of mind.
Psychological Review 111(4), 2004, 1036-1060.

[2] Baeza-Yates, R., Ribeiro-Neto, B. Modern Information
Retrieval, Addison Wesley Longman, 1999.

[3] Blackwell, A. First steps in programming: A rationale for
attention investment models, IEEE Symp. Human-Centric
Comp. Langs. Envs., 2002, 2-10.

[4] Brooks, R. Towards a theory of the cognitive processes in
computing programming, Int. J. Human-Computer Stud-
ies 51, 1999, 197-211.

[5] Chi, E., Rosien, A., Supattanasiri, G., Williams, A.,
Royer, C., Chow, C., Robles, E., Dalal, B., Chen, J.,
Cousins, S. The Bloodhound project: Automating discov-
ery of web usability issues using the InfoScent simulator,
ACM Conf. Human Factors Comp. Sys., Ft. Lauderdale,
Florida, 2003.

[6] Cubranic, D., Murphy, G., Singer, J., Booth, K. Hipikat:
A project memory for software development, IEEE
Trans. Software Engineering 31(6), 446-465, June 2005.

[7] Detienne, F., Software Design - Cognitive Aspects,
Springer, 2001.

[8] DeLine, R., Czerwinski, M. and Robertson, G., Easing
program comprehension by sharing navigation data, IEEE
Symp. Visual Langs. Human Centric Computing, 2005,
241-248.

[9] Glick, M. and Holyoak, K. J., Schema induction and
analogical transfer. Cognitive Psychology 1983, 15, 1-38.

[10] Ko, A., Myers, B., A framework and methodology for
studying the causes of software errors in programming
systems, J. Visual Langs. Computing 16(1-2), 2005.

[11] Ko, A., Myers, B., and Chau, D., A linguistic analysis of
how people describe software problems, IEEE Symp. Vis-
ual Langs. Human-Centric Computing, 2006, 127-136.

[12] Ko, A, Myers, B., Coblenz, M., and Aung, H., An ex-
ploratory study of how developers seek, relate, and collect
relevant information during software maintenance tasks,
IEEE Trans. Software Engineering 32(12), Dec. 2006.

[13] Mitchell, M. and Jolley, J. Research Design Explained,
6th Ed., Wadsworth Publishing, 2006.

[14] Nielsen, J. Information foraging: Why Google makes
people leave your site faster http://www.useit.com/
alertbox/20030630.html. (June 30, 2003.)

[15] Pirolli, P. Computational models of information scent-
following in a very large browsable text collection. ACM
Conf. Human Factors Comp. Sys., 1997, 3-10.

[16] Pirolli, P. and Fu, W.-T., SNIF-ACT: A model of infor-
mation foraging on the World Wide Web. Lecture Notes
in Computer Science 2702, 2003, 45-54.

[17] Pirolli, P. Information Foraging Theory: Adaptive Inter-
action with Information. Oxford University Press, 2007.

[18] Spool, J., Profetti, C., and Britain, D., Designing for the
scent of information, User Interface Engineering. 2004.

[19] Wiedenbeck, S., Scholz, J. Beacons: A knowledge struc-
ture in program comprehension, in Designing and Using
Human-Computer Interfaces and Knowledge Based Sys-
tems (G. Salvendy, M. Smith, ed.), Elsevier, 1989, 82-87.

[20] Vans, A. and von Mayrhauser, A., Program understand-
ing behavior during corrective maintenance of large-scale
software, Int’l J. Human-Computer Studies 51(1), 1999.

22

