
IEEE Symposium on Visual Languages and Human-Centric Computing, Madrid, Spain, September 2010 (to appear).

A Debugging Perspective on End-User Mashup Programming

Jill Cao1, Kyle Rector1, Thomas H. Park2,
Scott D. Fleming1, Margaret Burnett1, Susan Wiedenbeck2

1Oregon State University
{caoch, rectorky, sdf, burnett}@eecs.oregonstate.edu

2Drexel University
{tp352, sw53}@drexel.edu

Abstract

In recent years, systems have emerged that enable
end users to “mash” together existing web services to
build new web sites. However, little is known about
how well end users succeed at building such mashups,
or what they do if they do not succeed at their first at-
tempt. To help fill this gap, we took a fresh look, from
a debugging perspective, at the approaches of end us-
ers as they attempted to create mashups. Our results
reveal the end users’ debugging strategies and strategy
barriers, the gender differences between the debugging
strategies males and females followed and the features
they used, and finally how their debugging successes
and difficulties interacted with their design behaviors.

1. Introduction
Mashup programming is a relatively new paradigm

in end-user programming. Mashups repurpose and
combine existing web content and services to meet the
specific needs of the user. For instance, an avid news
follower might build a mashup that combines news
feeds from MSN, New York Times, and Fox, and that
filters the content based on his favorite topics (e.g.,
world news and business). There are a wide variety of
mashup programming environments, such as Microsoft
Popfly, Intel Mash Maker, and Yahoo! Pipes. How-
ever, little is known about how well these environ-
ments support the “mashing” needs of end users. Our
work seeks to fill this knowledge gap.

While conducting a recent study of end users build-
ing mashups [3], we noticed that participants spent a
substantial amount of time (76.3%) debugging. This
observation suggests that they tended to “debug into
existence”—that is, they created their mashups through
a process of successive refinement, which was driven
by the finding and fixing of bugs [13]. Given the
prevalence of debugging activity, we believe that ef-
fective debugging support is critical for successful
mashup environments.

Therefore, in this paper, we report on a new analy-
sis of that study, from the perspective of end users’
debugging behaviors and barriers while creating mash-
ups. Our investigation had three main goals.

Our first goal was to understand the debugging
strategies that end users use in programming mashups.
Prior studies on debugging have identified debugging
strategies used by end users in spreadsheet [16] and
scripting environments [7]. Understanding such strate-
gies has provided valuable insights into how such envi-
ronments can be improved to support debugging
strategies [16].

Our second goal was to understand the impact of
gender differences on how end users debug mashups.
Prior work in the context of spreadsheet and scripting
environments has shown that gender differences can
play an important role in the adoption of strategies [7,
16] and the usage of features that support the strate-
gies [2]. Understanding such differences has revealed
gender biases and informed tool designs that narrowed
the gender gap while benefitting both males and fe-
males [6]. We seek to extend these findings to mashup
environments.

Our third goal was to understand how debugging
interacts with design when end users create mashups.
Our prior study [3] revealed that instances of design
permeated the end users’ programming processes while
creating mashups. Furthermore, viewing mashup pro-
gramming through the design lens produced promising
design implications for mashup environments. In this
work we seek to extend these findings and implications
by focusing on debugging.

Given these three goals, our investigation sought to
answer the following research questions:

RQ1: What debugging strategies do end users adopt
when they are creating mashups? What barri-
ers do they encounter?

RQ2: Are there gender differences in end users’ us-
age of debugging strategies in mashups?

RQ3: How does debugging interact with design when
end users are creating mashups?

2. Related Work
Despite the proliferation of mashup environments,

research has found that end users’ lack of technical
expertise is a serious barrier to creating mashups [10,
19]. In response to this problem, researchers have pro-

IEEE Symposium on Visual Languages and Human-Centric Computing, Madrid, Spain, September 2010 (to appear).

posed mashup environments (e.g., Vegemite and
Mashroom) that reduce such barriers by using tech-
niques such as direct manipulation, programming-by-
demonstration, and intuitive nested-table data struc-
tures. Usability studies have demonstrated that such
environments can significantly benefit end users.

A few studies have explored end-user perceptions
of mashups systems. In a survey of end users [22], fe-
males expected mashup creation to be more difficult
than did males, suggesting gender differences in self-
efficacy. To inform the design of mashup tools, Zang
and Rosson [23] investigated end users’ mental models
of mashups—for example, how users thought about
relationships in online data, and how they might like to
integrate data. Jones and Churchill [8] studied the on-
line forums of Yahoo! Pipes users to understand how
end users collaborate to resolve problems.

Our investigation complements the above research
by investigating how users go about debugging while
building mashups. The investigation differs from the
existing literature on end-user debugging (e.g., [7, 16])
in two ways. First, prior studies asked participants to
find and fix seeded defects in spreadsheets or scripts.
Our study asked participants to create mashups; thus,
debugging was not the central goal. Second, our
investigation is the first to look at strategies, design
behavior, and gender differences in the debugging of
mashups.

3. Empirical Study
This investigation entailed a new analysis of data

from a previous study [3] in which we observed ten
participants engaged in a mashup-creation task using
Microsoft Popfly Mashup Creator.

Participants. Participants comprised four female and
six male college students from a wide variety of majors
(e.g., biology, nutrition science). None were CS stu-
dents, and none had taken CS courses beyond the ele-
mentary level. One female and four males had past
programming experience either in high school, college,
or both (no more than two courses).

Popfly Mashup Creator. In Popfly, users build mash-
ups in a dataflow style using blocks. A block performs
a set of parameterized operations such as data retrieval
and data display. Users connect blocks to route the
output of one block into the input of another. Figure 1
shows a Flickr block sending images and geographical
coordinates of “beaches” to a Virtual Earth block (top,
middle) to display the images on a map (bottom). Pop-
fly users can make their projects public and access
others’ public projects. (More details of Popfly are
given later.)

Procedure. The study used the think-aloud method, so
we conducted it one participant at a time. Participants
first filled out a background questionnaire and worked
on a 20-minute tutorial that familiarized them with
Popfly. They then completed a self-efficacy question-
naire [4], which we adapted to the task of mashup crea-
tion. Participants then practiced “thinking aloud” be-
fore proceeding to the main task.

The task involved creating a mashup to include (1)
a list of local theaters, (2) the movies being shown at
each theater along with information such as show
times, (3) a picture for each movie, and (4) a news
story about each movie. Participants had 50 minutes to
complete the task. If they were unable to make pro-
gress for 15 minutes, the researcher administered an
additional 5-minute mini-tutorial. Although this tuto-
rial may have influenced participants’ behaviors, we
relate its effect to encountering a well-chosen example.
Half of the participants (2 males, 3 females) received
the mini-tutorial, and it proved helpful to three of them
(2 males, 1 female). We collected video data (including
facial expressions) as well as the final mashups.

4. Analysis Methodology
Participants debugged intermittently as they created

their mashups. Thus, we first identified sections of the
transcripts in which participants were debugging (i.e.,
attempting to correct problems they had introduced).
We then performed a protocol analysis on those sec-
tions.

Grigoreanu et al.’s collection of debugging strate-
gies [7] served as the basis for our strategy analysis
(Table 1). Two researchers independently coded all
transcripts with the strategy codes, then jointly re-

Figure	
 1.	
 Example	
 mashup	
 in	
 Popfly.	
 Top:	
 the	
 blocks.	
 Mid-­‐

dle:	
 block	
 settings.	
 Bottom:	
 the	
 running	
 mashup.	
 	

IEEE Symposium on Visual Languages and Human-Centric Computing, Madrid, Spain, September 2010 (to appear).

solved any inconsistencies.
Framing captures a designer’s efforts to understand

and define a design problem, and determines the
boundaries for designers’ actions in solving the prob-
lem [14]. Designers frame a problem by identifying
areas of the solution space that they want to ex-
plore [5]. When designers choose an unworkable
frame, they must reframe, which involves assessing
and then modifying or replacing the current frame.

As a conservative approach to coding reframing, we
coded only those instances that were evidenced by ac-
tions. Two types of actions indicated reframing: (1)
adding/removing a block, and (2) adding/removing
connections between blocks. We chose these actions as
evidence of reframing because they change the func-
tion or structure of a mashup in a global way. In con-
trast, we did not regard adjusting local block settings as
reframing. Only one researcher coded for reframing
because the process was mechanical and objective.

5. Results
We evaluated each participant’s mashup, giving a

point for each fulfilled requirement (max 4). In this
paper, we identify participants by their gender and the
ranking of their score. Thus, the participants were as
follows (scores in parenthesis): F1(4), F2(2.5), F3(2),
F4(2), M1(3.5), M2(3.5), M3(3), M4(3), M5(2.5), and
M6(2). Half points indicate partially fulfilled require-
ments (e.g., missing pictures of some movies).

5.1 RQ1: Debugging Strategies and Barriers
Prior studies identified ten debugging strategies

used by end-user programmers (Table 1) [7, 16]. Our
participants used seven of the ten, listed in Table 2. As
the table’s diagonal shows, three strategies dominated:
Testing (241 participant minutes), Code Inspection
(201), and Dataflow (93). Participants frequently used
these three strategies together: Testing and Code In-

spection co-occurred the most (99 participant minutes),
agreeing with previous results [16]. Other frequent co-
occurrences were Dataflow and Testing (58), and Code
Inspection and Dataflow (53).

In the remainder of this section, we focus on Code
Inspection, Dataflow, and Help, which were the strate-
gies in which barriers arose. We also describe an anti-
barrier associated with Feedback Following.

Code Inspection: Getting eyes on the code. In Pop-
fly, Code Inspection involved scrutinizing the mashup
logic, such as block settings and inter-block connec-
tions. Participants encountered two prominent barriers
in applying this strategy. First, Popfly blocks are
“black boxes”—their internal logic is uninspectable.
For instance, F1 did not understand that Live Image
Search blocks loop infinitely, searching for images.
Thus, she was perplexed when her search results for
“Slumdog Millionaire” repeated the same image over
and over—the loop was invisible to her.

On rare occasions, a participant was able to guess
the hidden logic:
M2: … it keeps adding the same news stories over and
over again. Haha, I think there's some kind of a loop.

The second barrier arose because participants could
only view one block’s settings at a time. Thus, when
viewing the settings for one block, participants lost
reference to related block settings and connections.

Dataflow: Mistakes and misunderstandings. Popfly
is a dataflow-based environment, so it stands to reason
that the Dataflow strategy would be particularly useful
in this context. However, participants encountered con-
siderable barriers using the strategy.

Two participants, F3 and F4, displayed poor under-
standing of dataflow. For instance, F3 connected a Lo-
cal Movies block to a Flickr block to display movie
images, but the data flow was in the wrong direction:
F3: I want to change the Flickr to the Local Movies
[Connects Flickr to feed into Local Movies] Now try
this again to see if I can get some results.

Four participants (F2, M3, M4, M6) understood

Table	
 1.	
 Debugging	
 strategies	
 code	
 set	
 (from	
 [7]).	

Strategy	
 Definition	

Testing	
 	
 Trying	
 inputs	
 to	
 evaluate	
 the	
 results.	

Code	
 Inspection	
 Examining	
 mashup	
 logic	
 to	
 determine	

correctness.	

Dataflow	
 Following	
 data	
 dependencies.	

Help	
 Getting	
 help	
 from	
 people	
 or	
 resources.	

Feedback	
 Fol-­‐
lowing	

Using	
 system-­‐generated	
 feedback	
 to	

guide	
 action.	

Specification	

Checking	

Reviewing	
 what	
 the	
 mashup	
 should	
 do	

to	
 evaluate	
 its	
 current	
 state.	
 	

Proceed	
 as	
 in	

Prior	
 Experience	

Explicitly	
 drawing	
 on	
 prior	
 experience	
 to	

guide	
 action.	

Control	
 Flow	
 Following	
 flow	
 of	
 control	
 (the	
 sequence	

that	
 instructions	
 execute).	

Spatial	
 	
 Following	
 the	
 spatial	
 layout	
 of	
 code.	

To-­‐Do	
 Listing	
 Recording	
 items	
 to	
 attend	
 to	
 later.	
 	

Table	
 2.	
 Occurrence	
 and	
 co-­‐occurrence	
 of	
 strategies	
 or-­‐
dered	
 by	
 frequency.	
 Diagonal	
 cells	
 show	
 number	
 of	
 min-­‐
utes	
 participants	
 used	
 the	
 strategy;	
 remaining	
 cells	
 show	

co-­‐occurrences.	

	
 Test	
 Code	
 Data	
 Help	
 Feed	
 Spec	
 Prior	

Test	
 241	
 99	
 58	
 21	
 17	
 17	
 6	

Code	
 	
 201	
 53	
 20	
 28	
 8	
 4	

Data	
 	
 	
 93	
 10	
 12	
 4	
 5	

Help	
 	
 	
 	
 46	
 4	
 1	
 0	

Feed	
 	
 	
 	
 	
 35	
 2	
 0	

Spec	
 	
 	
 	
 	
 	
 24	
 1	

Prior	
 	
 	
 	
 	
 	
 	
 9	

IEEE Symposium on Visual Languages and Human-Centric Computing, Madrid, Spain, September 2010 (to appear).

that arrows signify a relationship between blocks, but
did not exhibit a clear grasp as to how data flowed. For
example, M3 wanted to use MSN News to show stories
about movies from Local Movies but was not sure how
to do that so he tried to “link things together ‘cause
that [seemed] to relate things together.”

Even the four participants who usually used
Dataflow successfully (F1, M1, M2, M5) sometimes
misunderstood the type of data flowing out of a block.
For instance, F1 tried to pass movie names from a Lo-
cal Movies block through an Images Search block to a
Live News block, not understanding that the Images
Search block only outputs pictures, not text.

Help: Trouble getting the right kind. All participants
sought debugging help. Using the seven help mecha-
nisms in Table 3, they pursued help 46 times. The right
column of the table shows the proportion of uses asso-
ciated with each mechanism.

Despite the rich array of help mechanisms, the Help
strategy often was not helpful—only 25% of the help-
seeking instances led to progress. Here we describe
barriers participants encountered using the two most
popular mechanisms: light bulb and example search.

The light bulb appears as an icon on each block.
When clicked, it suggests blocks that go well with the
current block. Unfortunately, 11 out of the 13 times
participants used this feature, they were not seeking
creative suggestions, but rather debugging assistance.

The debugging assistance participants wanted fell
into three categories. The first category was guidance
on how to configure blocks. For example, F2 wanted to
know how to configure a YouTube Video block:
F2: [Clicks light bulb.] I'm going to get some mashup
ideas because I'm not sure how to set up a YouTube
video.

The second category was guidance on how to coor-
dinate specific blocks. For example, F3 wanted to
know how to hook an RSS List block into her mashup:
F3: I clicked [the light bulb] to get some mashing
ideas to find out what the problem is with my connec-
tions…

The third category was help in deciding whether to

continue working on a current buggy solution or to
abandon it entirely. For instance, M2 had problems
displaying the desired data. He did not know whether
he used the wrong blocks, configured his blocks incor-
rectly, or needed additional blocks. Unfortunately, the
light bulb offered no help:
M2: How do we choose what data is displayed? …
What's the light bulb? No mashing suggestions...

Participants could use the Popfly search feature to
find mashup examples. Concrete examples have long
been regarded as critical elements of end-user pro-
gramming, and indeed, four participants sought
mashup examples (for a total of 8 attempts). Unfortu-
nately, 7 of the 8 attempts were not helpful.

One problem participants had was finding useful
examples. For instance, M4 wanted his mashup to dis-
play movie pictures, but it displayed random images
instead. He searched for an example to guide his solu-
tion, but could not find any that were helpful:
M4: [example 1]…They're showing different movies,
but they don't really have anything different from what
I have on mine…
[example 2]… pretty much the same thing…
[example 3]… I don't see pictures next to any of these.
[example 4]…This is not really showing anything dif-
ferent. Let me go back to mine.

Another problem was understanding the examples
found. For instance, M5 found an example that im-
pressed him, but he failed to benefit from it, perhaps
because he could not determine which parts of the
large example mashup were relevant to his task:
M5: That's kinda cool [Many blocks appear] Oooh,
this is a lot more bad ass than mine! Text Helper, Text
Helper… This guy is smart. [M5 abandons his search]

Feedback Following: A bright spot. Feedback Fol-
lowing comes into play when the system provides in-
context feedback that suggests user action. In Popfly,
the exclamation point appears when the user connects
two blocks, and the client block receives no data due to
a configuration error. Hovering over the exclamation
point produces a tooltip that says, “You must set a
value.” All participants attended to this feedback fea-
ture, and by following the feedback, they consistently
succeeded in fixing this type of bug.

One reason for the effectiveness of this feedback
feature may be that it is an example of surprise-
explain-reward [20], which aims to entice the user into
useful actions. Specifically, the appearance of the ex-
clamation point surprises the user. Now curious, the
user reads the tooltip, which explains that he must set a
value. The user infers that by setting a value, he will be
rewarded with a working connection. Interestingly, not
all participants understood the error message (perhaps

Table	
 3.	
 Mechanisms	
 used	
 to	
 get	
 help	
 and	
 how	
 much	
 each	

was	
 used	
 (proportion	
 of	
 total	
 usage	
 instances).	

Feature	
 Description	
 Usage	

Light	
 bulb	
 Creative	
 mashing	
 suggestions	
 28%	

Popfly	
 search	

(examples)	

Popfly	
 search	
 feature	
 for	
 finding	

example	
 mashups	

17%	

Popfly	
 help	
 Help	
 on	
 general	
 questions	
 15%	

Reference	
 guide	
 Quick	
 ref.	
 to	
 tutorials’	
 contents	
 13%	

Block	
 help	
 Block-­‐specific	
 documentation	
 11%	

Debug	
 console	
 Dumps	
 runtime	
 trace	
 info	
 9%	

Other	
 Google,	
 etc.	
 7%	

IEEE Symposium on Visual Languages and Human-Centric Computing, Madrid, Spain, September 2010 (to appear).

the explanation was unclear); however, all such par-
ticipants followed up on the message and fixed the
bug. In these cases, the feature may have succeeded by
arousing the user’s attention at an ideal moment: when
the user was focused on connecting blocks.

5.2 RQ2: Gender Differences in Strategies
In analyzing gender, we used the Mann-Whitney U

test to check for gender differences, and Spearman’s
rank correlation coefficient to measure the strength of
associations. To account for ties in our small sample,
we used permutation tests [15] to obtain exact signifi-
cance values.

Strategy choices. Males and females spent the same
amount of time using debugging strategies overall;
however, males switched between strategies more fre-
quently than females (a marginally significant differ-
ence: Mann-Whitney U=3.0, p=0.057). One notewor-
thy gender difference in strategy use concerned
Dataflow: males used Dataflow significantly more of-
ten than females (Mann-Whitney U=2.0, p=0.033), a
difference that has also been observed in the context of
spreadsheet debugging [16].

Strategy use and success. The Dataflow strategy paid
off: success (task requirements completed) correlated
significantly with Dataflow usage (Spearman’s
rho=0.707, p=0.027). Figure 2a demonstrates this rela-
tionship. The figure also suggests a positive relation-
ship within each individual gender, although these cor-
relations did not reach statistical significance for the
small samples. A past study of spreadsheet users found
a positive correlation between success and Dataflow
for males but not females [16]. Together, the two stud-
ies suggest that environments like Popfly that need
Dataflow strategies for success may not align well with
many females’ strategy preferences.

Popfly’s Code Inspection barriers may also be par-
ticularly detrimental to females, Figure 2b suggests an
inverse relationship between success and Code Inspec-

tion for females (not statistically significant). The prior
spreadsheet study found that females who mentioned
Code Inspection were significantly more likely to be
successful in debugging [16], implying that this strat-
egy is a preference for many females. Popfly’s limited
view of mashup code (Section 5.1) may be implicated
in females’ lack of success with Code Inspection be-
cause the strategy depends heavily on the program-
mer’s ability to read and understand code.

Self-efficacy, strategies, and unfamiliar features.
Researchers in the domain of end-user programming,
have found that self-efficacy [1], a form of confidence,
shapes the strategies and features end users adopt and
the success they achieve in debugging tasks [2, 6].

Table 4 summarizes the participants’ self-efficacy
scores, measured on a scale of 1–5. Females had lower
self-efficacy than males (Mann-Whitney U=2.5,
p=0.038), which is consistent with the findings of ear-
lier studies [2, 16]. For instance, F4 illustrated her low
self-efficacy in the following comment.
F4: [Can’t figure out how to show a map]… This is
why I’m in nutrition… AddPushPinByLocation? Thea-
ter name? Title? [Bites nail] I feel so stupid…

For the combined group of males and females, self-
efficacy significantly correlated with the use of
Dataflow (Spearman’s rho=0.745, p=0.017). However,
self-efficacy only correlated with Feedback Following
(Spearman’s rho=0.841, p=0.044) for males, not for
females. Also for the combined group, self-efficacy
was marginally associated with frequent switching
between multiple strategies (Spearman’s rho=0.633,
p=0.054). Consistent with self-efficacy theory, people
with high self-efficacy tend to be more flexible in their
problem-solving strategies.

Prior research has related self-efficacy to gender
differences in the acceptance of spreadsheet debugging
features [2]. To explore similar relationships in mash-
ups, we examined the participants’ usage of mashup
blocks; we considered each block type to be a distinct
feature. Table 4 provides the percentage of taught

	

Figure	
 2.	
 Plots	
 of	
 strategies	
 and	
 success	
 (square	
 =	
 male,	

diamond	
 =	
 female):	
 (a)	
 use	
 of	
 Dataflow	
 was	
 positively	
 asso-­‐
ciated	
 with	
 success	
 for	
 both	
 genders	
 (two	
 females	
 never	

used	
 Dataflow);	
 (b)	
 use	
 of	
 Code	
 Inspection	
 trended	
 nega-­‐

tively	
 	
 with	
 success	
 for	
 females.	
 	

Table	
 4.	
 Percentage	
 of	
 taught	
 (in	
 tutorial)	
 blocks	
 used	
 and	
 	

use	
 of	
 the	
 untaught	
 debug-­‐console	
 feature.	
 Participants	
 are	

grouped	
 by	
 gender	
 and	
 ordered	
 by	
 self-­‐efficacy.	

ID	
 Self-­‐efficacy	
 Taught	
 blocks	
 Untaught	
 feature	

F3	
 3.8	
 25.0%	
 (2/8)	
 Yes	

F1	
 3.6	
 25.0%	
 (1/4)	
 Yes	

F4	
 3.3	
 37.5%	
 (3/8)	
 No	

F2	
 3.2	
 50.0%	
 (4/8)	
 No	

M2	
 4.7	
 75.0%	
 (3/4)	
 No	

M4	
 4.1	
 50.0%	
 (2/4)	
 No	

M5	
 4.1	
 100.0%	
 (4/4)	
 No	

M1	
 4.0	
 75.0%	
 (3/4)	
 Yes	

M3	
 3.7	
 37.5%	
 (3/8)	
 Yes	

M6	
 3.5	
 75.0%	
 (6/8)	
 No	

IEEE Symposium on Visual Languages and Human-Centric Computing, Madrid, Spain, September 2010 (to appear).

blocks used by each participant. The number of blocks
we taught was 8 for those who received both the initial
and mid-task tutorials and 4 for those who received
only the initial tutorial.

As Table 4 shows, the females with lower self-
efficacy used a higher percentage of taught blocks than
the females with higher self-efficacy (with high self-
efficacy females more willing to instead try blocks that
had not been taught). When we specifically considered
the use of the Debug Console, which was not taught to
the participants, only females with higher self-efficacy
used it of their own volition. Similar patterns did not
hold for the males. For example, regardless of self-
efficacy, all but one of the males explored at least half
of the blocks introduced to them.

These results are again consistent with the findings
on spreadsheet debugging [2]: higher self-efficacy fe-
males were more likely to use untaught features,
whereas females with lower self-efficacy gravitated
toward the features that were taught to them, a rela-
tionship not present for the males in this study or
in [2].

5.3 RQ3: Design Moments in Debugging
Debugging begins with the realization that the pro-

gram is wrong, and that something must be done—but
what, exactly, will fix it? A decision is needed.

Some of these decisions are design decisions. In
previous work, we showed that even in environments
without explicit support for design, end users engage in
moments of design that permeate their programming
efforts [3]. Such behavior is consistent with Rosson
and Carroll’s “debugging into existence” notion [13].

To understand how participants’ debugging activi-
ties interacted with design moments, we looked at the
impact of debugging activities on framing behavior, a
key part of design. Recall (Section 4) that in framing a
design problem, the designer sets the boundaries for
actions in solving the problem [14]. Research has
shown that effective framing is critical to making pro-
gress on design [3, 18]. When designers find that they
cannot solve a design problem as expected (i.e., the
frame is unworkable), designers will reframe, attempt-
ing to set the problem such that they can solve it.

Given the importance of reframing in design, we
investigated the relationship between participants’ rate
of reframing and success on task, to discover how de-
bugging and design reframing interplayed.

Rate of reframing and success. Participants reframed
anywhere between 7 (F1) to 48 (M3) times during the
task. Figure 3 on reframing reveals a parabolic rela-
tionship between the rate of reframing and success: the
moderately successful participants (M3, M4, F2, M5)
reframed most frequently, whereas participants who

were most successful (F1, M1, M2) and least success-
ful (F3, F4, M6) reframed least frequently.

An interpretation of this relationship is that highly
successful participants tended to produce better frames
and did not need to reframe often, while moderately
successful and unsuccessful participants tended to pro-
duce less workable frames. However, the moderately
successful participants were able to make progress
through reframing, whereas the unsuccessful tended to
pursue unworkable frames. It is an open question why
the unsuccessful participants did not reframe. They
may have been averse to changing frames, or they may
have wanted to reframe but did not know how.

Interplay of debugging and reframing. We also con-
sidered the relationship between success in bug diag-
nosis and success in reframing. We defined successful
bug diagnosis to be a participant’s words exhibiting a
good understanding of a fault. We defined successful
reframing to be the new frame leading to progress on
the task. We consider the relationship through four
cases that exemplify each combination of success-
ful/unsuccessful bug diagnosis and reframing, summa-
rized in Table 5.

In an example in which successful diagnosis pre-
ceded successful reframing, F1 proceeded based on the
understanding she gained from debugging. The prob-
lem was that her mashup using Live Image Search
would not display movie images:
F1: [Looking at Debug Console] Live Image Search….
Outputting 0 items… Let's get Yahoo! Images.
She correctly identified the Live Image Search block as
the problem. She then successfully reframed, replacing
the defective block with a Yahoo! Images block.

At the opposite extreme, where an unsuccessful di-
agnosis preceded unsuccessful reframing, M5’s lack of
insight into the bug led to an ill-informed reframing.
His mashup would not display pushpins on a map:

	

Figure	
 3.	
 Rate	
 of	
 reframing	
 (#	
 of	
 reframings	
 per	
 debugging	

minute)	
 ordered	
 by	
 success.	
 Participants	
 are	
 grouped	
 ac-­‐
cording	
 to	
 success	
 level	
 (#	
 of	
 requirements	
 accomplished).	

Dark	
 shade	
 shows	
 the	
 maximum	
 rate	
 for	
 each	
 group;	
 light	

shade	
 shows	
 the	
 minimum.	

IEEE Symposium on Visual Languages and Human-Centric Computing, Madrid, Spain, September 2010 (to appear).

M5: How did that happen? I only got error, error, er-
ror… Go away PhotoSphere. You suck! [Removes Pho-
toSphere]
Unfortunately, although PhotoSphere was the last
block added, it was not the problem, and M5’s subse-
quent reframing yielded no progress.

In an example where successful diagnosis did not
precede success, M4 identified the bug, but did not
know of a fix. He successfully diagnosed the reason his
mashup was not producing output:
M4: It doesn't seem to give anything for that so it must
not work that way. I'm gonna see if I could just make
some sort of connection between all three of them.
[Changes block connections. Runs] I don't have any-
thing about Corvallis theaters anymore.
He understood that recently added connections were
the cause. However, he was unsuccessful in reframing
because he did not know how to connect his blocks to
solve the problem.

Perhaps most interesting was the case where an un-
successful diagnosis preceded a successful reframing.
M3 put minimal effort into diagnosing bugs, often re-
sulting in vague or incorrect diagnoses. Despite his
lack of understanding, he repeatedly reframed and
modified his mashup, trying things out:
M3: I guess those two blocks didn't work or I didn't use
the right option. Let's keep going through these
[blocks] and see which one gives pictures of movies.
Although such reframings were often unsuccessful,
they did lead to progress on occasion.

An interesting contrast to M3 is F4: both partici-
pants tended to be unsuccessful in diagnosing bugs;
however, M3 was more successful overall on the task
than F4 (3 vs. 2 requirements completed). M3’s pro-
pensity for reframing may have made the difference.
Despite lacking a good understanding of the bug, M3
was able to make progress, albeit inefficiently, through
reframing. In contrast, F4 spent more time (unsuccess-
fully) diagnosing bugs and consequently reframed at a
slower rate, exhibiting long bouts without progress.

6. Discussion
The key problems end users faced while debugging

their mashups are summarized in Table 6.
Perhaps most serious were problems with the

Dataflow strategy. Use of Dataflow significantly corre-

lated with success in this dataflow-centric environ-
ment, but many participants had difficulty with the
strategy. Other researchers have observed novice pro-
grammers having difficulty applying dataflow concepts
with data flowing invisibly over the Web [23]. Such
issues might be alleviated by visualizing the flow of
data: for example, showing data in a table after each
step of processing [21] or enabling connections to dis-
play the data being transferred [17]. However, given
the problems with dataflow as a concept, it raises the
question of whether dataflow is an ideal paradigm for
end-user mashup environments.

Surprisingly, Code Inspection seemed particularly
ineffective for females, counter to a prior study in
which the strategy was closely related to female suc-
cess [16]. However, a closer look at this mashup envi-
ronment may explain why. According to the Selectivity
Hypothesis [11], females are more likely to process
information comprehensively, whereas males are more
likely to process cues serially. Unlike the spreadsheet
environment used in [16], Popfly worked against com-
prehensive information processing: only small sections
of mashup “code” (parameter settings) could be dis-
played at once, and there was no feature for tracking
which code had been inspected (i.e., no To-do Listing).
Thus, using Code Inspection in this environment may
have led to instances of cognitive overload that did not
arise in the spreadsheet environment of [16].

Despite Popfly’s numerous help facilities, partici-
pants’ encounters with help tended to be unhelpful.
Their success with Feedback Following suggests that
context-sensitive help would have been more effective.
One tool, Crystal [12], answers questions about UI
behaviors in context and suggests fixes to preference
settings to get the desired outcome. However, the solu-
tions to mashup bugs are more complicated than sim-
ply turning preferences on or off. The Whyline allows
users to ask questions about which source code pro-
duced elements in the program output. However, hid-
den block logic may hamper this approach in Popfly.

Table	
 5.	
 Examples	
 of	
 debugging-­‐reframing	
 interaction.	
 Entry	

format:	
 participant	
 (minute	
 offset).	

Reframing	
 Diagnosis	

Successful	
 Unsuccessful	

Successful	
 F1	
 (21)	
 M4	
 (11)	

Unsuccessful	
 M3	
 (10)	
 M5	
 (32)	

Table	
 6:	
 Key	
 debugging	
 problems.	

Category	
 Problems	
 Sect.	

Mistakes	
 and	
 misunderstandings	
 5.1	
 Dataflow	

Positively	
 correlated	
 with	
 success,	
 but	

underused	
 by	
 females	

5.2	

Hidden	
 code	
 5.1	

Limited	
 code	
 to	
 view	
 at	
 once	
 5.1	

Code	
 In-­‐
spection	

Previously	
 found	
 to	
 be	
 successful	
 for	
 fe-­‐
males,	
 but	
 ineffective	
 in	
 this	
 context	

5.2	

Help	
 Misunderstanding	
 help	
 features,	
 issues	
 in	

finding/understanding	
 examples,	
 etc.	

5.1	

Feature	

usage	

Females	
 with	
 low	
 self-­‐efficacy	
 did	
 not	
 try	

unfamiliar	
 features	
 and	
 blocks.	

5.2	

Reframing	
 Useful	
 for	
 making	
 progress,	
 but	
 underper-­‐
formed	
 by	
 some	
 participants	

5.3	

IEEE Symposium on Visual Languages and Human-Centric Computing, Madrid, Spain, September 2010 (to appear).

Finally, self-efficacy theory seems related to two
problems. First, females with low self-efficacy tried
fewer blocks, and never tried to use the (untaught) De-
bug Console. Second, self-efficacy may also explain
why some unsuccessful participants did so little re-
framing. Such participants may have been reluctant to
try different frames because they had low self-efficacy
and, as self-efficacy theory predicts, were inflexible in
abandoning unproductive strategies.

7. Conclusions
In this paper, we have investigated how male and

female end users attempted to debug their mashups
when struggling to create them. As they “debugged
into existence” their mashups, we watched for strate-
gies, barriers, and how debugging intertwined with
design moments. Among the surprises revealed were:
• Dataflow: All participants had at least some trouble

with dataflow debugging. This finding calls into
question the appropriateness of the dataflow para-
digm for an environment targeted at end users.

• Gender: The Code Inspection debugging strategy
was often rendered ineffective by hidden code and
restrictive views of code. This inaccessibility of
technical detail, which is not uncommon in visual
programming languages for novices, may have ad-
versely affected some users’ strategies. This may
have been particularly problematic for females be-
cause Code Inspection has been shown to be
important to their success in other settings.

• Design: Participants intertwined their debugging
with the design activity of reframing. Reframing
even helped some participants who were unsuccess-
ful at diagnosing a bug, and participants who re-
framed the least were least successful overall.
Our results suggest interesting research problems,

such as how to better leverage debugging during de-
sign and design during debugging. Ultimately, address-
ing these issues will be an important step toward effec-
tively supporting end-user programming of mashups.

Acknowledgement
We thank Diana Salazar for her assistance. This

work was supported in part by NSF 0917366.

References
[1] Bandura, A. Self-efficacy: Toward a unifying theory of

behavioral change. Psychol. Rev. 8(2):191–215, 1977.
[2] Beckwith, L., Burnett, M., Grigoreanu, V., and Wieden-

beck, S. Gender HCI: What about the software? Com-
puter 39(11):83–87, 2006.

[3] Cao, J., Riche, Y., Wiedenbeck, S., Burnett, M. and
Grigoreanu, V. End-user mashup programming:
Through the design lens, In Proc. CHI, 1009–1018,
2010.

[4] Compeau, D. and Higgins, C. Computer self-efficacy:
Development of a measure and initial test. MIS Quar-
terly 19(2), 1995.

[5] Cross, N. Designerly Ways of Knowing, Springer, 2006.
[6] Grigoreanu, V., Cao, J., Kulesza, T., Bogart, C., Rector,

K., Burnett, M., and Wiedenbeck, S. Can feature design
reduce the gender gap in end-user software development
environments? In Proc. VL/HCC, 149–156, 2008.

[7] Grigoreanu, V., Brundage, J., Bahna, E., Burnett, M.,
ElRif, P., and Snover, J. Males’ and females’ script de-
bugging strategies. In Proc. EUD, 205–224, 2009.

[8] Jones, M. and Churchill, E. Conversations in developer
communities: A preliminary study of the Yahoo! Pipes
community, In Proc. C&T, 195–204, 2009.

[9] Ko, A. and Myers, B. Finding causes of program output
with the Java Whyline. In Proc. CHI, 1569–1578, 2009.

[10] Lin, J., Wong, J., Nichols, J., Cypher, A., and Lau, T.
End-user programming of mashups with Vegemite, In
Proc. IUI, 97–106, 2009.

[11] Meyers-Levy, J. Gender differences in information
processing: A selectivity interpretation. In Cognitive
and Affective Responses to Advertising. Lexington-
Books, 1989.

[12] Myers, B., Weitzman, D., Ko, A., and Chau, D. An-
swering why and why not questions in user interfaces,
In Proc. CHI, 397–406, 2006.

[13] Rosson, M. and Carroll, J. Active programming strate-
gies for reuse. In Proc. ECOOP, 1993.

[14] Schön, D. A. The Reflective Practitioner: How Profes-
sionals Think in Action. Basic Books, 1983.

[15] Sprent, P. and Smeeton, N. Applied Nonparametric
Statistical Methods. Chapman & Hall, 2000.

[16] Subrahmaniyan, N., Beckwith, L., Grigoreanu, V.,
Burnett, M., Wiedenbeck, S., Narayanan, V., Bucht, K.,
Drummond, R., and Fern, X. Testing vs. code inspection
vs. ... what else? Male and female end users debugging
strategies, In Proc. CHI, 617–626, 2008.

[17] TGS Systems, Prograph Reference, The Gunakara Sun
Systems, Ltd., Halifax, Nova Scotia, Canada, 1989.

[18] Valkenburg, R. and Dorst, K. The reflective practice of
design teams, Design Studies 19, 249–271, 1998.

[19] Wang, G., Yang, S., and Han, Y. Mashroom: End-user
mashup programming using nested tables, In Proc.
WWW, 861–870, 2009.

[20] Wilson, A., Burnett, M., Beckwith, L., Granatir, O.,
Casburn, L., Cook, C., Durham, M. and Rothermel, G.
Harnessing curiosity to increase correctness in end-user
programming, In Proc. CHI, 305–312, 2003.

[21] Wong, J. and Hong, J. Making mashups with Marmite:
Towards end-user programming for the web. In Proc.
CHI, 1435–1444, 2007.

[22] Zang, N. and Rosson, M. What’s in a mashup? And
why? Studying the perceptions of web-active end users,
In Proc. VL/HCC, 31–38, 2008.

[23] Zang, N. and Rosson, M. Playing with information:
How end users think about and integrate dynamic data,
In Proc. VL/HCC, 85–92, 2009.

