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Abstract 

In recent years, systems have emerged that enable 
end users to “mash” together existing web services to 
build new web sites. However, little is known about 
how well end users succeed at building such mashups, 
or what they do if they do not succeed at their first at-
tempt. To help fill this gap, we took a fresh look, from 
a debugging perspective, at the approaches of end us-
ers as they attempted to create mashups. Our results 
reveal the end users’ debugging strategies and strategy 
barriers, the gender differences between the debugging 
strategies males and females followed and the features 
they used, and finally how their debugging successes 
and difficulties interacted with their design behaviors.   

 

1. Introduction 
Mashup programming is a relatively new paradigm 

in end-user programming. Mashups repurpose and 
combine existing web content and services to meet the 
specific needs of the user. For instance, an avid news 
follower might build a mashup that combines news 
feeds from MSN, New York Times, and Fox, and that 
filters the content based on his favorite topics (e.g., 
world news and business). There are a wide variety of 
mashup programming environments, such as Microsoft 
Popfly, Intel Mash Maker, and Yahoo! Pipes. How-
ever, little is known about how well these environ-
ments support the “mashing” needs of end users. Our 
work seeks to fill this knowledge gap. 

While conducting a recent study of end users build-
ing mashups [3], we noticed that participants spent a 
substantial amount of time (76.3%) debugging. This 
observation suggests that they tended to “debug into 
existence”—that is, they created their mashups through 
a process of successive refinement, which was driven 
by the finding and fixing of bugs [13]. Given the 
prevalence of debugging activity, we believe that ef-
fective debugging support is critical for successful 
mashup environments. 

Therefore, in this paper, we report on a new analy-
sis of that study, from the perspective of end users’ 
debugging behaviors and barriers while creating mash-
ups. Our investigation had three main goals. 

Our first goal was to understand the debugging 
strategies that end users use in programming mashups. 
Prior studies on debugging have identified debugging 
strategies used by end users in spreadsheet [16] and 
scripting environments [7]. Understanding such strate-
gies has provided valuable insights into how such envi-
ronments can be improved to support debugging 
strategies [16]. 

Our second goal was to understand the impact of 
gender differences on how end users debug mashups. 
Prior work in the context of spreadsheet and scripting 
environments has shown that gender differences can 
play an important role in the adoption of strategies [7, 
16] and the usage of features that support the strate-
gies [2]. Understanding such differences has revealed 
gender biases and informed tool designs that narrowed 
the gender gap while benefitting both males and fe-
males [6]. We seek to extend these findings to mashup 
environments. 

Our third goal was to understand how debugging 
interacts with design when end users create mashups. 
Our prior study [3] revealed that instances of design 
permeated the end users’ programming processes while 
creating mashups. Furthermore, viewing mashup pro-
gramming through the design lens produced promising 
design implications for mashup environments. In this 
work we seek to extend these findings and implications 
by focusing on debugging. 

Given these three goals, our investigation sought to 
answer the following research questions: 

RQ1: What debugging strategies do end users adopt 
when they are creating mashups? What barri-
ers do they encounter? 

RQ2: Are there gender differences in end users’ us-
age of debugging strategies in mashups? 

RQ3: How does debugging interact with design when 
end users are creating mashups? 

2. Related Work   
Despite the proliferation of mashup environments, 

research has found that end users’ lack of technical 
expertise is a serious barrier to creating mashups [10, 
19]. In response to this problem, researchers have pro-
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posed mashup environments (e.g., Vegemite and 
Mashroom) that reduce such barriers by using tech-
niques such as direct manipulation, programming-by-
demonstration, and intuitive nested-table data struc-
tures. Usability studies have demonstrated that such 
environments can significantly benefit end users.  

A few studies have explored end-user perceptions 
of mashups systems. In a survey of end users [22], fe-
males expected mashup creation to be more difficult 
than did males, suggesting gender differences in self-
efficacy. To inform the design of mashup tools, Zang 
and Rosson [23] investigated end users’ mental models 
of mashups—for example, how users thought about 
relationships in online data, and how they might like to 
integrate data. Jones and Churchill [8] studied the on-
line forums of Yahoo! Pipes users to understand how 
end users collaborate to resolve problems.  

Our investigation complements the above research 
by investigating how users go about debugging while 
building mashups. The investigation differs from the 
existing literature on end-user debugging (e.g., [7, 16]) 
in two ways. First, prior studies asked participants to 
find and fix seeded defects in spreadsheets or scripts. 
Our study asked participants to create mashups; thus, 
debugging was not the central goal. Second, our 
investigation is the first to look at strategies, design 
behavior, and gender differences in the debugging of 
mashups. 

3. Empirical Study 
This investigation entailed a new analysis of data 

from a previous study [3] in which we observed ten 
participants engaged in a mashup-creation task using 
Microsoft Popfly Mashup Creator.  

Participants. Participants comprised four female and 
six male college students from a wide variety of majors 
(e.g., biology, nutrition science). None were CS stu-
dents, and none had taken CS courses beyond the ele-
mentary level. One female and four males had past 
programming experience either in high school, college, 
or both (no more than two courses). 

Popfly Mashup Creator. In Popfly, users build mash-
ups in a dataflow style using blocks. A block performs 
a set of parameterized operations such as data retrieval 
and data display. Users connect blocks to route the 
output of one block into the input of another. Figure 1 
shows a Flickr block sending images and geographical 
coordinates of “beaches” to a Virtual Earth block (top, 
middle) to display the images on a map (bottom). Pop-
fly users can make their projects public and access 
others’ public projects. (More details of Popfly are 
given later.) 

Procedure. The study used the think-aloud method, so 
we conducted it one participant at a time. Participants 
first filled out a background questionnaire and worked 
on a 20-minute tutorial that familiarized them with 
Popfly. They then completed a self-efficacy question-
naire [4], which we adapted to the task of mashup crea-
tion. Participants then practiced “thinking aloud” be-
fore proceeding to the main task. 

The task involved creating a mashup to include (1) 
a list of local theaters, (2) the movies being shown at 
each theater along with information such as show 
times, (3) a picture for each movie, and (4) a news 
story about each movie. Participants had 50 minutes to 
complete the task. If they were unable to make pro-
gress for 15 minutes, the researcher administered an 
additional 5-minute mini-tutorial. Although this tuto-
rial may have influenced participants’ behaviors, we 
relate its effect to encountering a well-chosen example. 
Half of the participants (2 males, 3 females) received 
the mini-tutorial, and it proved helpful to three of them 
(2 males, 1 female). We collected video data (including 
facial expressions) as well as the final mashups. 

4. Analysis Methodology 
Participants debugged intermittently as they created 

their mashups. Thus, we first identified sections of the 
transcripts in which participants were debugging (i.e., 
attempting to correct problems they had introduced). 
We then performed a protocol analysis on those sec-
tions.  

Grigoreanu et al.’s collection of debugging strate-
gies [7] served as the basis for our strategy analysis 
(Table 1). Two researchers independently coded all 
transcripts with the strategy codes, then jointly re-

 
Figure	
  1.	
  Example	
  mashup	
  in	
  Popfly.	
  Top:	
  the	
  blocks.	
  Mid-­‐

dle:	
  block	
  settings.	
  Bottom:	
  the	
  running	
  mashup.	
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solved any inconsistencies.  
Framing captures a designer’s efforts to understand 

and define a design problem, and determines the 
boundaries for designers’ actions in solving the prob-
lem [14]. Designers frame a problem by identifying 
areas of the solution space that they want to ex-
plore [5]. When designers choose an unworkable 
frame, they must reframe, which involves assessing 
and then modifying or replacing the current frame. 

As a conservative approach to coding reframing, we 
coded only those instances that were evidenced by ac-
tions. Two types of actions indicated reframing: (1) 
adding/removing a block, and (2) adding/removing 
connections between blocks. We chose these actions as 
evidence of reframing because they change the func-
tion or structure of a mashup in a global way. In con-
trast, we did not regard adjusting local block settings as 
reframing. Only one researcher coded for reframing 
because the process was mechanical and objective.  

5. Results 
We evaluated each participant’s mashup, giving a 

point for each fulfilled requirement (max 4). In this 
paper, we identify participants by their gender and the 
ranking of their score. Thus, the participants were as 
follows (scores in parenthesis): F1(4), F2(2.5), F3(2), 
F4(2), M1(3.5), M2(3.5), M3(3), M4(3), M5(2.5), and 
M6(2). Half points indicate partially fulfilled require-
ments (e.g., missing pictures of some movies). 

5.1 RQ1: Debugging Strategies and Barriers 
Prior studies identified ten debugging strategies 

used by end-user programmers (Table 1) [7, 16]. Our 
participants used seven of the ten, listed in Table 2. As 
the table’s diagonal shows, three strategies dominated: 
Testing (241 participant minutes), Code Inspection 
(201), and Dataflow (93). Participants frequently used 
these three strategies together: Testing and Code In-

spection co-occurred the most (99 participant minutes), 
agreeing with previous results [16]. Other frequent co-
occurrences were Dataflow and Testing (58), and Code 
Inspection and Dataflow (53). 

In the remainder of this section, we focus on  Code 
Inspection, Dataflow, and Help, which were the strate-
gies in which barriers arose. We also describe an anti-
barrier associated with Feedback Following. 

Code Inspection: Getting eyes on the code. In Pop-
fly, Code Inspection involved scrutinizing the mashup 
logic, such as block settings and inter-block connec-
tions. Participants encountered two prominent barriers 
in applying this strategy. First, Popfly blocks are 
“black boxes”—their internal logic is uninspectable. 
For instance, F1 did not understand that Live Image 
Search blocks loop infinitely, searching for images. 
Thus, she was perplexed when her search results for 
“Slumdog Millionaire” repeated the same image over 
and over—the loop was invisible to her.  

On rare occasions, a participant was able to guess 
the hidden logic: 
M2: … it keeps adding the same news stories over and 
over again. Haha, I think there's some kind of a loop. 

The second barrier arose because participants could 
only view one block’s settings at a time. Thus, when 
viewing the settings for one block, participants lost 
reference to related block settings and connections.  

Dataflow: Mistakes and misunderstandings. Popfly 
is a dataflow-based environment, so it stands to reason 
that the Dataflow strategy would be particularly useful 
in this context. However, participants encountered con-
siderable barriers using the strategy. 

Two participants, F3 and F4, displayed poor under-
standing of dataflow. For instance, F3 connected a Lo-
cal Movies block to a Flickr block to display movie 
images, but the data flow was in the wrong direction: 
F3: I want to change the Flickr to the Local Movies 
[Connects Flickr to feed into Local Movies] Now try 
this again to see if I can get some results.   

Four participants (F2, M3, M4, M6) understood 

Table	
  1.	
  Debugging	
  strategies	
  code	
  set	
  (from	
  [7]).	
  

Strategy	
   Definition	
  
Testing	
  	
   Trying	
  inputs	
  to	
  evaluate	
  the	
  results.	
  
Code	
  Inspection	
   Examining	
  mashup	
  logic	
  to	
  determine	
  

correctness.	
  
Dataflow	
   Following	
  data	
  dependencies.	
  
Help	
   Getting	
  help	
  from	
  people	
  or	
  resources.	
  
Feedback	
  Fol-­‐
lowing	
  

Using	
  system-­‐generated	
  feedback	
  to	
  
guide	
  action.	
  

Specification	
  
Checking	
  

Reviewing	
  what	
  the	
  mashup	
  should	
  do	
  
to	
  evaluate	
  its	
  current	
  state.	
  	
  

Proceed	
  as	
  in	
  
Prior	
  Experience	
  

Explicitly	
  drawing	
  on	
  prior	
  experience	
  to	
  
guide	
  action.	
  

Control	
  Flow	
   Following	
  flow	
  of	
  control	
  (the	
  sequence	
  
that	
  instructions	
  execute).	
  

Spatial	
  	
   Following	
  the	
  spatial	
  layout	
  of	
  code.	
  
To-­‐Do	
  Listing	
   Recording	
  items	
  to	
  attend	
  to	
  later.	
  	
  

 

Table	
  2.	
  Occurrence	
  and	
  co-­‐occurrence	
  of	
  strategies	
  or-­‐
dered	
  by	
  frequency.	
  Diagonal	
  cells	
  show	
  number	
  of	
  min-­‐
utes	
  participants	
  used	
  the	
  strategy;	
  remaining	
  cells	
  show	
  

co-­‐occurrences.	
  

	
   Test	
   Code	
   Data	
   Help	
   Feed	
   Spec	
   Prior	
  
Test	
   241	
   99	
   58	
   21	
   17	
   17	
   6	
  
Code	
   	
   201	
   53	
   20	
   28	
   8	
   4	
  
Data	
   	
   	
   93	
   10	
   12	
   4	
   5	
  
Help	
   	
   	
   	
   46	
   4	
   1	
   0	
  
Feed	
   	
   	
   	
   	
   35	
   2	
   0	
  
Spec	
   	
   	
   	
   	
   	
   24	
   1	
  
Prior	
   	
   	
   	
   	
   	
   	
   9	
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that arrows signify a relationship between blocks, but 
did not exhibit a clear grasp as to how data flowed. For 
example, M3 wanted to use MSN News to show stories 
about movies from Local Movies but was not sure how 
to do that so he tried to “link things together ‘cause 
that [seemed] to relate things together.” 

Even the four participants who usually used 
Dataflow successfully (F1, M1, M2, M5) sometimes 
misunderstood the type of data flowing out of a block. 
For instance, F1 tried to pass movie names from a Lo-
cal Movies block through an Images Search block to a 
Live News block, not understanding that the Images 
Search block only outputs pictures, not text.  

Help: Trouble getting the right kind. All participants 
sought debugging help. Using the seven help mecha-
nisms in Table 3, they pursued help 46 times. The right 
column of the table shows the proportion of uses asso-
ciated with each mechanism. 

Despite the rich array of help mechanisms, the Help 
strategy often was not helpful—only 25% of the help-
seeking instances led to progress. Here we describe 
barriers participants encountered using the two most 
popular mechanisms: light bulb and example search. 

The light bulb appears as an icon on each block. 
When clicked, it suggests blocks that go well with the 
current block. Unfortunately, 11 out of the 13 times 
participants used this feature, they were not seeking 
creative suggestions, but rather debugging assistance.  

The debugging assistance participants wanted fell 
into three categories. The first category was guidance 
on how to configure blocks. For example, F2 wanted to 
know how to configure a YouTube Video block: 
F2: [Clicks light bulb.] I'm going to get some mashup 
ideas because I'm not sure how to set up a YouTube 
video. 

The second category was guidance on how to coor-
dinate specific blocks. For example, F3 wanted to 
know how to hook an RSS List block into her mashup:  
F3: I clicked [the light bulb] to get some mashing 
ideas to find out what the problem is with my connec-
tions… 

The third category was help in deciding whether to 

continue working on a current buggy solution or to 
abandon it entirely. For instance, M2 had problems 
displaying the desired data. He did not know whether 
he used the wrong blocks, configured his blocks incor-
rectly, or needed additional blocks. Unfortunately, the 
light bulb offered no help: 
M2: How do we choose what data is displayed? … 
What's the light bulb? No mashing suggestions... 

Participants could use the Popfly search feature to 
find mashup examples. Concrete examples have long 
been regarded as critical elements of end-user pro-
gramming, and indeed, four participants sought 
mashup examples (for a total of 8 attempts). Unfortu-
nately, 7 of the 8 attempts were not helpful.  

One problem participants had was finding useful 
examples. For instance, M4 wanted his mashup to dis-
play movie pictures, but it displayed random images 
instead. He searched for an example to guide his solu-
tion, but could not find any that were helpful: 
M4: [example 1]…They're showing different movies, 
but they don't really have anything different from what 
I have on mine…  
[example 2]… pretty much the same thing…  
[example 3]… I don't  see pictures next to any of these.  
[example 4]…This is not really showing anything dif-
ferent. Let me go back to mine.  

Another problem was understanding the examples 
found. For instance, M5 found an example that im-
pressed him, but he failed to benefit from it, perhaps 
because he could not determine which parts of the 
large example mashup were relevant to his task: 
M5: That's kinda cool [Many blocks appear] Oooh, 
this is a lot more bad ass than mine! Text Helper, Text 
Helper… This guy is smart. [M5 abandons his search]  

Feedback Following: A bright spot. Feedback Fol-
lowing comes into play when the system provides in-
context feedback that suggests user action. In Popfly, 
the exclamation point appears when the user connects 
two blocks, and the client block receives no data due to 
a configuration error. Hovering over the exclamation 
point produces a tooltip that says, “You must set a 
value.” All participants attended to this feedback fea-
ture, and by following the feedback, they consistently 
succeeded in fixing this type of bug.  

One reason for the effectiveness of this feedback 
feature may be that it is an example of surprise-
explain-reward [20], which aims to entice the user into 
useful actions. Specifically, the appearance of the ex-
clamation point surprises the user. Now curious, the 
user reads the tooltip, which explains that he must set a 
value. The user infers that by setting a value, he will be 
rewarded with a working connection. Interestingly, not 
all participants understood the error message (perhaps 

Table	
  3.	
  Mechanisms	
  used	
  to	
  get	
  help	
  and	
  how	
  much	
  each	
  
was	
  used	
  (proportion	
  of	
  total	
  usage	
  instances).	
  

Feature	
   Description	
   Usage	
  
Light	
  bulb	
   Creative	
  mashing	
  suggestions	
   28%	
  
Popfly	
  search	
  
(examples)	
  

Popfly	
  search	
  feature	
  for	
  finding	
  
example	
  mashups	
  

17%	
  

Popfly	
  help	
   Help	
  on	
  general	
  questions	
   15%	
  
Reference	
  guide	
   Quick	
  ref.	
  to	
  tutorials’	
  contents	
   13%	
  
Block	
  help	
   Block-­‐specific	
  documentation	
   11%	
  
Debug	
  console	
   Dumps	
  runtime	
  trace	
  info	
   9%	
  
Other	
   Google,	
  etc.	
   7%	
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the explanation was unclear); however, all such par-
ticipants followed up on the message and fixed the 
bug. In these cases, the feature may have succeeded by 
arousing the user’s attention at an ideal moment: when 
the user was focused on connecting blocks. 

5.2 RQ2: Gender Differences in Strategies 
In analyzing gender, we used the Mann-Whitney U 

test to check for gender differences, and Spearman’s 
rank correlation coefficient to measure the strength of 
associations. To account for ties in our small sample, 
we used permutation tests [15] to obtain exact signifi-
cance values. 

Strategy choices. Males and females spent the same 
amount of time using debugging strategies overall; 
however, males switched between strategies more fre-
quently than females (a marginally significant differ-
ence: Mann-Whitney U=3.0, p=0.057). One notewor-
thy gender difference in strategy use concerned 
Dataflow: males used Dataflow significantly more of-
ten than females (Mann-Whitney U=2.0, p=0.033), a 
difference that has also been observed in the context of 
spreadsheet debugging [16].  

Strategy use and success. The Dataflow strategy paid 
off: success (task requirements completed) correlated 
significantly with Dataflow usage (Spearman’s 
rho=0.707, p=0.027). Figure 2a demonstrates this rela-
tionship. The figure also suggests a positive relation-
ship within each individual gender, although these cor-
relations did not reach statistical significance for the 
small samples. A past study of spreadsheet users found 
a positive correlation between success and Dataflow 
for males but not females [16]. Together, the two stud-
ies suggest that environments like Popfly that need 
Dataflow strategies for success may not align well with 
many females’ strategy preferences.  

Popfly’s Code Inspection barriers may also be par-
ticularly detrimental to females, Figure 2b suggests an 
inverse relationship between success and Code Inspec-

tion for females (not statistically significant). The prior 
spreadsheet study found that females who mentioned 
Code Inspection were significantly more likely to be 
successful in debugging [16], implying that this strat-
egy is a preference for many females. Popfly’s limited 
view of mashup code (Section 5.1) may be implicated 
in females’ lack of success with Code Inspection be-
cause the strategy depends heavily on the program-
mer’s ability to read and understand code.  

Self-efficacy, strategies, and unfamiliar features. 
Researchers in the domain of end-user programming, 
have found that self-efficacy [1], a form of confidence, 
shapes the strategies and features end users adopt and 
the success they achieve in debugging tasks [2, 6]. 

Table 4 summarizes the participants’ self-efficacy 
scores, measured on a scale of 1–5. Females had lower 
self-efficacy than males (Mann-Whitney U=2.5, 
p=0.038), which is consistent with the findings of ear-
lier studies [2, 16]. For instance, F4 illustrated her low 
self-efficacy in the following comment. 
F4: [Can’t figure out how to show a map]… This is 
why I’m in nutrition… AddPushPinByLocation? Thea-
ter name? Title? [Bites nail] I feel so stupid…  

For the combined group of males and females, self-
efficacy significantly correlated with the use of 
Dataflow (Spearman’s rho=0.745, p=0.017). However, 
self-efficacy only correlated with Feedback Following 
(Spearman’s rho=0.841, p=0.044) for males, not for 
females. Also for the combined group, self-efficacy 
was marginally associated with frequent switching 
between multiple strategies (Spearman’s rho=0.633, 
p=0.054). Consistent with self-efficacy theory, people 
with high self-efficacy tend to be more flexible in their 
problem-solving strategies.  

Prior research has related self-efficacy to gender 
differences in the acceptance of spreadsheet debugging 
features [2]. To explore similar relationships in mash-
ups, we examined the participants’ usage of mashup 
blocks; we considered each block type to be a distinct 
feature. Table 4 provides the percentage of taught 

	
  

Figure	
  2.	
  Plots	
  of	
  strategies	
  and	
  success	
  (square	
  =	
  male,	
  
diamond	
  =	
  female):	
  (a)	
  use	
  of	
  Dataflow	
  was	
  positively	
  asso-­‐
ciated	
  with	
  success	
  for	
  both	
  genders	
  (two	
  females	
  never	
  
used	
  Dataflow);	
  (b)	
  use	
  of	
  Code	
  Inspection	
  trended	
  nega-­‐

tively	
  	
  with	
  success	
  for	
  females.	
  	
  

Table	
  4.	
  Percentage	
  of	
  taught	
  (in	
  tutorial)	
  blocks	
  used	
  and	
  	
  
use	
  of	
  the	
  untaught	
  debug-­‐console	
  feature.	
  Participants	
  are	
  

grouped	
  by	
  gender	
  and	
  ordered	
  by	
  self-­‐efficacy.	
  

ID	
   Self-­‐efficacy	
   Taught	
  blocks	
   Untaught	
  feature	
  
F3	
   3.8	
   25.0%	
  (2/8)	
   Yes	
  
F1	
   3.6	
   25.0%	
  (1/4)	
   Yes	
  
F4	
   3.3	
   37.5%	
  (3/8)	
   No	
  
F2	
   3.2	
   50.0%	
  (4/8)	
   No	
  
M2	
   4.7	
   75.0%	
  (3/4)	
   No	
  
M4	
   4.1	
   50.0%	
  (2/4)	
   No	
  
M5	
   4.1	
   100.0%	
  (4/4)	
   No	
  
M1	
   4.0	
   75.0%	
  (3/4)	
   Yes	
  
M3	
   3.7	
   37.5%	
  (3/8)	
   Yes	
  
M6	
   3.5	
   75.0%	
  (6/8)	
   No	
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blocks used by each participant. The number of blocks 
we taught was 8 for those who received both the initial 
and mid-task tutorials and 4 for those who received 
only the initial tutorial. 

As Table 4 shows, the females with lower self-
efficacy used a higher percentage of taught blocks than 
the females with higher self-efficacy (with high self-
efficacy females more willing to instead try blocks that 
had not been taught). When we specifically considered 
the use of the Debug Console, which was not taught to 
the participants, only females with higher self-efficacy  
used it of their own volition. Similar patterns did not 
hold for the males. For example, regardless of self-
efficacy, all but one of the males explored at least half 
of the blocks introduced to them.   

These results are again consistent with the findings 
on spreadsheet debugging [2]: higher self-efficacy fe-
males were more likely to use untaught features, 
whereas females with lower self-efficacy gravitated 
toward the features that were taught to them, a rela-
tionship not present for the males in this study or 
in [2]. 

5.3 RQ3: Design Moments in Debugging 
Debugging begins with the realization that the pro-

gram is wrong, and that something must be done—but 
what, exactly, will fix it? A decision is needed.  

Some of these decisions are design decisions. In 
previous work, we showed that even in environments 
without explicit support for design, end users engage in 
moments of design that permeate their programming 
efforts [3]. Such behavior is consistent with Rosson 
and Carroll’s “debugging into existence” notion [13].  

To understand how participants’ debugging activi-
ties interacted with design moments, we looked at the 
impact of debugging activities on framing behavior, a 
key part of design. Recall (Section 4) that in framing a 
design problem, the designer sets the boundaries for 
actions in solving the problem [14]. Research has 
shown that effective framing is critical to making pro-
gress on design [3, 18]. When designers find that they 
cannot solve a design problem as expected (i.e., the 
frame is unworkable), designers will reframe, attempt-
ing to set the problem such that they can solve it. 

Given the importance of reframing in design, we 
investigated the relationship between participants’ rate 
of reframing and success on task, to discover how de-
bugging and design reframing interplayed. 

Rate of reframing and success. Participants reframed 
anywhere between 7 (F1) to 48 (M3) times during the 
task. Figure 3 on reframing reveals a parabolic rela-
tionship between the rate of reframing and success: the 
moderately successful participants (M3, M4, F2, M5) 
reframed most frequently, whereas participants who 

were most successful (F1, M1, M2) and least success-
ful (F3, F4, M6) reframed least frequently.  

An interpretation of this relationship is that highly 
successful participants tended to produce better frames 
and did not need to reframe often, while moderately 
successful and unsuccessful participants tended to pro-
duce less workable frames. However, the moderately 
successful participants were able to make progress 
through reframing, whereas the unsuccessful tended to 
pursue unworkable frames. It is an open question why 
the unsuccessful participants did not reframe. They 
may have been averse to changing frames, or they may 
have wanted to reframe but did not know how. 

Interplay of debugging and reframing. We also con-
sidered the relationship between success in bug diag-
nosis and success in reframing. We defined successful 
bug diagnosis to be a participant’s words exhibiting a 
good understanding of a fault. We defined successful 
reframing to be the new frame leading to progress on 
the task. We consider the relationship through four 
cases that exemplify each combination of success-
ful/unsuccessful bug diagnosis and reframing, summa-
rized in Table 5. 

In an example in which successful diagnosis pre-
ceded successful reframing, F1 proceeded based on the 
understanding she gained from debugging. The prob-
lem was that her mashup using Live Image Search 
would not display movie images: 
F1: [Looking at Debug Console] Live Image Search…. 
Outputting 0 items… Let's get Yahoo! Images. 
She correctly identified the Live Image Search block as 
the problem. She then successfully reframed, replacing 
the defective block with a Yahoo! Images block. 

At the opposite extreme, where an unsuccessful di-
agnosis preceded unsuccessful reframing, M5’s lack of 
insight into the bug led to an ill-informed reframing. 
His mashup would not display pushpins on a map: 

	
  

Figure	
  3.	
  Rate	
  of	
  reframing	
  (#	
  of	
  reframings	
  per	
  debugging	
  
minute)	
  ordered	
  by	
  success.	
  Participants	
  are	
  grouped	
  ac-­‐
cording	
  to	
  success	
  level	
  (#	
  of	
  requirements	
  accomplished).	
  
Dark	
  shade	
  shows	
  the	
  maximum	
  rate	
  for	
  each	
  group;	
  light	
  

shade	
  shows	
  the	
  minimum.	
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M5: How did that happen? I only got error, error, er-
ror… Go away PhotoSphere. You suck! [Removes Pho-
toSphere] 
Unfortunately, although PhotoSphere was the last 
block added, it was not the problem, and M5’s subse-
quent reframing yielded no progress. 

In an example where successful diagnosis did not 
precede success, M4 identified the bug, but did not 
know of a fix. He successfully diagnosed the reason his 
mashup was not producing output: 
M4: It doesn't seem to give anything for that so it must 
not work that way. I'm gonna see if I could just make 
some sort of connection between all three of them. 
[Changes block connections. Runs] I don't have any-
thing about Corvallis theaters anymore. 
He understood that recently added connections were 
the cause. However, he was unsuccessful in reframing 
because he did not know how to connect his blocks to 
solve the problem. 

Perhaps most interesting was the case where an un-
successful diagnosis preceded a successful reframing. 
M3 put minimal effort into diagnosing bugs, often re-
sulting in vague or incorrect diagnoses. Despite his 
lack of understanding, he repeatedly reframed and 
modified his mashup, trying things out: 
M3: I guess those two blocks didn't work or I didn't use 
the right option. Let's keep going through these 
[blocks] and see which one gives pictures of movies. 
Although such reframings were often unsuccessful, 
they did lead to progress on occasion. 

An interesting contrast to M3 is F4: both partici-
pants tended to be unsuccessful in diagnosing bugs; 
however, M3 was more successful overall on the task 
than F4 (3 vs. 2 requirements completed). M3’s pro-
pensity for reframing may have made the difference. 
Despite lacking a good understanding of the bug, M3 
was able to make progress, albeit inefficiently, through 
reframing. In contrast, F4 spent more time (unsuccess-
fully) diagnosing bugs and consequently reframed at a 
slower rate, exhibiting long bouts without progress. 

6. Discussion  
The key problems end users faced while debugging 

their mashups are summarized in Table 6.  
Perhaps most serious were problems with the 

Dataflow strategy. Use of Dataflow significantly corre-

lated with success in this dataflow-centric environ-
ment, but many participants had difficulty with the 
strategy. Other researchers have observed novice pro-
grammers having difficulty applying dataflow concepts 
with data flowing invisibly over the Web [23]. Such 
issues might be alleviated by visualizing the flow of 
data: for example, showing data in a table after each 
step of processing [21] or enabling connections to dis-
play the data being transferred [17]. However, given 
the problems with dataflow as a concept, it raises the 
question of whether dataflow is an ideal paradigm for 
end-user mashup environments. 

Surprisingly, Code Inspection seemed particularly 
ineffective for females, counter to a prior study in 
which the strategy was closely related to female suc-
cess [16]. However, a closer look at this mashup envi-
ronment may explain why. According to the Selectivity 
Hypothesis [11], females are more likely to process 
information comprehensively, whereas males are more 
likely to process cues serially. Unlike the spreadsheet 
environment used in [16], Popfly worked against com-
prehensive information processing: only small sections 
of mashup “code” (parameter settings) could be dis-
played at once, and there was no feature for tracking 
which code had been inspected (i.e., no To-do Listing). 
Thus, using Code Inspection in this environment may 
have led to instances of cognitive overload that did not 
arise in the spreadsheet environment of [16].  

Despite Popfly’s numerous help facilities, partici-
pants’ encounters with help tended to be unhelpful. 
Their success with Feedback Following suggests that 
context-sensitive help would have been more effective. 
One tool, Crystal [12], answers questions about UI 
behaviors in context and suggests fixes to preference 
settings to get the desired outcome. However, the solu-
tions to mashup bugs are more complicated than sim-
ply turning preferences on or off. The Whyline allows 
users to ask questions about which source code pro-
duced elements in the program output. However, hid-
den block logic may hamper this approach in Popfly. 

Table	
  5.	
  Examples	
  of	
  debugging-­‐reframing	
  interaction.	
  Entry	
  
format:	
  participant	
  (minute	
  offset).	
  

Reframing	
  Diagnosis	
  
Successful	
   Unsuccessful	
  

Successful	
   F1	
  (21)	
   M4	
  (11)	
  
Unsuccessful	
   M3	
  (10)	
   M5	
  (32)	
  

 

Table	
  6:	
  Key	
  debugging	
  problems.	
  

Category	
   Problems	
   Sect.	
  
Mistakes	
  and	
  misunderstandings	
   5.1	
  Dataflow	
  
Positively	
  correlated	
  with	
  success,	
  but	
  
underused	
  by	
  females	
  

5.2	
  

Hidden	
  code	
   5.1	
  
Limited	
  code	
  to	
  view	
  at	
  once	
   5.1	
  

Code	
  In-­‐
spection	
  

Previously	
  found	
  to	
  be	
  successful	
  for	
  fe-­‐
males,	
  but	
  ineffective	
  in	
  this	
  context	
  

5.2	
  

Help	
   Misunderstanding	
  help	
  features,	
  issues	
  in	
  
finding/understanding	
  examples,	
  etc.	
  

5.1	
  

Feature	
  
usage	
  

Females	
  with	
  low	
  self-­‐efficacy	
  did	
  not	
  try	
  
unfamiliar	
  features	
  and	
  blocks.	
  

5.2	
  

Reframing	
   Useful	
  for	
  making	
  progress,	
  but	
  underper-­‐
formed	
  by	
  some	
  participants	
  

5.3	
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Finally, self-efficacy theory seems related to two 
problems. First, females with low self-efficacy tried 
fewer blocks, and never tried to use the (untaught) De-
bug Console. Second, self-efficacy may also explain 
why some unsuccessful participants did so little re-
framing. Such participants may have been reluctant to 
try different frames because they had low self-efficacy 
and, as self-efficacy theory predicts, were inflexible in 
abandoning unproductive strategies. 

7. Conclusions  
In this paper, we have investigated how male and 

female end users attempted to debug their mashups 
when struggling to create them. As they “debugged 
into existence” their mashups, we watched for strate-
gies, barriers, and how debugging intertwined with 
design moments. Among the surprises revealed were: 
• Dataflow: All participants had at least some trouble 

with dataflow debugging. This finding calls into 
question the appropriateness of the dataflow para-
digm for an environment targeted at end users.  

• Gender: The Code Inspection debugging strategy 
was often rendered ineffective by hidden code and 
restrictive views of code. This inaccessibility of 
technical detail, which is not uncommon in visual 
programming languages for novices, may have ad-
versely affected some users’ strategies. This may 
have been particularly problematic for females be-
cause Code Inspection has been shown to be 
important to their success in other settings.  

• Design: Participants intertwined their debugging 
with the design activity of reframing. Reframing 
even helped some participants who were unsuccess-
ful at diagnosing a bug, and participants who re-
framed the least were least successful overall.  
Our results suggest interesting research problems, 

such as how to better leverage debugging during de-
sign and design during debugging. Ultimately, address-
ing these issues will be an important step toward effec-
tively supporting end-user programming of mashups. 
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