
VISUAL PROGRAMMING 275

VISUAL PROGRAMMING

Visual programming is programming in which more than one
dimension is used to convey semantics. Examples of such ad-
ditional dimensions are the use of multidimensional objects,
the use of spatial relationships, or the use of the time dimen-
sion to specify ‘‘before–after’’ semantic relationships. Each po-
tentially significant multidimensional object or relationship
can be regarded as a token (just as in traditional textual pro-
gramming languages each word is a token) and the collection
of one or more such tokens is a visual expression. Examples
of visual expressions used in visual programming include dia-
grams, free-hand sketches, icons, or demonstrations of actions
performed by graphical objects. When a programming lan-
guage’s (semantically significant) syntax includes visual ex-
pressions, the programming language is a visual program-
ming language (VPL).

Although traditional textual programming languages often
incorporate two-dimensional syntax devices in a limited
way—an x-dimension to convey a legal linear string in the
language, and a y-dimension allowing optional line spacing
as a documentation device or for limited semantics (such as
‘‘continued from previous line’’)—only one of these dimensions
conveys semantics, and the second dimension has been lim-
ited to a teletype notion of spatial relationships so as to be
expressible in a one-dimensional string grammar. Thus multi-
dimensionality is the essential difference between VPLs and
strictly textual languages.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



276 VISUAL PROGRAMMING

When visual expressions are used in a programming envi- Other visual programming researchers took a different ap-
proach—they worked to increase the kinds of projects suit-ronment as an editing shortcut to generate code that may or
able for visual programming through the development of do-may not have a different syntax from that used to edit in the
main-specific visual programming systems. Under thiscode, the environment is called a visual programming environ-
strategy, the addition of each new supported domain in-ment (VPE). Visual programming environments for tradi-
creased the number of projects that could be programmed vi-tional textual languages provide a middle ground between
sually. An added benefit that followed was improved accessi-VPLs and the widely known textual languages. In contrast
bility—end-users were sometimes able to use these newto just a few years ago, when strictly textual, command-line
systems. The developers of domain-specific VPLs and VPEsprogramming environments were the norm, today VPEs for
found that providing ways to write programs for one particu-traditional textual languages are the predominant kind of
lar problem domain eliminated many of the disadvantagescommercial programming environment. Commercial VPEs for
found in the earliest approaches, because they supportedtraditional languages are aimed at professional programmers;
working directly in the communication style of the particularthese programmers use the textual languages they already
problem domain—using visual artifacts (e.g., icons andknow, but are supported by the graphical user interface (GUI)
menus) reflecting the particular needs, problem-solving dia-techniques and accessibility to information that visual ap-
grams, and vocabulary specific to that domain—and neverproaches can add. VPEs for traditional languages also serve
forced users to abandon that communication style. This ap-as a conduit for transferring VPL research advances into
proach quickly produced a number of successes both in re-practice by applying these new ideas to traditional languages
search and in the marketplace. Today there are commercialalready familiar to programmers, thus allowing some visual
VPLs and VPEs available in many domains; examples includeprogramming techniques to complement traditional textual
programming laboratory data acquisition (National Instru-programming techniques. VPLs are usually integrated in
ments’ LabVIEW), programming scientific visualizations (Ad-their own custom environments, so for the remainder of this
vanced Visual Systems’ AVS), programming telephone andarticle, that convention will be assumed, and the term VPEs
voice-mail behavior (Cypress Research’s PhonePro), and pro-will be used to mean VPEs for traditional languages.
gramming graphical simulations and games (Stagecast Soft-
ware’s Cocoa). A number of software-agent generators are
starting to become embedded in personal computing softwareHISTORY
as well, allowing macros that assist with repetitive tasks to
be inferred from end-user manipulations (as in Chimera, e.g.,The earliest work in visual programming was in two direc-
which is discussed in the next section).tions: (1) visual approaches to traditional programming lan-

The original challenge—to devise VPLs with enough powerguages (such as executable flowcharts), and (2) new visual ap-
and generality to address an ever-expanding variety of pro-proaches to programming that deviated significantly from
gramming problems—is an ongoing area of research. Onetraditional approaches (such as programming by demonstra-
goal of this research is to continue to improve the ways visual

ting the desired actions on the screen). Many of these early programming can be used. Another goal is to provide the
systems had advantages that seemed exciting and intuitive same kinds of improvements in general software development
when demonstrated with ‘‘toy’’ programs, but ran into difficult as are already available for programming in some domain-
problems when attempts were made to extend them to more specific areas. But although this work is still primarily in the
realistically sized programs. These problems led to an early research stage, commercial VPLs with the characteristics
disenchantment with visual programming, causing many to needed for general-purpose programming have emerged and
believe that visual programming was inherently unsuited to are being used to produce commercial software packages; one
‘‘real’’ work—that it was just an academic exercise. example is Pictorius International’s Prograph CPX.

To overcome these problems, visual programming re-
searchers began to develop ways to use visual programming

STRATEGIES IN VISUAL PROGRAMMINGfor only selected parts of software development, thereby in-
creasing the number of projects in which visual programming

Because VPEs employ visual ways of communicating aboutcould help. In this approach, straightforward visual tech-
programs, the visual communication devices employed by aniques were widely incorporated into programming environ-
VPE can be viewed as a (limited) VPL. Hence, the strategiesments that support textual programming languages, to re-
used by VPEs are a subset of those possible for VPLs. Becauseplace cumbersome textual specification of graphical user
of this subset relationship, much of the remaining discussioninterface (GUI) layout, to support electronic forms of software
of visual programming will focus primarily on VPLs.engineering diagrams for creating and/or visualizing relation-

ships among data structures, and to visually combine textu-
Visual Programming Language Strategiesally programmed units to build new programs. Successful

commercial VPEs soon followed; among the early examples A common misunderstanding is that the goal of visual pro-
were Microsoft’s Visual Basic (for Basic) and ParcPlace Sys- gramming research in general and VPLs in particular is to
tems’ VisualWorks (for Smalltalk). Another group of commer- eliminate text. This is a fallacy—in fact, most VPLs include
cial VPEs, focused primarily on large-grained programming, text to at least some extent, in a multidimensional context.
are the computer-aided software engineering (CASE) tools Rather, the overall goal of VPLs is to strive for improvements
that support visual specification (e.g., using diagrams) of rela- in programming language design. The opportunity to achieve
tionships among program modules, culminating in automatic this comes from the simple fact that VPLs have fewer syntac-

tic restrictions on the way a program can be expressed (by thecode generation of composition code.



VISUAL PROGRAMMING 277

computer or by the human), and this affords a freedom to system clock ticks and mouse clicks over time, ensuring
that all data on display accurately reflect the currentexplore programming mechanisms that have not previously

been tried because they have not been possible in the past. state of the system as computations continue to evolve.
The most common specific goals sought with VPL research

have been (1) to make programming more understandable to Visual Programming Language Examples
some particular audience, (2) to improve the correctness with

In this section four example VPLs are discussed, to demon-which people perform programming tasks, and/or (3) to im-
strate several ways in which the strategies of the previousprove the speed with which people perform programming
section have been employed.tasks.

To achieve these goals, there are four common strategies
used in VPLs: Imperative Visual Programming by Demonstration. Chimera

(6) is an innovative example of the most common way impera-
1. Concreteness. Concreteness is the opposite of ab- tive programming is supported in VPLs, namely, by having

stractness, and means expressing some aspect of a pro- the programmer demonstrate the desired actions. In the case
gram using particular instances. One example is of Chimera, the ‘‘programmer’’ is an end-user: hence, Chimera
allowing a programmer to specify some aspect of seman- is an example of a VPL aimed at improving accessibility of
tics on a specific object or value, and another example programming certain kinds of tasks.
is having the system automatically display the effects of The domain of Chimera is graphical editing. As an end-
some portion of a program on a specific object or value. user works on a graphical scene, he or she may find that re-

petitive editing tasks arise, and can indicate that a sequence2. Directness. Directness in the context of direct manipu-
of manipulations just performed on a scene should be general-lation is usually described as ‘‘the feeling that one is
ized and treated as a macro. This is possible because the his-directly manipulating the object’’ (1). From a cognitive
tory of the user’s actions is depicted using a comic strip meta-perspective, directness in computing means a small dis-
phor (see Fig. 1), and the user can select panels from thetance between a goal and the actions required of the
history, indicate which of the objects should be viewed as ex-user to achieve the goal (2–4). Given concreteness in a
ample ‘‘parameters,’’ (graphically) edit the actions depicted inVPL, an example of directness would be allowing the
any of the panels if desired, and finally save the sequence ofprogrammer to manipulate a specific object or value di-
edited panels as a macro. Chimera uses inference in de-rectly to specify semantics rather than describing these
termining the generalized version of the macro; use of infer-semantics textually.
ence is common in by-demonstration languages, and its suc-3. Explicitness. Some aspect of semantics is explicit in the
cess depends on limited problem domains such as Chimera’s.environment if it is directly stated (textually or visu-
However, there are also a number of by-demonstration lan-ally), without the requirement that the programmer in-
guages that do not use inference, one example of which isfer it. An example of explicitness in a VPL would be for
Cocoa (discussed later in this article).the system to explicitly depict dataflow or control flow

Chimera is at liveness level 3; that is, it provides immedi-relationships by drawing directed edges among related
ate visual feedback about the effects of program edits. Sincevariables or statements.
these effects are rendered in terms of their effects on the ac-

4. Immediate Visual Feedback. In the context of visual tual objects in the program, this is an example of concrete-
programming, immediate visual feedback refers to auto- ness. Directness in Chimera is used in that the way program
matic display of effects of program edits. Tanimoto has semantics are specified is by directly manipulating objects to
coined the term liveness, which categorizes the immedi- demonstrate the desired results. Note that such demonstra-
acy of semantic feedback that is automatically provided tions entirely eliminate the need for conventional textual
during the process of editing a program (5). Tanimoto syntax. Similar combinations of immediate visual feedback,
described four levels of liveness. At level 1 no semantics concreteness, and directness are present in most by-demon-
are implied to the computer, and hence no feedback stration VPLs.
about a program is provided to the programmer. An ex-
ample of level 1 is an entity-relationship diagram for

Form/Spreadsheet Based Visual Programming. Forms/3 (7) isdocumentation. At level 2 the programmer can obtain
an example of a VPL that follows the form-based paradigm.semantic feedback about a portion of a program, but it
In this paradigm, a programmer programs by creating a formis not provided automatically. Compilers support level 2
and specifying its contents. This paradigm is most commonlyliveness minimally, and interpreters do more so because
seen in commercial spreadsheets, in which the form is grid-they are not restricted to final output values. At level 3,
shaped, and the contents are specified by the cells’ formulas.incremental semantic feedback is automatically pro-

Forms/3 programs include forms (spreadsheets) with cells,vided whenever the programmer performs an incremen-
but the cells are not locked into a grid. A Forms/3 program-tal program edit, and all affected on-screen values are
mer creates a program by using direct manipulation to placeautomatically redisplayed. This ensures the consistency
cells on forms, and defines a formula for each cell using aof display state and system state (if the only trigger for
flexible combination of pointing, typing, and gesturing (seesystem state changes is programmer editing), which is
Fig. 2). A program’s calculations are entirely determined bywhat differentiates level 2 from level 3. The automatic
these formulas. The formulas combine into a network of (one-recalculation feature of spreadsheets supports level 3
way) constraints, and the system continuously ensures thatliveness. At level 4, the system responds to program

edits as in level 3, and to other events as well such as all values displayed on the screen satisfy these constraints.



278 VISUAL PROGRAMMING

Figure 1. Programming by demonstration in Chimera. In this example, the user has drawn a
box with an arrow pointing to it (as in a graph diagram), and this demonstration is depicted
after-the-fact in a series of intelligently filtered panels. This set of demonstrations can be general-
ized into a macro for use in creating the other nodes in the graph semiautomatically.

Forms/3 is a Turing-complete language. The aim is to en- the fact that the resulting box is immediately seen when
enough formulas have been provided to make this possible;hance the use of ordinary spreadsheet concepts to support the

advanced functionality needed for full-featured programming. directness is present in the direct-manipulation mechanism
for specifying a box because one demonstrates the specifica-Thus it supports such features as graphics, animation, and

recursion, but without resorting to state-modifying macros or tion directly on the box.
The intended audience for Forms/3 is ‘‘future’’ program-links to traditional programming languages. For example,

Forms/3 supports a rich and extensible collection of types by mers—those whose job will be to create applications, but
whose training has not emphasized today’s traditional pro-allowing attributes of a type to be defined by formulas, and

an instance of a type to be the value of a cell, which can be gramming languages. A goal of Forms/3 has been to reduce
the number and complexity of the mechanisms required to doreferenced just like any cell. In Fig. 2, an instance of type

‘‘box’’ is being specified by graphically sketching it; this speci- application programming, with the hope that greater ease of
use by programmers will result than has been characteristicfication can be changed if necessary by stretching the box by

direct manipulation. Immediate visual feedback at liveness of traditional languages, with an accompanying increase in
correctness and/or speed of programming. In empirical stud-level 4 is provided in either case. Concreteness is present in

Figure 2. Defining the area of a square using
spreadsheetlike cells and formulas in Forms/
3. Graphical types are supported as first-class
values, and the programmer can enter cell
square’s formula either by sketching a square
box or by typing textual specifications (e.g.,
‘‘box 30 30’’).



VISUAL PROGRAMMING 279

for example, scientific visualization systems and simulation
systems often make heavy use of visual dataflow pro-
gramming.

Prograph provides strong debugging support by making
extensive use of dynamic visualization techniques. The live-
ness level is 2 for the data values themselves—the program-
mer explicitly requests display of a value each time he/she
wants to see it. However, the runtime stack activity and the
order in which nodes fire can be viewed throughout execution,
and if the programmer changes a bit of data or source code
mid-execution, the stack window and related views automati-
cally adjust to proceed from that point on under the new ver-
sion, and this aspect is liveness level 3.

One way in which the dataflow paradigm distinguishes it-
self from many other paradigms is through its explicitness
(through the explicit rendering of the edges in the graph)
about the dataflow relationships in the program. Since manyFigure 3. Dataflow programming in Prograph. Here the programmer
dataflow languages govern even control flow by dataflow,is using the low-level (primitive) operations to find the hypotenuse of
these edges are also sufficient to reflect control flow explicitlya right triangle. Prograph allows the programmer to name and com-
in a purely dataflow language.pose such low-level graphs into higher-level graphs that can then be

composed into even higher-level graphs, and so on.

Rule-Based Visual Programming. Cocoa (11), formerly known
as KidSim, is a rule-based VPL in which the programmer
specifies the rules by demonstrating a postcondition on a pre-ies, programmers have demonstrated greater correctness and
condition. (see Fig. 4). The intended ‘‘programmers’’ are chil-speed in both program creation and program debugging using
dren, and the problem domain is specification of graphicalForms/3’s techniques than when using a variety of alterna-
simulations and games. Cocoa is a Turing-complete language,tive techniques (7–9).
but its features have not been designed to make general-pur-
pose programming convenient; rather, it has been designedDataflow Visual Programming. Prograph (10) is a dataflow
to make accessible to children the ability to program theirVPL aimed at professional programmers. The dataflow para-
own simulations.digm is currently the approach to visual programming used

The way concreteness and directness are seen in Cocoa ismost widely in industry. Prograph exemplifies its use for pro-
quite similar to Chimera, since both use by-demonstration asgramming at all levels, from low-level details that can be
the way semantics are specified. The liveness level is differentgrouped into procedures and objects (see Fig. 3), to composi-
though; in Cocoa, liveness is between level 2 and level 3. It istions of procedures and objects. The dataflow paradigm is also
not level 3 for some kinds of program changes (e.g., additioncommonly used by domain-specific VPEs for composition of

low-level components that have been written some other way; of new rules) that do not affect the current display of vari-

Figure 4. A Cocoa wall-climber (The Wall Climber:
Main window) is following the rules (Mascot 1 win-
dow) that have been demonstrated for it. Each rule
is shown with the graphical precondition on the left
of the arrow and the graphical postcondition on the
right of the arrow. The wall climber has just fin-
ished following rule 2, which places it in a position
suitable for following rule 1 next.



280 VISUAL PROGRAMMING

ables until the child requests that the program resume run- painted using a graphical editor, and each demonstration of
a new rule ‘‘belongs’’ to the character type being manipulated,ning, but for other kinds of program changes (e.g., changing

the appearance of an object), the changes are automatically providing roughly the functionality of an operation or method.
Both Forms/3 and Cocoa also support limited forms of inheri-propagated into the display immediately.

In listing the properties common to rule-based systems, tance.
Hayes-Roth includes the ability to explain their behavior (12).
In Cocoa, a child can open (by selecting and double-clicking) Visual Programming Language Specification
any character participating in the simulation, and a window

The one-dimensionality of traditional textual languagescontaining the rules governing that character’s behavior is
means that there is only one relationship possible betweendisplayed, as in Fig. 4. In each execution cycle, each charac-
symbols of a sentence, ‘‘next to.’’ Thus, in describing a textualter’s rules are considered top-down in the character’s list. The
language in BNF, it is necessary to specify only the symbolsindicators next to each rule are ‘‘off ’’ (gray) prior to a rule
in the language, not the relationship ‘‘next to’’ (which is im-being considered. Then, if the rule-matching fails, the indica-
plied when one symbol is written next to another in a gram-tor next to the rule turns red; if the pattern-matching suc-
mar). However, the multidimensionality of VPLs means manyceeds, the rule fires, the indicator next to it turns green. Once
relationships are possible, such as ‘‘overlaps,’’ ‘‘touches,’’ anda rule has fired for a character, that character’s ‘‘turn’’ is over,
‘‘to the left of,’’ and there is no universally agreed-upon defi-and no more rules for that character are checked until the
nition of exactly when such relationships hold, or even hownext cycle.
many of them may hold simultaneously between the same
symbols. Hence, relationships among symbols cannot be left

ADVANCED ISSUES implicit, and traditional mechanisms such as BNF for speci-
fying textual languages cannot be used without modification

Visual Programming and Abstraction for specifying VPLs.
Many different formalisms for the specification of visualOne of the challenges in visual programming research is scal-

languages have been investigated. One grammar approach ising up to the support of ever-larger programs. This is a
constraint multiset grammars (CMGs) (13). An example of agreater issue for VPLs than for traditional textual languages
CMG production taken from the specification of state dia-(although it certainly can be said to exist in both), for reasons
grams is:relating to representation, language design, and implementa-

tion. For example, some of the visual mechanisms used to TR:transition ::= A:arrow, T:text
achieve characteristics such as explicitness can occupy a great where exists R:state, S:state where
deal of space, making it harder to maintain context. Also, it T.midpoint close_to A.midpoint,
is hard to apply in a straightforward way techniques devel- R.radius = distance(A.startpoint, R.midpoint),
oped for traditional languages, because doing so often results S.radius = distance(A.endpoint, S.midpoint)
in a reintroduction of the very complexities VPLs have tried and TR.from=R.name, TR.to=S.name, TR.label=
to remove or simplify. T.string.

Recent developments in the area of abstraction for VPLs
In general, in CMGs, each production has the form:have been particularly important to scalability. The two most

widely supported types of abstraction, in both visual and tex- x ::= X1, . . ., Xn where exists X ′
1, . . ., X ′

m where C then vvv = E
tual languages, are procedural abstraction and data abstrac-
tion. In particular, procedural abstraction has shown itself to meaning that the nonterminal x can be rewritten to the multi-
be supportable by a variety of VPLs. A key attribute to sup- set X1, . . ., Xn if the sentence contains symbols X �1, . . ., X �mporting procedural abstraction in a VPL has been consistency (the context) such that the attributes of these symbols satisfy
with the rest of programming in the same VPL. Representa- the constraint C. v denotes the vector of attributes of x whose
tive solutions include allowing the programmer to select, values are defined by the vector expression E over attributes
name, and iconify a section of a dataflow graph (recall Fig. 3), of other objects in the production. In the above example, v �
which adds a node representing the subgraph to a library of (TR.from, TR.to, TR.label) and E � (R.name, S.name,
function nodes in a dataflow language; setting up separate

T.string).
spreadsheets (recall Fig. 2), which can be automatically gen- Marriott and Meyer have used the CMG approach to de-
eralized to allow user-defined ‘‘functions’’ in a form-based lan- rive a Chomsky-like taxonomy for VPLs (13). To show that
guage; and recording and generalizing a sequence of direct the generality of the taxonomy is not dependent on its roots
manipulations (recall Fig. 1) in a by-demonstration language. in CMGs, they also showed how several of the other formal-

Data abstraction has been slower in coming to VPLs, isms can be mapped to CMGs.
largely because it is sometimes difficult to find a way to main-
tain characteristics such as concreteness or feedback, while

Visual Programming and Cognitive Theory
adding support for ideas central to data abstraction such as
generality and information hiding. Still, support for data ab- Since the goals of VPLs have to do with improving humans’

ability to program, it is important to consider what is knownstraction has emerged for a number of VPLs. For example, in
Forms/3, a new data type is defined via a spreadsheet, with about cognitive issues relevant to programming. Much of this

information has been gleaned in the field of cognitive psychol-ordinary cells defining operations or methods, and with two
distinguished cells that allow composition of complex objects ogy, and psychologist Thomas Green and his colleagues have

made many of these findings available to nonpsychologistsfrom simpler ones and definition of how an object should ap-
pear on the screen. In Cocoa, each character’s appearance is through cognitive dimensions (2), a set of terms describing the



VISUAL PROGRAMMING 281

Empirical Findings

Work toward using visual programming techniques to im-
prove correctness and/or speed in programming tasks has fo-
cused primarily on three areas: (1) program comprehension,
(2) program creation, and (3) program debugging. Of these
three areas, the most empirical studies have been done on
VPLs’ effects on program comprehension. See Ref. 15 for a
survey of this work. The results of these studies have been
mixed, reporting findings for some kinds of programs or audi-
ences in which VPLs and/or visual notations are linked with
greater comprehension, and others in which strictly textual
languages and/or notations have been linked with greater
comprehension.

There have been fewer empirical studies on program cre-
ation thus far, but these studies have produced far more con-
sistent results than the studies on comprehension. Most have
reported visual approaches outperforming traditional textual
approaches for this task (7,9,16,17).

Finally, the effects of visual programming are the least
studied of all in debugging (and, in fact, this is also true of
classical debuggers, which feature the precursors of the ideas
of liveness as now found in VPLs). These studies have not
found statistically significant improvements for all the as-
pects studied, but for the aspects in which statistical signifi-
cance was found, visual approaches including immediate feed-
back were found to be superior to the static, nonfeedback-
oriented approaches in most cases (2,8).

SUMMARY

Visual programming is found in both VPLs and VPEs. Com-
mercially, visual programming is most commonly found in
VPEs, which serve as an effective conduit for some of the
gains made from research in VPLs to be quickly transferred

Table 1. The Cognitive Dimensions

Abstraction What are the minimum and maximum levels
gradient of abstraction? Can fragments be encapsu-

lated?
Closeness of What ‘‘programming games’’ need to be

mapping learned?
Consistency When some of the language has been

learned, how much of the rest can be in-
ferred?

Diffuseness How many symbols or graphic entities are re-
quired to express a meaning?

Error-proneness Does the design of the notation induce ‘‘care-
less mistakes’’?

Hard mental Are there places where the user needs to re-
operations sort to fingers or penciled annotation to

keep track of what’s happening?
Hidden Is every dependency overtly indicated in both

dependencies directions? Is the indication perceptual or
only symbolic?

Premature Do programmers have to make decisions be-
commitment fore they have the information they need?

Progressive Can a partially complete program be exe-
evaluation cuted to obtain feedback on ‘‘How am I

doing’’?
Role-expressiveness Can the reader see how each component of a

program relates to the whole?
Secondary notation Can programmers use layout, color, or other

cues to convey extra meaning, above and
beyond the ‘‘official’’ semantics of the lan-
guage?

Viscosity How much effort is required to perform a sin-
gle change?

Visibility Is every part of the code simultaneously visi-
ble (assuming a large enough display), or
is it at least possible to compare any two
parts side-by-side at will? If the code is dis-
persed, is it at least possible to know in
what order to read it?

into industrial practice. The goal of visual programming, in
general, is to make programming easier for humans, and
the goal of VPLs, in particular, is better programming lan-
guage design. Such a goal is timely because today’s support-
ing hardware and software places fewer restrictions onstructure of a programming language’s components as they
what elements may be part of the vocabulary of a program-relate to cognitive issues in programming.
ming language. Opportunities that arise from this reductionTable 1 lists the dimensions, along with a thumbnail de-
of restrictions that have received the most attention so farscription of each. The relation of each dimension to a number
in VPL design are concreteness, directness, explicitness,of empirical studies and psychological principles is given in
and immediate visual feedback. However, exploiting these(2), but the authors also carefully point out the gaps in this
areas can mean radical departures from tradition and this,body of underlying evidence. In their words, ‘‘The framework
in turn, requires reinvention of building blocks such asof cognitive dimensions consists of a small number of terms
abstraction mechanisms, which are important in designingwhich have been chosen to be easy for non-specialists to com-
scalable VPLs. The multidimensionality inherent in VPLsprehend, while yet capturing a significant amount of the psy-
also leads to language-theoretic issues. Finally, the fact thatchology and HCI of programming.’’
VPLs are intended to make programming easier for humansA concrete application of the cognitive dimensions is repre-
leads to a need for more research about how human cogni-

sentation design benchmarks (14), a set of quantifiable mea- tive abilities are best served by innovations in programming
surements that can be made on a VPL’s static representation. language design.
The benchmarks are of three sorts: (1) binary (yes/no) mea-
surements reflecting the presence (denoted Sp) of the ele-
ments of a static representation S, (2) measurements of the ACKNOWLEDGMENTS AND BIBLIOGRAPHIC NOTES
extent of characteristics (denoted Sc) in a VPL’s static repre-
sentation, or (3) number of user navigational actions (denoted The sources of information used for this article, other than
NI) required to navigate to an element of the static represen- those specifically referenced above, as well as additional
tation if it is not already on the screen. The benchmarks are sources of information, are as follows: The material for the

introductory section is derived from Ref. 18. See Ref. 19 for agiven in Table 2.



282 VISUAL PROGRAMMING

Table 2. Summary of the Representation Design Benchmarks

Benchmark Aspect of the
Name Sc Sp NI Representation Computation

D1 X Visibility of (Sources of dependencies explicitly depicted)/(Sources of dependencies in system)
D2 X dependencies The worst-case number of steps required to navigate to the display of dependency

information

PS1 X Visibility of Does the representation explicitly show how the parts of the program logically fit
program structure together? Yes/No

PS2 X The worst-case number of steps required to navigate to the display of the pro-
gram structure

L1 X Visibility of Does the representation explicitly show how an element is computed? Yes/No
L2 X program logic The worst-case number of steps required to make all the program logic visible
L3 X The number of sources of misrepresentations of generality

R1 X Display of Is it possible to see results displayed statically with the program source code?
results with Yes/No

R2 X program logic The worst-case number of steps required to display the results with the source
code

SN1 X Secondary SNdevices/4
notation: where SNdevices � the number of the following secondary notational devices
nonsemantic that are available: optional naming, layout devices with no semantic impact,
devices textual annotations and comments, and static graphical annotations

SN2 X The worst-case number of steps to access secondary notations

AG1 X Abstraction AGsources/4
gradient where AGsources � the number of the following sources of details that can be

abstracted away: data details, operation details, details of other fine-grained
portions of the programs, and details of NI devices

AG2 X The worst-case number of steps to abstract away the details

RI1 X Accessibility of Is it possible to display all related information side by side? Yes/No
related

RI2 X information The worst-case number of steps required to navigate to the display of related in-
formation

SRE1 X Use of screen The maximum number of program elements that can be displayed on a physical
screen

SRE2 X real estate The number of nonsemantic intersections on the physical screen present when ob-
taining the SRE1 score

AS1 X Closeness to a spe- ASyes’s/ASquestions
AS2 X cific audience’s where ASyes’s � the number of ‘‘yes’’ answers, and ASquestions � the number
AS3 X background of itemized questions of the general form: ‘‘Does the �representation element�

look like the �object/operation/composition mechanism� in the intended audi-
ence’s prerequisite background?’’

Sc denotes measures of the characteristics of elements of S. Sp denotes measures of the presence of potential elements of S. Each Sp measure has a corresponding
NI measure.

detailed treatment of the scaling-up problem for visual pro- BIBLIOGRAPHY
gramming languages. The four VPL examples were drawn

1. B. Shneiderman, Direct manipulation: A step beyond program-from an IEEE tutorial presented jointly by Burnett and Re-
ming languages, Computer, 16 (8): 57–69, 1983.becca Walpole Djang in 1997 in Capri, Italy. The discussion

2. T. Green and M. Petre, Usability analysis of visual programmingof VPL specification presented here is summarized from Ref.
environments: A ‘cognitive dimensions’ framework, J. Visual13; other approaches to formal syntax issues and also to for-
Lang. Comput., 7 (2): 131–174, 1996.mal semantics issues can be found in Refs. 20–24. The discus-

3. E. Hutchins, J. Hollan, and D. Norman, Direct manipulation in-sions of cognitive dimensions and of representation design
terfaces, in D. Norman and S. Draper (eds.), User Centered Sys-benchmarks are due to Ref. 14. The summary of empirical
tem Design: New Perspectives on Human–Computer Interaction,

studies is derived from Ref. 7 and from Ref. 15. Reference 25 Hillsdale, NJ: Erlbaum, 1986, pp. 87–124.
presents a taxonomy of visual programming that differenti- 4. B. Nardi, A Small Matter of Programming: Perspectives on End
ates programming by demonstration from other kinds of vi- User Computing, Cambridge, MA: MIT Press, 1993.
sual programming. This taxonomy also covers a subarea 5. S. Tanimoto, VIVA: A visual language for image processing, J.
closely related to visual programming: program visualization, Visual Lang. Comput., 2: 127–139, 1990.
the production of graphics to make (usually textual) programs 6. D. Kurlander, Chimera: Example-based graphical editing, in A.
easier to understand. The program visualization subarea is Cypher (ed.), Watch What I Do: Programming by Demonstration,

Cambridge, MA: MIT Press, 1993.covered in detail in Ref. 26.



VISUAL REALISM 283

7. M. Burnett and H. Gottfried, Graphical definitions: Expanding
spreadsheet languages through direct manipulation and ges-
tures, ACM Trans. Comput.-Human Interaction, 5 (1): 1–33, 1998.

8. C. Cook, M. Burnett, and D. Boom, A bug’s eye view of immediate
visual feedback in direct-manipulation programming systems,
Empirical Studies of Programmers: 7th Workshop, Alexandria, VA,
1997, pp. 20–41.

9. R. Pandey and M. Burnett, Is it easier to write matrix manipula-
tion programs visually or textually? An empirical study, IEEE
Symp.Visual Lang., Bergen, Norway, 1993, pp. 344–351.

10. P. Cox, F. Giles, and T. Pietrzykowski, Prograph: A step towards
liberating programming from textual conditioning, 1989 IEEE
Workshop on Visual Languages, Rome, Italy, 1989.

11. D. Smith, A. Cypher, and J. Spohrer, Kidsim: Programming
agents without a programming language, Comm. ACM, 37 (7):
54–67, 1994.

12. F. Hayes-Roth, Rule-based systems, Comm. ACM, 28 (9): 921–
932, 1985.

13. K. Marriott and B. Meyer, On the classification of visual lan-
guages by grammar hierarchies, J. Visual Lang. Comput., 8: 375–
402, 1997.

14. S. Yang et al., Representation design benchmarks: A design-time
aid for VPL navigable static representations, J. Visual Lang.
Comput., 8: 563–599, 1997.

15. K. Whitley, Visual programming languages and the empirical evi-
dence for and against, J. Visual Lang. Comput., 8: 109–142, 1997.

16. E. Baroth and C. Hartsough, Visual programming in the real
world, in M. Burnett, A. Goldberg and T. Lewis (eds.), Visual
Object-Oriented Programming: Concepts and Environments, En-
glewood Cliffs, NJ: Prentice-Hall, Greenwich, CT: Manning Pub-
lications, and Los Alamitos, CA: IEEE, 1995.

17. F. Modugno, A. Corbett, and B. Myers, Evaluating program rep-
resentation in a demonstrational visual shell, Empirical Studies
of Programmers: 6th Workshop, Alexandria, VA, 1996, pp.
131–146.

18. M. Burnett and D. McIntyre, Visual programming, Computer, 28
(3): 14–16, 1995.

19. M. Burnett et al., Scaling up visual programming languages,
Computer, 28 (3): 45–54, 1995.

20. P. Bottoni et al., Visual conditional attributed rewriting systems
in visual language specification, IEEE Symp. Visual Languages,
Boulder, CO, 1996, pp. 156–163.

21. S. Chang et al., Icon purity—towards a formal definition of icons,
Int. J. Pattern Rec. Artif. Intell., 1: 377–392, 1987.

22. G. Costagliola et al., Automatic parser generation for pictorial
languages, IEEE Symp. Visual Lang., Bergen, Norway, 1993,
pp. 306–313.

23. M. Erwig, Semantics of visual languages, IEEE Symp. Visual
Lang., Capri, Italy, 1997, pp. 300–307.

24. K. Wittenburg and L. Weitzmann, Visual grammars and incre-
mental parsing for interface languages, IEEE Workstop on Visual
Languages, Skokie, IL, 1990, pp. 111–118.

25. B. Myers, Visual programming, programming by example, and
program visualization: A taxonomy, ACM Conf. Human-Computer
Interaction, April 1986.

26. J. Stasko, Software Visualization: Programming as a Multimedia
Experience, Cambridge, MA: MIT Press, 1998.

MARGARET M. BURNETT

Oregon State University


