
In-Network Traffic Regulation for Transactional Memory

Lihang Zhao1, Woojin Choi1, Lizhong Chen2, Jeffrey Draper1
1Information Sciences Institute, 2Ming Hsieh Department of Electrical Engineering

University of Southern California, Los Angeles, CA 90089
{lihangzh, woojinch, lizhongc}@usc.edu, draper@isi.edu

Abstract
Hardware Transactional Memory (HTM) promises to

simplify parallel programming on shared-memory chip mul-
tiprocessors by providing atomic execution of code blocks.
Concurrently, Networks-On-Chip (NOCs) have emerged as
an efficient on-chip communication infrastructure but have
been largely neglected in HTM designs. In this work, we
explore the interaction between the HTM paradigm and
NOCs. In the process, we find a huge source of unnecessary
network traffic incurred by transactional requests that are
unsuccessful. This problem is identified as false forward-
ing that adversely affects network performance and energy
efficiency. Surprisingly, 39% (up to 79% for a specific
workload) of the transactional requests have incurred false
forwarding over a wide spectrum of workloads. To combat
this problem, we propose TMNOC, a novel approach that
exploits the co-design of HTM and NOCs to mitigate false
forwarding. Transactional requests that have a high proba-
bility to fail are filtered out in-network as early as possible
to save energy and improve concurrency in the memory
system. Experimental results show that our design reduces
total network traffic by 20% on average (up to 40%) for a
set of high-contention benchmarks representative of future
TM workloads, thereby reducing energy consumption by an
average of 24% (up to 39%). Meanwhile, the contention
in the coherence directory is reduced by 66% on average.
These improvements are achieved with only 5% area over-
head added to a conventional on-chip router design.

1. Introduction
The past decade has seen a fundamental shift from single-

core to many-core architectures to harness the increasing
numbers of transistors due to process scaling [9, 15]. In
the many-core era, one of the grand challenges is to write
parallel applications that efficiently exploit tens to thousands
of processor cores. In shared memory chip multiprocessors,
concurrent data accesses from different threads must be
synchronized in case of data races. The task of synchroniz-
ing concurrent accesses using traditional mutex primitives
is burdensome for programmers. Transactional Memory
(TM) is proposed as a concurrency control mechanism to
increase the productivity in parallel programming by mov-
ing the burden of shared data access synchronization to the
software runtime or hardware. Our work focuses on HTM
for its accelerated performance and its tight coupling with
the processor architecture that enables ample in-hardware
optimization opportunities.

In general, research in HTM has focused on perfor-
mance [43, 8, 24, 33], implementation issues [18, 38, 6],
transaction scheduling [4, 5, 39], and hardware-software

interplay [41, 35, 36]. These efforts have paved the way for
HTM to be implemented in commodity systems [9, 15, 12].
However, the majority of the research proposals on HTM
either assume an ideal on-chip network with zero latency or
a simple communication fabric. While packet-switched on-
chip networks are viewed as the de facto solution for future
many-core processors to supply low latency, high bandwidth
and energy efficient on-chip communication, seldom has
the interaction between HTM and on-chip networks been
studied. It is of vital importance that HTM research expands
beyond the processor core into the on-chip networks for two
main reasons.

Energy. HTM imposes an energy footprint on the
network since the delivery of transaction messages incurs
energy dissipation in routers as well as on links. As con-
flict detection requires frequent inter-transaction commu-
nication, HTM designs could have a huge impact on the
network energy consumption. So, energy-efficient on-chip
communication for HTMs cannot be achieved without an
in-depth understanding and optimization of the interaction
between HTM and the on-chip network.

Performance. HTM designs depend on the on-chip
networks to fetch data and detect conflicts. Due to the se-
rialization of transactions in data race conditions, memory-
level parallelism [10] is reduced significantly, making the
overall performance more sensitive to the network latency
of memory requests from transactions. The criticality of TM
traffic demands an on-chip network that is optimized to ac-
celerate memory requests from transactions and streamline
inter-transaction communication.

To this end, our work explores the interplay between
HTMs and on-chip networks. In this process, we identify a
source of excessive network traffic generated by the trans-
actions. The coherence requests from transactions could
be negatively acknowledged (nacked) due to conflicts with
other transactions. Before a request is nacked, it can initiate
numerous messages between the requester, directory and
sharers across the entire chip. However, those messages do
not contribute to the continued execution of transactions if
the request is nacked eventually. This problem is referred
to as false forwarding. False forwarding generates a large
number of useless coherence messages and unnecessarily
degrades the energy efficiency of on-chip networks as each
hop of each message consumes energy in the routers and
on the links. Transactions usually keep retrying the nacked
requests instead of aborting to save wasted work. Since
only the last one in a series of repeating retries success-
fully obtains the desired data access permission, the rest
are nacked and thus, intensify false forwarding in the net-
work. According to our study, 39% of the transactional
requests have incurred false forwarding over a wide range

TxGETX Fwd_TxGETX NACK

Node0 Node1 Node2

Node3 Node4 Node5

Node6 Node7 Node8

Router Router Router

Router Router Router

Router Router Router

(a) No in-network filtering

Node0 Node1 Node2

Node3 Node4 Node5

Node6 Node7 Node8

Router Router Router

Router Router Router

Router Router Router

(b) TMNOC proactive filtering

Figure 1. Network traffic in HTM conflict detection. TxGETX: transactional write request to the directory.
Fwd TxGETX: forwarded TxGETX request from the directory to the sharer. NACK: negative acknowledgement.

of workloads running on a representative HTM system.
Energy waste and performance loss due to false forwarding
is further exacerbated, as the number of cores scales up and
coarse-grain transactions with high contention rates prevail
[40]. Unfortunately, false forwarding is hard to tackle in
HTM designs alone due to the tight coupling of HTM and
coherence protocols and the exorbitant overhead of devising
a specialized protocol.

In this paper, we introduce TMNOC, a HTM and
Networks-On-Chip (NOCs) co-design to proactively filter
out transactional requests that can incur false forwarding.
First, a cost-effective communication mechanism is devised
for the HTM and on-chip network to exchange critical
information about conflicts between transactions. Second,
the on-chip routers are augmented to track the conflicts
by communicating with the HTM. Enabled by these two
mechanisms, the network filters out transactional requests
that have a high probability to be rejected by concurrent
transactions. Consequently, false forwarding can be sup-
pressed. Figure 1 illustrates the effectiveness of TMNOC
on a 2D mesh on-chip network and a directory protocol. In
the baseline system without TMNOC, as shown in Figure
1(a), a transactional GETX request (request for exclusive
access) from Node3 is sent to the directory on Node1,
which forwards the request to two sharers on Node0 and
Node8, respectively. Due to conflicts, the transactions on
Node0 and Node8 respond to the requester transaction with
NACK messages. As the request fails eventually, it causes
false forwarding in which a large amount of messages are
wasted. However, false forwarding can be proactively
prevented with TMNOC. As the network in TMNOC is
enabled to track conflicts between transactions, the router at
Node4 might already have the knowledge from past tracking
records that the conflicting transactions with higher priority
on Node0 and Node8 will eventually nack the request from
Node3. Therefore, the router at Node4 nacks the request
immediately instead of forwarding it to the directory, as
shown in Figure 1(b). Thus, subsequent communication
is avoided. A timeout mechanism implemented in the on-

chip routers prevents the routers from nacking transactions
indefinitely due to stale conflict records. So, forward
progress is guaranteed. Our evaluations show that TMNOC
reduces network traffic by 20% on average (up to 40%)
in a set of high contention benchmarks representative of
future TM workloads. Therefore, average network energy
consumption is reduced by 24% (up to 39%). Meanwhile,
directory busy cycles are reduced by 66%. An implementa-
tion using a standard VLSI design flow shows that TMNOC
incurs a marginal area overhead of 4.6% when the enabling
mechanisms are added to a 4-stage virtual channel router.
The contributions of this paper are three-fold:
• We identify a largely unexplored design opportunity in

cross-layer optimization of HTMs and NOCs. To the
best of our knowledge, our work is the first to address
the interaction between HTMs and NOCs.

• We describe TMNOC, a novel approach that exploits
co-designing of the HTM and NOC to regulate network
traffic generated by transactions and streamline inter-
transaction communication.

• We evaluate TMNOC through extensive full system
simulations to demonstrate the ability of a HTM and
NOC co-design in improving overall energy efficiency
and performance.

The rest of the paper is organized as follows. In Section 2,
we discuss the background and motivation. The TMNOC
design is presented in Section 3. Experiment methodology
and results are presented in Section 4. Section 5 summarizes
related work, and Section 6 concludes this paper.

2. Background and Motivation
2.1. HTM-NOC Interface

HTMs rely on the on-chip networks to fetch data and
detect conflicts. TM-induced network traffic usually takes
the form of coherence messages. As the messages are
injected into the network, they are encapsulated into short
or long packets, which are further divided into flow control

Figure 2. HTM conflict detection. R: requester;
DIR: directory; S: sharer.

digits or flits. In typical on-chip networks, short packets
(e.g., coherence read request and acknowledge response) are
single-flit while long packets (e.g., coherence read response
and write request) have multiple flits. Once injected into
the network, the packet is forwarded hop-by-hop by routers
to the destination node. After being reassembled at the
destination node, the coherence messages are ejected from
the network. Then, the transaction at the destination is
notified of receiving a message from the remote transaction.
In the HTM-NOC interplay, the on-chip routers are in
the unique position of monitoring conflicts between trans-
actions through snooping inter-transaction communication.
Routers can learn about conflicts between any transactions
by examining the in-transit transactional requests and re-
sponses while processor cores only know the conflicts en-
countered by the local transactions. Thus, routers often have
a global view of transaction conflicts, which is exploited in
TMNOC to develop more efficient HTM support. Moreover,
placing the filter in the on-chip routers instead of directory
controllers allows the potentially unnecessary transaction
traffic to be filtered out as early as possible to save more
energy without disruption to the directory.
2.2. Conflict Detection/Resolution in HTM

A conflict occurs when two or more concurrent trans-
actions access the same data and at least one access is a
write [7]. Any coherence protocol capable of detecting
accessibility conflicts can also detect transaction conflicts
[16]. Directory-based protocols provide scalable solutions
to cache coherence due to a unicast nature of communica-
tion [19]. The directory can be distributed among all the
nodes by statically mapping a cacheline address to its home
node. The home node is responsible for ordering coherence
requests to the same cache block. The majority of HTM
designs assume directory protocols for conflict detection.
Our work follows suit so that the proposed design can be
readily migrated to such HTMs. Nonetheless, the proposal
is also applicable to systems adopting snooping protocols on
a totally ordered broadcast network. In general, the eager
and lazy conflict detection schemes have their own benefits
regarding on-chip communication overhead. This work
mainly targets the wasted traffic in eager conflict detection.
However, the basic principle is applicable to the lazy conflict
detection where committing transactions usually use eager
conflict detection to protect their write sets.

When a transaction is executing, the load address (store
address) is added into the transaction’s read set (write set).
Upon receiving a request from another transaction, the
transaction checks the request against its read and write

set to see if any conflict occurs. Conflicts are resolved by
serializing the execution of conflicting transactions. The
execution order of conflicting transactions is determined by
conflict resolution policies. A conflicting transaction with
lower priority should stall or abort while one with higher
priority continues executing. Figure 2 depicts TM conflict
detection using the MESI (Modified, Exclusive, Shared,
Invalidate) directory protocol. The requester transaction
issues a GETX to the directory ¬, which replies to the
requester with data . The directory state of the block
is set to busy (i.e. incoming requests to the same block
are blocked). Then, the request is forwarded to the nodes
currently sharing the block ®. Depending on the outcome
of conflict detection and resolution, the sharing transactions
respond with either a NACK (negative acknowledgement) or
an ACK ¯. Once receiving all the responses, the requester
sends an UNBLOCK message to the directory to conclude
the request °. If all the responses are ACKs, the requester
transaction continues executing. If at least one of the
responses is a NACK, the requester transaction usually stalls
and keeps retrying the nacked request. In what follows,
the transaction that sends a NACK is often called a nacker
transaction or nacker. The node on which a transaction is
executed is referred to as the transaction’s host node.
2.3. False Forwarding and False Blocking

False forwarding occurs when a transaction’s coherence
request, before being nacked eventually, initiates numerous
messages from the requestor to the directory, from the di-
rectory to each sharer/owner, and from each sharer/owner to
the requestor. False forwarding wastes energy since nacked
requests do not contribute to the continued execution of
transactions. Here, we estimate the energy waste of a nacked
coherence request by counting the hops in terms of router
traversals needed to accomplish the request. Equation (1)
gives the average hop count of a coherence request.

HCoherenceRequest = Havg+2×Savg×Havg+Havg (1)

Here, Havg is the average hop of a flit in the network
and Savg is the average number of sharers of a memory
block. The first term counts the hops of the request to the
directory. The second term counts the hops incurred by
forwarding and acknowledging. The last term counts the
hops of an UNBLOCK message to the directory. In a 4x4
2D mesh network under uniform random traffic, Havg is 3.6
(including the router into which a flit is injected). Assume
the requested block is read-shared by 4 nodes. Then, a
GETX incurs 36 hops on average. The GETS (request for
shared access) needs less hops (14 hops) as the directory
only forwards the request to at most one node that owns the
data. Each hop, which involves a router and link traversal,
consumes a sizable amount of energy. Unfortunately, the
energy is wasted in the case of false forwarding.

Besides false forwarding, the nacked requests unneces-
sarily blocks subsequent requests as coherence requests to
the same cache block are serialized at the directory. This
problem is false blocking, which disrupts normal cache
behavior and limits the concurrency of the memory system.

To estimate the extent of false forwarding and false
blocking, we track GETS/GETX coherence requests gen-
erated by transactions in a representative HTM system (see

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
P

e
rc

e
n

ta
g

e

Bayes

Intru
der

Labyrin
th

Yada

Genome

Kmeans

SSCA2

Vacatio
n

Nacked GETX Nacked GETS Acked GETX Acked GETS

Figure 3. Breakdown of GETX/GETX coherence
requests from transactions to the directory.

Section 4.1 for experiment details). Figure 3 presents the
breakdown of requests based on the outcome of the requests.
Across all eight workloads, nacked requests account for
39% of all the requests from transactions. So, more than
one third of all the TM-induced coherence requests incur
false forwarding and false blocking.

3. TMNOC: A Co-Design of HTM and NOC
We exploit the co-design of HTM and NOC to mitigate

false forwarding and false blocking for improved energy
efficiency and performance. In TMNOC, the on-chip routers
proactively filter out the redundant coherence requests if
they are predicted to be nacked by transactions. We identify
three mechanisms to support such functionality. First, the
HTM should provide concise yet expressive information on
transaction conflicts for the routers to track current conflicts
and predict potential conflicts. Second, a cost-effective
communication mechanism must be devised to deliver the
information to the on-chip routers. Third, the routers must
store and use the conflict information to regulate TM traffic.
In the subsequent discussion, the three mechanisms are
presented respectively. Based on these mechanisms, the
traffic regulation policy is described, followed by walk-
through examples and further discussion.

3.1. NOC-aware HTM

To enable a network to track and predict conflicts be-
tween transactions, the conflict resolution policy used by
the HTM should be straightforward for the NOC to adopt.
Moreover, concise and expressive information on trans-
action conflicts must be prepared for the NOC to track
conflicts. Other aspects of the HTM design (e.g., version
management, read/write set implementation, and overflow
handling) are orthogonal and thus complementary to the
proposed design. Any HTM designs that piggyback on the
coherence protocol for conflict detection can be augmented
in a similar way [30, 23, 24]

Conflict Resolution: TMNOC adopts time-based con-
flict resolution [34]. Conflicts are resolved by stalling
or aborting the younger transaction in favor of the older
one. Each transaction is assigned a timestamp when it
begins. The timestamp is attached to all the inter-transaction
communication (coherence messages). Besides ensuring

ADDR
HOST

NODE

TIME-

STAMP
DAS

Tx Metadata

23bit 12bit 4bit 1bit

Figure 4. Format of CT-Register.

forward progress and providing good performance [39], the
time-based policy provides a global transaction ordering that
is straightforward for the on-chip network to identify when
detecting potential conflicts.

Conflict Trace Registers: We define a conflict trace
as the sufficient yet minimal piece of information to i)
describe conflicts among transactions and ii) enable other
system components (e.g., on-chip routers) to detect potential
conflicts. A generic conflict trace consists of:
• Address of the memory block in the conflict.
• Metadata (e.g., priority and host node) of the transac-

tion that is given priority in a conflict resolution.
• Data Access Status (DAS) of the memory block, speci-

fying whether the transaction with higher priority holds
the block in read-shared or write-exclusive state.

The L1 cache controller is augmented with a set of Con-
flict Trace Registers (CT-Registers) to record conflicts en-
countered by the outstanding requests. Figure 4 depicts the
CT-Register. Every outgoing coherence request is assigned
a CT-Register. If the request is nacked due to a conflict, the
conflict trace obtained from the NACK message is stored
into the associated CT-Register. The extension to NACK
messages to supply all the needed pieces of information
to construct conflict traces will be discussed below. When
multiple NACKs to a request are received, the conflict trace
from the latest NACK overwrites previous one in the associ-
ated CT-Register. The number of CT-Register is bounded
by the number of outstanding data requests that miss in
local L1. As processors usually support a limited number of
outstanding L1 misses (e.g., Intel Itanium2 supports 8 [11]),
the area overhead of CT-registers remains low.

3.2. Establishing Communication between
HTM and NOC

As HTMs piggyback onto the cache coherence protocol
to detect conflicts, coherence messages from transactions
are injected into the network. Furthermore, the on-chip
routers can easily examine the in-transit coherence mes-
sages. Thus, the coherence messages are cost-effective
mechanisms for delivering the conflict traces from HTMs
to the routers. For this purpose, three coherence messages
are extended.

First, the NACK messages from the nacker transactions
to the conflicting transactions contain almost all the infor-
mation (i.e. memory address, timestamp and host node
of the nacker transaction) to construct conflict traces. As
shown in Figure 5(a), a single DAS bit is added to the NACK
message to specify whether the data in conflict is currently
read-shared or written-exclusive by the nacker transaction.
Besides, a single BYRTR (By Router) bit is also added
to indicate whether the NACK is initiated from routers or
not, as TMNOC allows the routers to nack requests (as

ADDR
MSG

TYPE

SRC

NODE

DEST

NODE TXREQ

ADDR
MSG

TYPE

SRC

NODE

DEST

NODE TIMESTAMP DASBYRTR

ADDR
MSG

TYPE

SRC

NODE

DEST

NODE TIMESTAMP
HOST

NODE
VBIT

(c) Coherence Request

(a) NACK

(b) UNBLOCK

Coherence message extension

TIMESTAMP

TXREQ

DAS

BYRTR

HOST NODE

VBIT

Whether the request is issued within a transaction

Whether the address is in the nacker’s read or write set

Whether the NACK is initiated from a router

The node executing the nacker transaction

Whether embedded con!ict trace is valid

... ...

... ...

...DAS

Figure 5. Extended coherence protocol messages
to support communication between HTM and NOC.

described later). When a destination node receives a NACK
with BYRTR set, the coherence controller at the destination
neither waits for acknowledgements from other nodes nor
does it send an UNBLOCK message to the directory. In this
particular case, the request is nacked by an enroute router
and has not yet been serviced at the directory. Second,
the UNBLOCK message, that is destined to the directory
to conclude a request, is extended to carry the content
of the CT-Register associated with the request. A VBIT
(valid bit) is needed since the embedded conflict trace is
valid only if the request is nacked by a transaction due to
conflict. Third, as the network attempts to regulate TM
traffic, transactional requests must be distinguished from
non-transactional requests. A 1-bit TXREQ (transactional
request) is attached to coherence request messages (e.g.,
GETS and GETX). TM requests will have TXREQ set to
1. Figure 5 summarizes the extended protocol messages.
Due to the wide on-chip channels, the extended messages
can still be encapsulated into short packets. So the cost is
minimized. These extensions do not change the protocol
behaviors that are originally implemented in the processor.

3.3. Conflict Trace Buffer: In-Network Con-
flict Tracking

The on-chip routers should be able to store the conflict
traces provided by the HTM through the in-transit coherence
messages. For this purpose, each router is augmented
with a Conflict Trace Buffer (CT-Buffer) (see Figure 6(a)).
The CT-Buffer is the key structure to couple the on-chip
networks with the HTM. Each CT-Buffer entry stores a
piece of conflict trace regarding a memory block. The
time when the conflict trace arrives is recorded to handle
replacement and improve prediction accuracy (as described
below). In addition, each line is augmented with a valid
bit. The CT-Buffer uses 2-way set associative mapping.
To reduce energy and area overhead, the conflict traces in
the CT-Buffer can be shared by all input ports in a router.
However, the number of the CT-Buffer’s read/write ports
can be less than the number of input ports in a router if the

... ...

X

Conflict Trace

Buffer Virtual Channel

Allocation

Switch

Allocation

creditIn

creditOut

... ...

Input1

InputN

Output1

OutputN

Crossbar Switch

Route

Compute TMNOC

 Logic

RC VA SA ST

(a)

(b)

ADDR
HOST

NODE

TIME

STAMP
DAS

ARRIVAL

TIME

...

... ...

V

TO

Figure 6. (a) Router microarchitecture (TMNOC-
specific structures in bold rectangles). (b) Router
pipeline organization (TO: TMNOC Operation).

area budget is tight, as the probability that packets at the
head of multiple input ports are all transactional requests
and those requests incur accesses to the CT-Buffer in the
same cycle is relatively low. In the case of rare contention on
a read/write port, the overflowed requests are just forwarded
normally without being filtered.

3.4. The TMNOC Logic

The TMNOC logic manages the CT-Buffer and performs
proactive filtering on in-transit coherence requests. It oper-
ates in parallel with route computation to avoid additional
delay in the router critical path 1. The router pipeline is
shown in Figure 6(b), assuming a canonical 4-stage pipeline
[19]. The route computation (RC), TMNOC operation (TO)
and virtual channel allocation (VA) perform computation for
the head flits. And, the switch allocation (SA) and switch
traversal (ST) stages operate on all the flits. Now, we discuss
the functions of the TMNOC logic.

CT-Buffer management: TMNOC logic examines ev-
ery incoming packet. If the packet carries an UNBLOCK
message with a valid conflict trace (VBIT is set) and is
destined to the directory on the node to which the router
is attached, the embedded conflict trace is buffered in the
router’s CT-Buffer. If a valid conflict trace regarding the
same memory block already exists, it gets updated provided
the new conflict trace records a younger nacker transaction.
The freshness of the conflict trace can be preserved by
always tracking a younger nacker, as the conflict traces
become stale if the nacker transactions have finished. If no

1In the case of lookahead routing in some router designs, the operation
of TMNOC logic can overlap with virtual channel allocation or switch
allocation.

Figure 7. Flowchart diagram of transactional re-
quest filtering in TMNOC logic. REQTYPE and
TXREQ are the fields in the in-transit request mes-
sage. DAS is from the matching conflict trace.

valid conflict trace is found, the new one is buffered. CT-
Buffer replacement is handled by evicting the entry with
the earlier arrival time within the set of 2 entries. As
the router only tracks the conflict traces regarding memory
blocks whose home node is attached to the router, requests
can be filtered away only by the home node router (i.e. the
router attached to the home node). This is an intuitive design
choice as the requests are always destined to home nodes. A
more aggressive scheme will be introduced shortly.

Transactional requests filtering: Upon receiving a
packet carrying a coherence request from a transaction
(TXREQ=1), the TMNOC logic searches in the CT-Buffer
for a conflict trace regarding the requested block. If noth-
ing is found, the router continues forwarding the request
as normal. Otherwise, TMNOC logic uses the matching
conflict trace to predict whether the request will be rejected
by the nacker transaction that is recorded in the conflict
trace. The prediction requires two steps. The first step is
to evaluate the freshness of the conflict trace. As discussed,
a conflict trace in the CT-Buffer becomes stale if the nacker
transaction has finished. So it is important to verify that the
nacker is still active. The latency and energy overhead of
directly contacting the nacker is prohibitive. So TMNOC
uses the arrival time of the conflict trace to predict. If the
conflict trace arrives at the CT-Buffer within a threshold
number of cycles, the nacker is predicted to be active. The
threshold value can be set to the average transaction length
heuristically. TMNOC uses the Transaction Profiling Table
in [45], which tracks the moving average of transaction
length on a per transaction basis. Our RTL implementation
shows that a table capable of tracking 64 transactions adds
0.24% more area to the Sun Rock core [9].

The prediction proceeds to the second step if the nacker is
predicted to be active. The type of the request (transactional
read or write) and the data access status of the conflict trace
(read-shared or written-exclusive by the nacker transaction)
are used to detect a potential conflict that violates the
“single-writer-multi-reader” invariant. Upon a conflict, the

requester and nacker’s timestamps are compared. If the
requester is older (i.e. has higher priority), the request is
forwarded as normal. Otherwise, the router stops forward-
ing and discards the packet. Meanwhile, a router-initiated
NACK message (BYRTR=1) is sent to the requester. To
prevent a transaction from being nacked by itself, routers
do not nack the request from the host node of the nacker
transaction that is recorded in the matching conflict trace.
Figure 7 provides the procedure implemented in TMNOC
logic to decide whether to filter out in-transit requests.

TMNOC-aggressive: In the above scheme, transac-
tional requests can be filtered out only by the home node
router. Here we propose a more aggressive design that
allows requests to be nacked by any enroute routers. In
our discussion, the aforementioned scheme and this more
aggressive scheme are referred to as TMNOC-base and
TMNOC-aggressive, respectively.

The only difference between the two TMNOC variants
lies in the CT-Buffer management policy. In TMNOC-
aggressive, the on-chip router not only records the conflict
traces embedded in the UNBLOCK messages destined to
the node to which the router is attached (same as TMNOC-
base), but also extracts conflict traces from any in-transit
NACK messages the router has forwarded. As the routers
can record conflict traces regarding any memory blocks,
transactional requests could in turn be filtered out by any
routers along the route to the home node. Consequently,
more energy savings can be attained by further reducing
the network traffic. TMNOC-aggressive needs a larger CT-
Buffer since the routers are allowed to buffer conflict traces
of any blocks. To alleviate buffer contention and guaran-
tee forward progress, the routers are forbidden to extract
conflict traces from NACK messages that are initiated from
routers. Other than the difference in CT-Buffer management
policy, both TMNOC variants follows the same procedure to
filter out transactional requests (see Figure 7).
3.5. Operation Examples

Update CT-Register (Figure 8(a)): Transaction A
(TxA)@node1 sends GETX to the directory@node2. The
request is forwarded to two sharers at node3 and node4.
Both nodes respond with NACKs. The NACK from node3
is recorded into the CT-Register of node1 since the nacker
transaction on node3 is younger than the nacker on node4.

Update CT-Buffer (Figure 8(a)): After receiving re-
sponses from both sharers, node1 sends an UNBLOCK mes-
sage to the directory. The CT-Register content is attached.
The home node router records the conflict trace into its CT-
Buffer. The arrival time of the conflict trace is 500.

Home node router nacks a request (Figure 8(b)):
TxD@node5 sends GETX to the directory@node2. The
router@node2 predicts the GETX to be nacked by
TxB@node3. So the GETX is dropped and not forwarded
to the directory.A NACK is sent to node5. As the NACK is
from a router, node5 does not update its CT-Register.

Router buffers in-transit NACK (Figure 8(c)): The
NACK message from node3 to node1 flows through the
router@node6, which buffers the conflict trace.

Enroute router nacks a request (Figure 8(d)):
TxD@node5 sends GETX to the directory@node2. The

TxA@

node1

Timestamp=100

NACK

CT-Reg @ node1

TxB@

node3

TxC@

node4

GETX_TX

NACK

Fwd_GETX_TX

Timestamp=200

TS=320

TxA@

node1

Router

node2

UNBLOCK

Addr N3200 R

CT-Reg @ node1

TS=320

Addr N3 200 R

CT-Bu!er @ node2 router

500
Router

node5

Router

node6

Router

node2

Addr N3200 R

CT-Bu!er @ node2 router

500

Timestamp=300

GETX_TX

NACK

Router

node5

Router

node6

Router

node2

CT-Bu!er @ node6 router

GETX_TX

NACK

TxA@

node1

NACK

TxB@

node3

TxC@

node4

GETX_TX

NACK

Fwd_GETX_TX

TS=320

CT-Reg @ node1

Router

node6

Addr N3200 R

CT-Bu!er @ node6 router

450

TxD@

node5

TxD@

node5

(a) (b)

(c) (d)

Addr N3200 R

Addr N3200 R
Addr N3200 R 450

Update
Hit

Hit

Update

GETX_TX

NACK

NACK

Dir@

node2

Dir@

node2
Dir@

node2

Dir@

node2

Dir@

node2

Timestamp=200 Timestamp=100 Timestamp=300

Figure 8. Operation examples. (a) and (b): TMNOC-base. (c) and (d): TMNOC-aggressive. All the requests,
responses and coherence states are with regard to the same cache block. Dir: directory.

GETX flows through the router@node6, which predicts the
GETX to be nacked by TxB@node3. So the router@node6
drops the GETX instead of forwarding the request. A
NACK is sent to node5. As the NACK is initiated from a
router, node5 does not update its CT-Register.
3.6. Correctness

In TMNOC, the routers filter out coherence requests that
are predicted to be rejected by the nacker transactions that
are recorded in the CT-Buffers. A mis-prediction occurs i)
when a nacker transaction is predicted inactive though it is
still active; ii) when a nacker transaction is predicted active
though it has already finished. In the first case, the router
forwards the request as normal. In the second case, the
router could nack the request conservatively. However, the
router cannot block the request indefinitely, as the nacker
is predicted inactive after the corresponding conflict trace
has stayed in the router’s CT-Buffer for a certain amount
of time. So livelock (lack of forward progress) due to mis-
prediction never occurs in TMNOC. Overall, as coherence
requests from transactions are either forwarded to the HTM
system or nacked by the routers, TMNOC does not affect
the correctness of transaction execution (strong isolation and
conflict serializability), which is guaranteed by the conflict
detection mechanism in the HTM.

4. Evaluation
4.1. Methodology

We conduct cycle-accurate full system simulation using
SIMICS [25] and the GEMS tool set [27]. Garnet [1] is
used to model the timing of the on-chip network while
the Orion power model [42] is used to estimate the energy
consumption of the routers and links in the network. Results
are presented for all the eight workloads in the STAMP
benchmark suite [29] that is widely used to evaluate HTM
designs. Table 1 lists the details of each benchmark.

Table 1. Benchmark input parameters
Benchmark Input Parameters Contention
Bayes (BA) 32 var, 1024 records, 2 edge/var

highIntruder (IN) 2k flow, 10 attack, 4 pkt/flow
Labyrinth (LA) 32*32*3 maze, 96 paths

Yada (YA) 1264 elements, min-angle 20
Genome (GE) 32 var, 1024 records

lowKmeans (KM) 16K seg. 256 gene. 16 sample
SSCA2 (SS) 8k nodes, 3 len, 3 para edge

Vacation (VA) 16K record. 4K req. 60% coverage

Table 2. System configuration
Unit Value
Core in-order, single-issue, 16 SPARC V9 cores, 1GHz

L1 Cache 32 KB, 4-way associative, write-back, 1-cycle latency
L2 Cache 8 MB, 8-way associative, 20-cycle latency
Coherence MESI protocol, static cache bank directory
Memory 4 GB, 4 memory controller, 200-cycle latency
Network 4x4 2D mesh, DOR, VC flow control, 1-cycle link latency
Router 4-cycle, 5 virtual network (vnet), 4 VCs/vnet, 4-flit/VC

TMNOC 32-entry CT-Buffer per router for base and aggressive

Register Checkpoint

Read/Write Signature

Fast-abort Support

Transaction Logging

Timestamp

CT-Registers

Overflow Handling

Core

HTM Support

L1I L1D

L2 cache

Directory

Router

Node

 0

Node

 4

Node

 8

Node

 12

Node

 1

Node

 5

Node

 9

Node

 13

Node

 2

Node

 6

Node

 10

Node

 14

Node

 3

Node

 7

Node

 11

Node

 15

CT-Buffer

TMNOC-Logic

Figure 9. Simulated chip multiprocessor architec-
ture. TMNOC augmentations in bold rectangles.

B T T+ B T T+ B T T+ B T T+ B T T+ B T T+ B T T+ B T T+
0

0.2

0.4

0.6

0.8

1

N
o

rm
a

li
z
e

d
 C

y
c

le
 C

o
u

n
t

Busy serving TxRead Busy serving TxWrite

BA LA GE KM VAIN YA SS

Figure 10. Normalized cycle count when the di-
rectory is busy serving transactional requests
(B: baseline w/o TMNOC; T: TMNOC-base; T+:
TMNOC-aggressive).

The baseline chip multiprocessor architecture for our
experiment is depicted in Figure 9. Each of the 16 nodes
consists of an in-order SPARC core with a private L1 and
a shared L2. The shared L2 is organized as a static non-
uniform cache architecture [21] that uses the directory-
based MESI protocol to maintain coherence. The width of
coherence control messages is 64-bit. The L2 cacheline tags
are augmented with directory entry state. The processor
core provides hardware support for log-based HTM. Pre-
transaction states are written to a software managed log
while speculative states are propagated to the memory hi-
erarchy eagerly. Pre-transaction states are also stored to
a dedicated buffer for fast abort recovery. After receiving
NACK, transactions back off for a fixed period of 20 cycles
before retrying. The performance of the baseline HTM
is comparable to contemporary eager HTM designs (e.g.,
FASTM [23]) that manage both data versions in cache for
fast abort and commit. The 2d mesh on-chip network uses
dimension-order routing and credit-based virtual channel
flow control. Multiple virtual networks are used to avoid
protocol-level deadlock. The routers are pipelined into 4
stages. The system configuration is listed in Table 2.

We implement TMNOC-base and TMNOC-aggressive
in the simulator. The Garnet router model is augmented
with the TMNOC logic and CT-Buffer. Both TMNOC
alternatives use a 32-entry CT-Buffer in each on-chip router
to track transaction conflicts. Since the TMNOC logic
works in parallel with route computation, the router latency
is not affected. For energy estimation, we synthesize the
TMNOC design. The power dissipation of the SRAM-based
CT-Buffer is estimated using CACTI [32]. Based on the
obtained results, we modify Orion to carefully account for
the energy overhead of TMNOC in 40nm technology and
0.9V on-chip voltage. For the overhead of extending the
coherence messages, no extra flit is needed as the flit size is
large enough to accommodate the extended fields (a flit size
of 128-bit is used in the simulations as most current NOCs
have 128-bit or 256-bit channel width).

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

Bayes

Intru
der

Labyrin
th

Yada

Genome

Kmeans

SSCA2

Vacatio
n

Baseline TMNOC−base TMNOC−aggressive

High Contention Low Contention

Figure 11. Normalized network energy.

4.2. Reduction in Directory Blocking

Figure 10 shows the impact of TMNOC on the number
of cycles the directory is blocked by coherence requests
from transactions. The values are obtained by accumulating
the cycles during which directory entries stay in the busy
transient state while servicing transactional requests. It is
observed that TMNOC-base reduces the TM-induced direc-
tory blocking by 43% on average and up to 87%. TMNOC-
aggressive reduces the blocking by 66% on average and
up to 88%. The reduction in directory blocking allows
more requests to be serviced by the directory instead of
waiting or being rejected, thereby increasing the concur-
rency in the memory system. Another observation is that
high contention benchmarks show a significant reduction
in the cycles the directory is blocked by transactional write
requests. This observation indicates that a large portion of
transactional write requests are filtered out as transactions
in high contention benchmarks tend to update shared data
frequently. Since GETX requests usually have a large
energy footprint on the network (as discussed in Section
2.3), it is expected that TMNOC will provide significant
energy savings in high contention workloads.
4.3. Reduction in Network Energy

One of the primary goals of this work is to improve
energy efficiency of the on-chip network in supporting of
HTM operations. Figure 11 shows the normalized energy
consumption of the network including routers and links. It
is observed that TMNOC-base reduces the network energy
consumption in high contention benchmarks by 20% on
average (up to 35%) while TMNOC-aggressive reduces the
figure by 24% (up to 38%). Across all the benchmarks,
TMNOC-base and TMNOC-aggressive reduces average
network energy consumption by 12% and 15%, respectively.
The energy savings of TMNOC-base are achieved by the
avoidance of forwarding the requests from the directory to
other concurrent transactions, whereas TMNOC-aggressive
achieves additional savings by saving the hops from the
requester to the home node. Since the majority of the
traffic and energy waste is due to directory forwarding
(multicasting to several nodes) rather than the requests to
the home node (unicast between two nodes), TMNOC-base

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
z
e

d
 I

n
te

rc
o

n
n

e
c

ti
o

n
 T

ra
ff

ic

Bayes

Intru
der

Labyrin
th

Yada

Genome

Kmeans

SSCA2

Vacatio
n

Baseline TMNOC−base TMNOC−aggressive

High Contention Low Contention

Figure 12. Normalized interconnection traffic.

1 2 3 4 5 6 7
 0%

 5%

10%

15%

20%

Hops
1 2 3 4 5 6 7

 0%

 5%

10%

15%

20%

Hops

1 2 3 4 5 6 7
 0%

 5%

10%

15%

20%

Hops
1 2 3 4 5 6 7

 0%

 5%

10%

15%

20%

Hops

Baseline TMNOC−base TMNOC−aggressive

Bayes Intruder

YadaLabyrinth

Figure 13. Hop count distribution in high con-
tention workloads (measured in router traversals
by flits).

can achieve much of the energy savings with relatively small
incremental benefits from the more aggressive scheme.
However, it is worth noting that TMNOC-aggressive does
not incur extra overhead for the extra energy savings. High
contention benchmarks exhibit more energy savings for two
reasons. First, high contention benchmarks have more
requests being nacked causing more energy waste due to
false forwarding in the baseline system (see Figure 3), which
offers more energy saving opportunities by mitigating false
forwarding. Second, frequent conflicts provide the routers
with plenty of information about transaction conflicts, hence
increasing the prediction accuracy of the TMNOC logic.
Overall, both TMNOC variants achieve the goal of improv-
ing energy efficiency in the on-chip network.
4.4. Effect of Network Traffic Regulation

The interconnection traffic has a fundamental impact
on the network energy consumption. Figure 12 shows
the normalized interconnection traffic measured in router

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Bayes

Intru
der

Labyrin
th

Yada

Genome

Kmeans

SSCA2

Vacatio
n

Baseline TMNOC−base TMNOC−aggressive

High Contention Low Contention

Figure 14. Normalized execution time.

traversals by flits. It is observed that TMNOC-base reduces
the traffic in high contention benchmarks by 16% on average
(up to 28%) while TMNOC-aggressive reduces the figure by
20% on average (up to 40%). Across all the benchmarks,
TMNOC-base and TMNOC-aggressive reduce interconnec-
tion traffic by 10% and 11%, respectively. The reduction in
interconnection traffic is translated into energy savings.

Figure 13 shows the distribution of flits according to
their hops. We only show the results of high contention
benchmarks as they show more significant reduction of
interconnection traffic and are more representative of future
TM workloads with coarse-grain transactions. It is ob-
served that both TMNOC variants reduce the proportion of
long-distance flits while increasing the proportion of short-
distance flits. Compared with TMNOC-base, TMNOC-
aggressive further increases the proportion of 1- and 2-hop
flits due to the more aggressive policy to filter out in-transit
requests as early as possible. This observation demonstrates
the effectiveness of TMNOC in regulating network traffic.

4.5. Impact on Performance

Although TMNOC shows the potential to increase con-
currency in the memory system, the proactive filtering could
nack a transaction’s request conservatively, thereby stalling
the transaction needlessly. This situation happens when the
router decides to nack a request based on a previous NACK
from a transaction that has already finished. Such conserva-
tive nack may degrade overall performance and potentially
offset the benefit of increased concurrency in the memory
system. Figure 14 shows the normalized execution time. It
is observed that TMNOC does not impose a performance
penalty on the system in order to increase concurrency and
save energy. On the contrary, Bayes and Intruder have
more than 15% performance improvement indicating further
energy savings in the cores. The performance improvement
stems from the fact that TMNOC reduces the contention on
the directory by mitigating false blocking. Workloads with
a small set of memory addresses being contended fiercely
among transactions (conflict hot spots) benefit the most
from the alleviation of false blocking, as requests to the hot
spot are serviced more promptly instead of being blocked
unnecessarily. Bayes and Intruder are two such workloads.

Table 3. Percentage of valid NACKs
Benchmark TMNOC-base TMNOC-aggressive

Bayes 68% 84%
Intruder 53% 68%

Labyrinth 89% 98%
Yada 88% 93%

Genome 65% 74%
Kmeans 66% 66%
SSCA2 62% 68%

Vacation 93% 95%

Yada shows negligible performance improvement as it does
not exhibit the bottleneck of conflict hot spots [45]. In
Labyrinth, each transaction reads the entire global maze grid
at the beginning and writes to part of the grid at the end. This
behavior effectively serializes the transaction execution pre-
venting the workload from taking advantage of the reduced
directory contention. Due to the in-order processor cores
and well-optimized parallel applications in our experiment,
the memory system is not fully stressed. Consequently, the
reduction of directory busy cycles is not fully translated
into performance improvement. Nevertheless, as future
applications are expected to incorporate a large number of
transactions, contention on shared data would inevitably be-
come intensive, implying more performance improvement
potentials for TMNOC.

Table 3 shows the proportion of valid NACKs among all
the NACKs initiated from on-chip routers. A NACK from
a router to a requester transaction is valid provided that the
request from the requester transaction will also get nacked
by concurrent transactions if not being nacked by the router.
On average, 67% of the NACKs from routers are valid in
TMNOC-base while 75% are valid in TMNOC-aggressive.
The routers in TMNOC-aggressive obtain conflict traces
from the UNBLOCK messages and any in-transit NACKs
whereas the routers in TMNOC-base obtain conflict traces
from the UNBLOCK messages only. So, the routers in
TMNOC-aggressive have better knowledge of transaction
conflicts, thereby issuing a larger portion of valid NACKs.
Although an invalid NACK could adversely affect the trans-
action being nacked, it can benefit other transactions that
will be in conflict with the nacked transaction. Therefore,
the execution time does not necessarily correlate with the
proportion of valid NACKs.

Figure 15 shows the breakdown of NACK messages
based on their sources. It is observed that more than 30% of
NACKs are initiated from routers in both TMNOC variants.
As a large portion of the NACKs from routers are valid
according to Table 3, false blocking and false forward-
ing are reduced significantly. Compared with TMNOC-
base, TMNOC-aggressive could have a larger percentage of
NACKs from routers as it allows any enroute routers to nack
the transactional requests. However, the routers at the home
nodes have a better chance to intercept the requests since the
requests from different nodes are all destined to the home
node. So, TMNOC-aggressive does not see a significantly
larger portion of NACKs from routers.

4.6. Sensitivity Study

The microarchitecture design trade-off between perfor-
mance and hardware overhead is mainly affected by the size

 T T+ T T+ T T+ T T+ T T+ T T+ T T+ T T+
 0%

 20%

 40%

 60%

 80%

100%

P
e

rc
e

n
ta

g
e

NACK from routers NACK from transactions

BA IN LA YA GE KM SS VA

Figure 15. Breakdown of NACK message sources
(T: TMNOC-base; T+: TMNOC-aggressive).

4 8 16 32 64
0.8

0.85

0.9

0.95

1

1.05
TMNOC−base

N
o

rm
a
li
z
e
d

 E
x
e
c
 T

im
e

4 8 16 32 64
0.8

0.85

0.9

0.95

1

1.05
TMNOC−aggressive

N
o

rm
a
li
z
e
d

 E
x
e
c
 T

im
e

BA IN LA YA GE KM SS VA

Figure 16. Performance vs. Number of CT-Buffer
entries.

of the CT-Buffer. A larger CT-Buffer can store conflict
traces regarding more cache blocks leading to potentially
more accurate filtering of transactional requests. We explore
TMNOC’s sensitivity to the size of the CT-Buffer in terms of
overall execution time. As CT-Buffer read/write operations
are not on the router critical path (see Section 3.4), the
increased access latency due to a larger CT-Buffer does not
affect the router latency. Figure 16 shows the impact of CT-
Buffer size on the overall execution time. It is observed
that the majority of the benchmarks, especially those with
low contention rates, are not sensitive to the size of the CT-
Buffer. This is mainly due to the fact that those benchmarks
have a small set of memory hot spots. For the TM workloads
evaluated, a small CT-Buffer size is sufficient to achieve
significant energy savings and effective traffic regulation.
4.7. Area Overhead

The additional storage and processing logic in the on-
chip routers introduce area overhead. We estimate the area
of the CT-Buffer using a commercial memory compiler. The

Table 4. Result of area overhead estimation
Components Estimated Area (um2)

Baseline router 145901
Conflict Trace Buffer 6563

TMNOC Logic 162
Overhead 4.6%

buffer is implemented as a 32x64bit dual-port SRAM. We
implement the TMNOC logic at the RTL level. The virtual
channel router implementation is based on the open-source
design from Stanford University. The router configurations
are identical to those used in the full-system simulation,
as shown in Table 2. The design is synthesized using
Synopsys Design Compiler targeting TSMC 40nm technol-
ogy. The clock frequency is set to 1GHz. Table 4 reports
the estimated area overhead of TMNOC. TMNOC incurs a
reasonable 4.6% area overhead as compared to the baseline
virtual channel router. This area overhead is well justified
by the energy savings and performance improvement of
TMNOC.

5. Related Work
To the best of our knowledge, no previous work ad-

dresses the interplay of HTM and on-chip networks. So we
discuss the most closely related works from three aspects.

Techniques to regulate coherence traffic. Two types
of coherence protocols, namely snooping protocol and di-
rectory protocol, are widely adopted in shared memory
multiprocessors. For snooping protocols, due to the sub-
stantial network bandwidth and power requirement, various
hardware filtering techniques have been proposed. Early
works focus on source and destination filtering. In [26], the
source node predicts the set of nodes that should observe the
request before multicasting the request, thus avoiding broad-
casting across the entire chip. Destination filtering [31, 37]
uses local filtering information to filter away snoop requests
that will miss in the local cache. Thus, cache-tag lookups
are avoided to save energy and reduce cache port contention.
Recent work proposes to filter redundant coherence traffic
in-network [2] by augmenting on-chip routers with coher-
ence filters that track region-level sharing information. The
in-network filtering mechanism requires routers to exchange
sharing information explicitly through dedicated physical
links, which has power and area implications. The above
filtering mechanisms work only on snooping protocols and
thus, are not applicable to directory protocols which are used
by most HTM designs. As for directory protocols, [28] ex-
ploits the memory access isolation across VMs in virtualized
systems to reduce coherence traffic in a two-level directory
protocol. Proximity coherence [3] optimistically forwards
L1 load misses to nearby caches via new dedicated links. If
nearby caches can satisfy the request, network traffic and
L1 miss latency are reduced. Despite their effectiveness
in reducing coherence traffic, these mechanisms do not
distinguish between TM and non-TM traffic and therefore,
cannot use the HTM-specific information to reduce net-
work traffic; whereas routers in TMNOC track the sharing
information (conflict traces) through monitoring the inter-
transaction communication and exploit the information to
regulate coherence traffic from transactions.

Besides snooping and directory protocols, there are other
novel mechanisms to provide cache coherence. For exam-
ple, [20] uses virtual trees to connect and order sharers.
Coherence requests are multicast through the virtual trees to
reduce network traffic due to broadcasting. However, it does
not target HTM and, if adopted by HTM designs, cannot
reduce wasted network traffic caused by false forwarding.

Interaction between on-chip networks and applica-
tions. Several application-aware NOCs designs have been
proposed that use application-level characteristics in opti-
mizing the network topology [17], prioritization [13, 14],
and/or routing [22]. However, those designs optimize appli-
cations that use a conventional programming models rather
than the TM model. Moreover, they do not reduce the num-
ber of end-to-end coherence messages whereas the proposed
TMNOC design filters redundant in-transit messages, and
thus creates more opportunities for saving energy.

Techniques to predict conflicts. Various techniques
for conflict prediction are proposed to proactively avoid
transaction conflicts in HTM. In particular, the Adaptive
Transaction Scheduling (ATS) [44] technique uses the local
commit/abort history to calculate the per-transaction con-
flict pressure. Transactions with high conflict pressure are
serialized through a central waiting queue to avoid potential
conflicts. Unlike ATS, the TMNOC router can improve
the prediction accuracy by using not only the local history
but also the global conflict information obtained through
monitoring on-chip communication. Meanwhile, Proactive
Transaction Scheduling (PTS) [4] and Bloom Filter Guided
Transaction Scheduling (BFGTS) [5] use a software graph
structure to track the likelihood of conflicts between trans-
actions. Bloom filters are used to track the read/write set
of individual transactions. A non-null intersection of the
bloom filters of two serialized transactions cause an increase
in the confidence a conflict will occur between the two
transactions. Nonetheless, these two techniques are not
suited for on-chip routers due to the storage overhead of the
graph structure and the latency of scanning the graph in each
conflict detection.

6. Conclusion and Future Work
We explore the largely neglected interaction between

HTMs and NOCs. In the process, a potential energy and
performance pitfall is identified as false forwarding, which
causes a large amount of avoidable TM-induced network
traffic. According to our study, 39% of the transactional
requests in a wide range of workloads incur false forward-
ing. To mitigate false forwarding, we propose TMNOC,
a novel approach that exploits the co-design of HTMs and
NOCs to regulate transactional network traffic. In TMNOC,
the on-chip routers track conflicts between transactions by
monitoring in-transit TM traffic. Then, routers use the
conflict information to filter out transactional requests as
early as possible, before the requests incur false forwarding.
Evaluation results show that TMNOC is capable of reducing
20% of the network traffic on average over a set of high-
contention benchmarks, which is translated into an average
energy savings of 24% and a directory contention reduction
of 66%. Implemented TMNOC mechanisms result in only a
5% area overhead to a conventional NOC router.

The concept of co-designing HTMs and NOCs presents
abundant research opportunities for our future work. We
plan to develop a set of high-performance conflict resolution
policies based on TMNOCs framework. Moreover, TM-
aware prioritization mechanisms in the NOCs merit inves-
tigation for accelerated transaction execution.

References
[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. Garnet: A

Detailed On-Chip Network Model inside a Full-system Simulator.
In Procs. of Int’l. Symp. on Performance Analysis of Systems and
Software, 2009.

[2] N. Agarwal, L.-S. Peh, and N. K. Jha. In-network Coherence
Filtering: Snoopy Coherence without Broadcasts. In Procs. of the
42nd Int’l. Symp. on Microarchitecture, 2009.

[3] N. Barrow-Williams, C. Fensch, and S. Moore. Proximity Coher-
ence for Chip Multiprocessors. In Procs. of the Int’l. Conf. on
Parallel Architectures and Compilation Techniques, 2010.

[4] G. Blake, R. G. Dreslinski, and T. Mudge. Proactive Transaction
Scheduling for Contention Management. In Procs. of the Int’l. Symp.
on Microarchitecture, 2009.

[5] G. Blake, R. G. Dreslinski, and T. Mudge. Bloom Filter Guided
Transaction Scheduling. In Procs. of the Int’l. Symp. on High
Performance Computer Architecture, 2011.

[6] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin. Making
the Fast Case Common and the Uncommon Case Simple in Un-
bounded Transactional Memory. In Procs. of the Int’l. Symp. on
Computer Architecture, 2007.

[7] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M.
Swift, and D. A. Wood. Performance Pathologies in Hardware
Transactional Memory. In Procs. of the Int’l. Symp. on Computer
Architecture, 2007.

[8] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh,
W. Baek, C. Kozyrakis, and K. Olukotun. A scalable, non-blocking
approach to transactional memory. In Procs. of the 13th Int’l. Symp.
on High Performance Computer Architecture, 2007.

[9] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H. Zeffer, and M. Tremblay. Rock: A High-Performance SPARC
CMT Processor. Micro, IEEE, 29(2), March-April 2009.

[10] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture Optimizations
for Exploiting Memory-level Parallelism. In Procs. of the Int’l.
Symp. on Computer Architecture, 2004.

[11] Intel Corp. Intel Itanium2 Processor Reference Manual.
[12] Intel Corp. Intel Architecture Instruction Set Extensions Program-

ming Reference, February 2012.
[13] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Application-aware

Prioritization Mechanisms for On-chip Networks. In Procs. of the
Int’l. Symp. on Microarchitecture, 2009.

[14] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Aergia: Exploiting
Packet Latency Slack in On-chip Networks. In Procs. of the Int’l.
Symp. on Computer Architecture, 2010.

[15] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, P. Boyle, N. Chist,
C. Kim, D. Satterfield, K. Sugavanam, P. Coteus, P. Heidelberger,
M. Blumrich, R. Wisniewski, A. Gara, and G. Chiu. The IBM Blue
Gene/Q Compute Chip. Micro, IEEE, 2011.

[16] M. Herlihy, J. Eliot, and B. Moss. Transactional Memory: Architec-
tural Support for Lock-free Data Structures. In Procs. of the Int’l.
Symp. on Computer Architecture, 1993.

[17] W. H. Ho and T. M. Pinkston. A Design Methodology for Efficient
Application-Specific On-chip Interconnects. IEEE Trans. Parallel
Distrib. Syst., 17(2), Feb 2006.

[18] S. A. R. Jafri, M. Thottethodi, and T. N. Vijaykumar. LiteTM:
Reducing Transactional State Overhead. In Procs. of the Int’l. Symp.
on High Performance Computer Architecture, 2010.

[19] N. E. Jerger and L.-S. Peh. On-Chip Networks. Morgan Claypool,
1st edition, 2009.

[20] N. E. Jerger, L.-S. Peh, and M. H. Lipasti. Virtual Tree Coherence:
Leveraging Regions and In-network Multicast Trees for Scalable
Cache Coherence. In Procs. of the Int’l. Symp. on Microarchitecture,
2008.

[21] C. Kim, D. Burger, and S. W. Keckler. An Adaptive, Non-uniform
Cche Structure for Wire-delay Dominated On-chip Caches. In
Procs. of the Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, 2002.

[22] M. A. Kinsy, M. H. Cho, T. Wen, E. Suh, M. van Dijk, and
S. Devadas. Application-aware Deadlock-free Oblivious Routing.
In Procs. of the Int’l. Symp. on Computer Architecture, 2009.

[23] M. Lupon, G. Magklis, and A. Gonzalez. FASTM: A Log-based
Hardware Transactional Memory with Fast Abort Recovery. In
Procs. of the Int’l. Conf. on Parallel Architectures and Compilation
Techniques, 2009.

[24] M. Lupon, G. Magklis, and A. Gonzalez. A Dynamically Adaptable
Hardware Transactional Memory. In Procs. of the Int’l. Symp. on
Microarchitecture, 2010.

[25] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hall-
berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. SIMICS:
A Full System Simulation Platform. Computer, 35, 2002.

[26] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and
D. A. Wood. Using Destination-set Prediction to Improve the
Latency/Bandwidth Tradeoff in Shared-memory Multiprocessors. In
Procs. of the Int’l. Symp. on Computer Architecture, 2003.

[27] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multi-
facet’s General Execution-driven Multiprocessor Simulator (GEMS)
toolset. SIGARCH Comput. Archit. News, 33, November 2005.

[28] M. R. Marty and M. D. Hill. Virtual Hierarchies to Support
Server Consolidation. In Procs. of the Int’l. Symp. on Computer
Architecture, 2007.

[29] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford Transactional Applications for Multi-Processing. In Procs.
of Int’l. Symp. on Workload Characterization, 2008.

[30] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-based Transactional Memory. In Procs. of the Int’l.
Symp. on High Performance Computer Architecture, 2006.

[31] A. Moshovos, G. Memik, A. Choudhary, and B. Falsafi. Jetty:
Filtering Snoops for Reduced Energy Consumption in SMP Servers.
In Procs. of the Int’l. Symp. on High-Performance Computer Archi-
tecture, 2001.

[32] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing
NUCA Organizations and Wiring Alternatives for Large Caches
with CACTI 6.0. In Procs. of the Int’l. Symp. on Microarchitecture,
2007.

[33] A. Negi, R. Titos-Gil, M. E. Acacio, J. M. Garcia, and P. Stenström.
pi-TM: Pessimistic Invalidation for Scalable Lazy Hardware Trans-
actional Memory. In Procs. of the Int’l. Symp. on High Performance
Computer Architecture, 2012.

[34] R. Rajwar and J. R. Goodman. Transactional Lock-free Execution
of Lock-based Programs. SIGARCH Comput. Archit. News, 30(5),
2002.

[35] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional
Memory. In Procs. of the Int’l Symp. on Computer Architecture,
2005.

[36] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan,
B. Aditya, and E. Witchel. TxLinux: Using and Managing Hardware
Transactional Memory in An Operating System. SIGOPS Oper. Syst.
Rev., 41(6), Oct. 2007.

[37] V. Salapura, M. Blumrich, and A. Gara. Design and Implementation
of the Blue Gene/P Snoop Filter. In Procs. of the Int’l. Symp. on
High Performance Computer Architecture, 2008.

[38] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam. Implement-
ing Signatures for Transactional Memory. In Procs. of the Int’l.
Symp on Microarchitecture, 2007.

[39] W. N. Scherer III and M. L. Scott. Advanced Contention Manage-
ment for Dynamic Software Transactional Memory. In Procs. of the
Symp. on Principles of Distributed Computing, 2005.

[40] A. Shriraman and S. Dwarkadas. Refereeing Conflicts in Hardware
Transactional Memory. In Procs. of the Int’l. Conf. on Supercom-
puting, 2009.

[41] A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexible Decoupled
Transactional Memory Support. In Procs. of the Int’l. Symp. on
Computer Architecture, 2008.

[42] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. ORION: a Power-
performance Simulator for Interconnection Networks. In Procs. of
Int’l. Symp. on Microarchitecture, 2002.

[43] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood. LogTM-SE: Decoupling Hardware
Transactional Memory from Caches. In Procs. of the Int’l Symp. on
High Performance Computer Architecture, 2007.

[44] R. M. Yoo and H.-H. S. Lee. Adaptive Transaction Scheduling
for Transactional Memory Systems. In Procs. of the Symp. on
Parallelism in Algorithms and Architectures, 2008.

[45] L. Zhao, W. Choi, and J. Draper. SELTM: Selective Eager-Lazy
Management for Increased Concurrency in Transactional Memory.
In Procs. of the International Parallel and Distributed Processing
Symposium, 2012.

