
Mitigating the Mismatch between the Coherence Protocol and Conflict Detection in
Hardware Transactional Memory

Lihang Zhao1, Lizhong Chen2, and Jeffrey Draper1
1Information Sciences Institute, 2Ming Hsieh Department of Electrical Engineering

University of Southern California
Email: {lihangzh, lizhongc}@usc.edu, draper@isi.edu

Abstract—Hardware Transactional Memory (HTM) usually
piggybacks onto the cache coherence protocol to detect data
access conflicts between transactions. We identify an intrinsic
mismatch between the typical coherence scheme and transac-
tion execution, which causes a sizable amount of unnecessary
transaction aborts. This pathological behavior is called false
aborting and increases the amount of wasted computation and
on-chip communication. For the TM applications we studied,
41% of the transactional write requests incur false aborting.
To combat false aborting, we propose Predictive Unicast and
Notification (PUNO), a novel hardware mechanism to 1) replace
the inefficient coherence multicast with a unicast scheme to
prevent transactions from being disrupted unnecessarily and
2) restrain transaction polling through proactive notification.
PUNO reduces transaction aborts by 61% and network traffic
by 32% in workloads representative of future TM applications
with a VLSI implementation area overhead of 0.41%.

I. INTRODUCTION

Chip multiprocessor architectures are ubiquitous in to-
day’s high performance computing systems. 84.6% of the
Top500 supercomputers use processors with six or more
cores [1]. To exploit the massive thread-level parallelism
available in chip multiprocessors, applications are divided
into multiple parallel threads using a shared memory space
programming model. Transactional Memory (TM) promises
to increase the productivity in parallel programming by
removing the burden of synchronizing shared memory ac-
cesses from the programmer. In particular, the Hardware
Transactional Memory (HTM) approach implements hard-
ware support for accelerated transaction execution. Extensive
research in the past decade has paved the way for HTM to
be implemented into commodity microprocessors [2], [3],
[4]. As of June 2013, HTM-enabled microprocessors have
been deployed in four of the Top10 supercomputers [1].

HTM simplifies synchronization by providing a simple
construct: the transaction. A transaction is a sequence of
memory accesses. Each transaction either executes in full
or has no effect at all (i.e., atomicity), and cannot observe
the partial memory updates of other concurrent transactions
(i.e., isolation). A conflict occurs when multiple concurrent
transactions access the same data and at least one access is a
write [5]. Conflicts have catastrophic consequences on cor-
rectness. HTM typically implements contention management
to detect and resolve conflicts. When a conflict between two
transactions is detected, one of them needs to be stalled
or aborted. The contention management scheme uses a
certain formula to derive the priorities of the conflicting
transactions. The transaction with lower priority is stopped
to resolve the conflict. As the cache coherence protocol can
detect data access conflicts, the majority of HTM designs
[6], [7], [8] including commercial implementations (e.g.,

IBM System z [9]) piggyback onto the coherence protocol
(typically directory-based) for conflict detection.

However, there is an intrinsic difference between the
cache coherence scheme and transaction execution. The
participating entities of cache coherence are processors
with equal priority, whereas the participating entities of
TM execution are transactions with unequal priorities. This
difference results in a mismatch between the coherence
scheme and conflict detection. In the coherence scheme, a
GETX (request for exclusive access) is always forwarded
exhaustively (multicast) to all the sharer nodes to invalidate
their private data copy. As the HTM piggybacks onto the
cache coherence protocol to forward the GETX from its re-
quester transaction to all the sharer transactions, the sharers
with higher priority than the requester will nack the request
while other sharers with lower priority will acknowledge the
request and abort themselves to avoid conflicts. However, if
the request is nacked (i.e., the conflicts do not materialize),
the aborted transactions on those low-priority sharers could
have continued their execution. In other words, the aborting
is unnecessary. This pathological aborting behavior is iden-
tified as false aborting, which wastes energy and degrades
performance because 1) valid transaction computation is
discarded needlessly and 2) multicasting transactional write
requests to all the sharers generates superfluous on-chip
communication. According to our study of a spectrum of
TM workloads, 92% of the transaction aborts are caused by
the transactional GETX requests and 41% of these requests
incur false aborting.

We introduce Predictive Unicast and Notification
(PUNO), a novel hardware mechanism to mitigate false
aborting. In PUNO, upon transaction conflict, the directory
attempts to unicast (instead of multicast) the conflicting
request to the very highest priority sharer transaction for
conflict resolution while still maintaining correctness. As
other concurrent sharers are not disrupted, false aborting can
be avoided. To further reduce false aborting, the receiving
transaction of the unicast request proactively notifies the
nacked requester with the time when the requested cacheline
will be available. Therefore, the requester can backoff before
the data is ready, thereby limiting false aborting due to
myopic polling to the sharers. PUNO does not require re-
engineering the coherence protocol. Evaluations using full
system simulation show that PUNO reduces transaction
aborting by 61% on average (up to 89%) in a set of high con-
tention benchmarks representative of future TM workloads.
Due to the reduction of wasted transaction execution, the on-
chip network traffic is reduced by 32% (up to 67%), and the
execution time is reduced by 12%. These improvements are
achieved with a meager 0.41% VLSI implementation area

Figure 1. Comparison between cache coherence and conflict detection. (a)
coherence protocol handling a GETX request; (b) conflict detection mech-
anism handling the GETX request. Explosion marks indicate transaction
conflicts.

overhead. The contributions of this paper are three-fold:

• We identify an intrinsic mismatch between the co-
herence protocol and HTM that leads to pathological
transaction aborting behavior. The finding reveals new
optimization opportunities for HTM-enabled CMPs.

• We propose PUNO, a novel mechanism to suppress
the transaction aborting by replacing the disrupting
and inefficient multicast of transactional requests with
unicast and notification.

• We evaluate PUNO with full system simulations to
demonstrate its capability to improve execution effi-
ciency and performance with a marginal area overhead.

The rest of this paper is organized as follows. In Section
2, we discuss cache coherence and conflict detection in
HTM and highlight the problem of false aborting. Section 3
describes the implementation details of PUNO. Experimen-
tal setup and results are presented in Section 4. Section 5
summarizes related work and Section 6 concludes this paper.

II. BACKGROUND AND MOTIVATION

This section describes the basics of the directory protocol
and conflict detection in HTM. Then, we discuss the gravity
of the disruptive false aborting, which motivates this work.

A. Directory Coherence

CMPs usually use a directory coherence protocol to pro-
vide a shared memory space. Each directory entry tracks the
coherence state and the location of all the cached copies for a
memory block. The directory is typically distributed among
all the nodes by mapping each memory block to its home
node [10]. The home node is responsible for maintaining
directory entries and servicing coherence requests to its
memory blocks. Upon a GETS (request for shared access),
the requesting node is added to the sharer list in the directory
entry. Upon a GETX, the home node forwards the request
to all the sharers for invalidation. Figure 1(a) depicts how a
GETX is serviced in the MESI (Modified, Exclusive, Shared,
Invalidate) protocol. As shown, Node0 has a local miss and
sends a GETX request to the home node directory, which
forwards the request to all the three sharers as recorded
in the directory entry. The sharers always invalidate their
private copy and acknowledge the request, as all the nodes
are of identical priority in the cache coherence protocol.
After receiving all the responses, the requester sends an
UNBLOCK message to conclude the request.

B. Conflict Detection in HTM
In general, conflict detection can be eager or lazy. The

eager approach detects conflicts progressively as transactions
load and store, whereas the lazy approach postpones detec-
tion to the commit time. This work targets eager conflict
detection which can be more energy efficient as conflicts
are detected early to minimize discarded work. When a
transaction is executing, the load address (store address) is
added into the transaction’s read set (write set). Upon receiv-
ing a request from another node, the transaction checks the
request against its read and write sets to detect a conflict that
violates the “single-writer, multi-reader” invariant. Conflicts
are resolved by stalling or aborting one or more conflicting
transactions. HTM designs implement a conflict resolution
policy to decide which transaction(s) should be stopped
and which transaction(s) can continue executing. Essentially,
such a policy prioritizes some transactions over others. So,
without loss of generality, the following discussion assumes
transactions have priorities. In particular, the time-based
policy [11] assigns a timestamp to each transaction. The
timestamp is attached to all the inter-transaction commu-
nication (e.g., coherence messages). Older transactions are
given higher priority in conflict resolution. The HTM of IBM
BG/Q processor [26] adopts a similar policy.

HTM designs piggyback onto the directory protocols for
conflict detection to minimize the added hardware complex-
ity. Figure 1(b) depicts how a conflict is detected using
the MESI protocol. The requester transaction TxA issues a
GETX to the directory, which forwards the request to all the
nodes currently sharing the cacheline. Depending on their
relative priorities, the sharer transactions could respond with
either a NACK (negative acknowledgement) if they have
higher priority than the requester or an ACK if they have
lower priority. As long as one of the responses is a NACK,
TxA stalls. In what follows, the transaction that sends a
NACK message is called a nacker transaction or nacker.

C. False Aborting
As discussed in Section 1, false aborting occurs when

the exhaustive multicast of a transactional GETX request
aborts several low priority sharer transactions before the
request is eventually nacked by the high priority sharers.
So any transaction aborts caused by the nacked GETX are
unnecessary. We assess the gravity of false aborting by
tracking the coherence requests from transactions in a set
of high-contention benchmarks running on a representative
HTM design (see Section 4.1 for experiment details). Figure
2 shows a breakdown of transactional write requests. It is
observed that an average of 41% of those requests incur
false aborting. Figure 3 shows the distribution of the number
of transactions being aborted unnecessarily due to false
aborting. For example, in Intruder, 5 transactions are aborted
unnecessarily in 10% of the false aborting cases. The long
trailing indicates that false aborting can severely disrupt
transaction execution as it causes a considerable number of
transactions being aborted unnecessarily. Thus, the potential
energy and performance gain of reducing false aborting is
substantial.

However, combatting false aborting is challenging. Mit-
igating false aborting using a conventional coherence pro-

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bayes Intruder Labyrinth Yada

P
e
rc
e
n
ta
g
e

TXGETX w/ False Abort TXGETX w/o False Abort

Figure 2. Percentages transactional GETX requests that trigger false aborts.

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4 5 6 7 8 9 10 11 12

P
e

rc
e

n
ta

g
e

Number of Transactions

Bayes Intruder Labyrinth Yada

Figure 3. Distribution of the number of transactions being aborted
unnecessarily due to false aborting.

tocol is difficult as it has no notion of transactions. Thus,
GETX requests from transactions are always forwarded to all
the sharers conservatively, even though the multicast disrupts
transaction execution unnecessarily and incurs false abort-
ing. Also, a TM-specific cache protocol is an impractical
solution due to the exorbitant cost. Supposing such a TM-
aware protocol does exist, it is still obscure how the protocol
decides which sharers can be exempt from receiving the
GETX requests without jeopardizing correctness.

III. IMPLEMENTING PUNO

A. The Basic Idea

The basic idea of PUNO is based on the following two
important observations. First, the exhaustive multicast of
transactional GETX request to the sharers is needless if
the conflict caused by the request can be resolved by a
sharer with higher priority than the requester. Second, the
nacked requester transaction cannot proceed until the nacker
sharer transaction finishes executing, as immediate retry
of the request will still be rejected by the nacker. PUNO
takes advantage of the two observations by 1) replacing
the multicast with predictive unicast to the high priority
sharer and 2) performing proactive notification to the nacked
requester with regard to when to poll the sharers again.

Figure 4 compares PUNO with the conventional scheme.
In the example, a cacheline is read-shared among three
transactions (i.e., TxA, TxC and TxD). TxB wishes to
write to the cacheline. TxB has a higher priority than
TxC and TxD, but has a lower priority than TxA. In the
conventional scheme (see Figure 4(a)), The GETX from TxB
is forwarded by the directory to all the three sharers. The

TxA
TxB

TxC
TxD

GETX

NACK
GETX

GETX
NACK

NACK
GETX

ACK

Stall
Abort

Abort

Restart
Restart

Abort
Abort

Resume
Commit

Commit

TxA
TxB

TxC
TxD

GETX

NACK

+noti cation

GETX

ACK

Stall

Resume
Commit

Commit

Commit
Commit

Backo!

(a) (b)

Figure 4. Comparison of transaction executions in a baseline system and
PUNO.

request is nacked by TxA. However, it causes false aborting
as TxC and TxD are aborted unnecessarily. TxB keeps
polling the sharers and succeeds with the request when TxA
finishes. The polling exacerbates false aborting as TxC and
TxD are aborted several times. In contrast, in Figure 4(b),
PUNO directs the directory to unicast the GETX request
to TxA which is predicted with high confidence to nack
the request. TxA nacks the request and notifies TxB with
an estimation of its remaining running time. Consequently,
TxB enters backoff and does not retry the request until TxA
commits. PUNO reduces inter-transaction communication,
and increases transaction throughput by allowing TxC and
TxD to commit along with TxA.

While the basic idea is conceptually straightforward, the
effectiveness of PUNO depends on accurate prediction of
the unicast destination and a reliable scheme to derive a
transaction’s running time. In the subsequent discussion, cor-
responding mechanisms are described. Then, we discuss the
protocol support. Finally, operation examples are provided.

B. Unicast Destination Prediction
To predict the unicast destination, each directory is

augmented with hardware structures to track the priority
of active transactions on each sharer node. As shown in
Figure 5(a), each coherence controller is augmented with a
Transaction Priority Buffer (P-Buffer), which has N entries
to record the latest transaction priority on all N nodes on
the CMP. The P-Buffer is updated constantly with the {host
node, priority} pair retrieved from the incoming coherence
requests as each request carries the host node and priority
of the requesting transaction. Also, each directory entry is
augmented with a UD (Unicast Destination) pointer, which
is the id of the node that has the highest priority among
all the nodes sharing that data block. The node id in the
UD pointer is used to index into the P-Buffer to retrieve the
transaction priority of the sharer. Updating a UD pointer is
off the critical path after the directory services a request to
the associated data block.

Predicting the node to which the GETX requests will be
unicasted depends on the P-Buffer and UD pointer. Upon
receiving such a request to a data block, the block’s UD
pointer is accessed in parallel with the directory entry.
Then, the UD pointer is used to retrieve the sharer priority
(Prioritysharer) from the P-Buffer. If Prioritysharer is larger
than Priorityrequester (obtained from the request), it is

... ...
... ...

...

state owner sharer list

UD pointer P-Bu!er

......

priority v-cnt
16 bit 2 bit

11 10

0100
TimeOut

TimeOut

TimeOut

TimeOut

TxREQ

TxREQ

TxREQ

TxREQ valid

invalid

reset

misprediction

Directory entry r-cnt
timeout

32 bit

Figure 5. (a) Directory augmentation to support unicast destination prediction. Added hardware structures in bold rectangles. r-cnt: rollover counter; v-cnt:
validity counter. (b) State transition of the validity counter.

predicted that the request will be nacked by that sharer.
Therefore, that sharer is the unicast destination of the GETX
request. Otherwise, if Prioritysharer is smaller, the request
is forwarded to all the sharers as normal.

An adaptive timeout mechanism is implemented to im-
prove the accuracy of the unicast prediction as stale priorities
in the P-Buffer can cause mispredictions. A priority in the
P-Buffer becomes stale if the remote node begins executing
a new transaction and the P-Buffer has not been updated
with the new priority. The priority is updated when a request
from the new transaction is received. The hardware support
of the timeout mechanism is shown in Figure 5(a). The
directory is augmented with one 32-bit rollover counter for
the entire directory and 2-bit validity counters, one per P-
Buffer entry. Upon overflow, the rollover counter generates
a timeout signal to trigger the state transition of all the
validity counters. The timeout period used by the rollover
counter is determined dynamically based on the average
transaction length obtained from a hardware mechanism
(discussed in the subsequent section). The adaptivity to
transaction characteristics enhances the timeout mechanism
for workloads with a large variance in transaction length.
Figure 5(b) depicts the state transition of the validity counter.
When the rollover counter generates a timeout signal, all
the non-zero validity counters are decremented by 1 so
the validity of the associated priority is decreased. When
a priority is updated, its validity counter is incremented. So,
priorities that have not been updated for a long period of
time have small validity counters whereas recently updated
priorities have larger validity counters. Only those priorities
with validity counters greater than 1 are used for unicast
prediction. After updating the priority with 0 validity, the
validity counter is incremented twice to allow a longer
timeout period.

C. Handling Misprediction

A misprediction occurs when a GETX request is unicas-
ted to a sharer transaction with a lower priority than the
requester (i.e., predict incorrectly that the requestor has a
lower priority). As the unicast message has a special bit set
to one (coherence message extension is discussed shortly),
the receiving sharer can detect a misprediction when the
special bit is set and it has a lower priority than the requestor.
Misprediction, if not handled properly, may cause a correct-
ness problem. Consider the transaction execution in Figure
4 (b). Misprediction happens if TxB’s GETX is unicasted

... ...

TxID

shiftDynTxLen +

StaticTxLen

TxLB

TxLB entry

32 bit

32 bit

Figure 6. Structure of the transaction length buffer and computing logic.

to TxC instead of TxA. If TxC, which has a lower priority,
acknowledges the request, TxB can write to the cacheline
without the awareness of the other two sharers (i.e., TxA
and TxD). Consequently, the “single-writer-multi-reader”
invariant is violated. To guarantee correctness, misprediction
is handled conservatively by letting the mispredicted sharer
nack the request. So, the requester is forced to retry the
request. To improve prediction accuracy, a misprediction
feedback mechanism is devised. The mispredicted sharer
(e.g., TxC in previous example) informs the requester (e.g.,
TxB) of the misprediction via the NACK message. Then,
the requester notifies the directory of the misprediction
through the UNBLOCK message, so that the directory can
invalidate the stale priority in its P-Buffer that caused the
misprediction. On the other hand, if a requestor is predicted
incorrectly to have a higher priority than the sharers, the
request is multicasted to all the sharers as normal, i.e., the
PUNO unicast mechanism is not triggered, so no abnormal
correctness issues arise for this case.

The misprediction handling approach guarantees correct-
ness with marginal performance impact due to three reasons.
First, the prediction accuracy is high (90%+ hit rate in
simulation). Second, some NACKs due to misprediction can
be true positives anyway as the request could be nacked by
other sharers if not being unicasted. Third, the invalidation
and upgrading performed by the directory upon receiving the
misprediction feedback do not incur a performance penalty
as they are off the critical path of the coherence messages.

D. Notification
PUNO further suppresses false aborting with a noti-

fication mechanism. The sharer transaction receiving the
unicasted request notifies the requester with its expected
running time (Test in terms of cycles) through the NACK
response. As the requester cannot proceed until the nacker
finishes, it can leverage the notification to decide whether

ADDR
MSG

TYPE

SRC

NODE

DEST

NODE
U-bit

ADDR
MSG

TYPE

SRC

NODE

DEST

NODE TIMESTAMP Noti cation

ADDR
MSG

TYPE

SRC

NODE

DEST

NODE

MP

NODE

(a) GETX

(b) NACK

(c) UNBLOCK

Coherence message extension

TIMESTAMP

... ...

...
32bit

4bit

1bit

MP-bit
1bit

MP-bit
1bit

Figure 7. Protocol message extensions to support PUNO.

to backoff. If Test minus twice the average cache-to-cache
latency (determined by network topology) is positive, it is
used as the backoff period to throttle the requester polling
for the cacheline. The effectiveness of notification depends
on an accurate tracking of transactions’ running length. Bad
backoff causes the requester to either wait too long or retry
too soon. Given the large variance of the transaction length
within applications, averaging the lengths of all the past
transactions is not sufficient.

The proposed design tracks the length of individual static
transactions separately using a per-node hardware structure
named the Transaction Length Buffer (TxLB), as depicted
in Figure 6. A static transaction is defined in the code with
TX_BEGIN and TX_END pairs. Such a static transaction is
usually executed multiple times. Each execution is a dynamic
instance. A static transaction has a TxLB entry to track
the average length of its past dynamic instances. When a
dynamic instance commits, its length (DynTxLen) is known
by subtracting its beginning cycle time from the current
cycle time. Then, the static transaction length (StaticTxLen)
in the TxLB is updated using formula (1). This formula
places more weight on recent dynamic instances to closely
track recent execution.

StaticTxLennew =
StaticTxLenprev +DynTxLen

2
(1)

The TxLB size can be small for less hardware overhead
as workloads usually have a limited number of static trans-
actions. For instance, Bayes, the workload with the largest
number of static transactions in the STAMP benchmark, has
15 static transactions in total. In the rare case of overflow,
the system can resort to a software managed structure to
track transaction length.

E. Protocol Support for PUNO
PUNO requires minimal modification to the coherence

protocol. The protocol state transition remains unchanged,
and no extra coherence states (stable or transient) are needed.
So, PUNO can work with the coherence protocols in many
existing HTM designs.

Three coherence messages are extended (see Figure 7).
First, the GETX message is extended with 1 extra bit (U-bit)
to indicate whether it is a unicast request. The U-bit is set by
the directory when the request is unicasted to a sharer. In
some protocol variations, the directory sends invalidations
instead of GETX to the sharers, in which the U-bit can

simply be added to the invalidation messages. Second, the
NACK message is extended with the notification field. This
field includes the number of cycles that indicates the nacker
transaction’s running time. Also, a misprediction bit (MP-
bit) is added to support misprediction feedback as discussed
in Section 3.3. Third, the UNBLOCK message is extended
with a misprediction bit (MP-bit) and a MP-node field that
specifies the mispredicted unicast destination. Due to the
wide on-chip channels, the extended messages can fit into
the existing flits, requiring no extra flits on the network.

F. Operation Example

This subsection provides several walk-through examples
to illustrate how the predictive unicast and the notification
work collaboratively to mitigate false aborting.

Directory updates the P-Buffer (Figure 8(a)): when the
directory receives transactional GETS requests (TxGETS)
from the three nodes, it updates its P-Buffer and increments
the validity counters from 1 (invalid) to 2(valid). The UD
pointer is pointing to the priority of Node1 because it has
the highest priority.

Directory predicts the unicast destination (Figure
8(b)): when the directory receives the transactional GETX
(TxGETX) from Node2, it follows the UD pointer to get the
highest priority of the sharers. As the requester’s priority is
lower than Node1’s priority as recorded in the Prio-Buffer,
the directory only sends the TxGETX to Node1.

Unicast destination sends notification to the requester
(Figure 8(c1)): upon receiving the Fwd TxGETX request,
Node1 resolves the conflict by nacking the request. Node1’s
average length is retrieved from the TxLB. The remaining
running length is computed by subtracting the cycles it
has already run from its average length. The information
is attached to the NACK message to Node2. The transaction
at Node2 enters backoff upon receiving the notification.

Unicast destination provides misprediction feedback
to the directory (Figure 8(c2)): now suppose that the
previous transaction (timestamp=100) on Node1 has finished
executing and a new transaction (timestamp=180) starts. But
the directory is not aware of the new transaction just yet
and, hence, still forwards the TxGETX to Node1. Upon
receiving the request, Node1 detect a misprediction of the
unicast destination as the local transaction has a lower
priority than the requester. Node1 nacks the request to
guarantee correctness. Due to misprediction, no notification
to Node2 is provided. The MP-bit of the NACK is set for
misprediction feedback. After receiving the NACK, Node2
sets the MP-bit and MP-node in the UNBLOCK message.
When the directory receives the misprediction feedback, it
invalidates Node1’s priority in the Prio-Buffer entry. The
UD pointer is updated to point to Node3 because it has the
highest priority now.

IV. EVALUATION

A. Methodology

We conducted cycle-accurate full system simulation using
SIMICS [12] and GEMS [13] to evaluate PUNO. Garnet [14]
was used as the on-chip network timing model. We present
results for all eight workloads from the STAMP benchmark

TxGETS

TxGETS TxGETS

ACK

ACK

ACK

NODE

#1

DIR S

NODE

#3

NODE

#4

--

Sharer Vector

0 1 0 1 1 0 0

Prio-Bu!er

Timestamp = 100 Timestamp = 120 Timestamp = 150

100

120
150150150
... ...

NODE

#2

10

10
10

0
1
2
3
4

01

01

U
D

 p
o

in
te

r

NODE

#1

DIR

S

NODE

#3

NODE

#4

--

Sharer Vector

0 1 0 1 1 0 0

Prio-Bu!er

Timestamp = 100 Timestamp = 120 Timestamp = 150

100

120
150150150
... ...

NODE

#2

10

10
10

0
1
2
3
4

01

01

U
D

 p
o

in
te

r

TxGETX

Fwd_TxGETX

Timestamp = 160

C

unicast

160

NODE

#1

S

NODE

#3

NODE

#4

--

Sharer Vector

0 1 0 1 1 0 0

Prio-Bu!er

Timestamp = 100 Timestamp = 120 Timestamp = 150

100

120
150150150
... ...

NODE

#2

10

10
10

0
1
2
3
4

01

01
U

D
 p

o
in

te
r

Timestamp = 160

DIR
NACK+

noti"cation

... ...

TxLB

-
already run

cycles

UNBLOCK

NODE

#1

S

NODE

#3

NODE

#4

--

Sharer Vector

0 1 0 1 1 0 0

Prio-Bu!er

Timestamp = 180 Timestamp = 120 Timestamp = 150

100

120
150150150
... ...

NODE

#2

01

10
10

0
1
2
3
4

01

01

U
D

 p
o

in
te

r

Timestamp = 160

DIRNACK

MP-bit = 1

UNBLOCK

MP-bit = 1

MP-node = 1

invalidate

100

avg tx length

(a)

(c1)

(b)

(c2)

Figure 8. PUNO operation examples. All the coherence messages and states are with regard to the same cacheline. DIR: directory. C: comparator. Key
operations are highlighted. Smaller timestamp indicates higher priority.

Table I
BENCHMARK INPUT PARAMETERS

Benchmark Input Parameters Abort %
Bayes 32 var, 1024 records, 2 edge/var 97.1%

Intruder 2k flow, 10 attack, 4 pkt/flow 77.6%
Labyrinth 32*32*3 maze, 96 paths 98.6%

Yada 1264 elements, min-angle 20 47.9%
Genome 32 var, 1024 records 1.3%
Kmeans 16K seg. 256 gene. 16 sample 7.4%
SSCA2 8k nodes, 3 len, 3 para edge 0.3%

Vacation 16K record. 4K req. 60% coverage 38%

Table II
SYSTEM CONFIGURATION

Unit Value
Core 16 Sun UltraSPARC III+ cores, 1GHz

L1 Cache 32 KB, 4-way associative, write-back, 1-cycle
L2 Cache 8 MB, 8-way associative, 20-cycle latency
Coherence MESI protocol, static cache bank directory
Memory 4 GB, 4 memory controller, 200-cycle latency
Network 2D mesh, DOR, VC flow control, 4-stage router
PUNO 16-entry P-Buffer; 32-entry TxLB

suite [15] widely used to evaluate HTM designs. Table I
lists the benchmark details. The baseline CMP architecture
is depicted in Figure 9. Each of the 16 nodes comprises
a SPARC core with private L1 and shared L2. The shared
L2 follows the static non-uniform cache architecture [10]
and maintains coherence using the MESI directory protocol
similar to the SGI Origin protocol [16]. Every memory block
is statically assigned to a home node based on the memory
address. The processor implements hardware support for a
log-based HTM in which pre-transaction states are written
to a software log while speculative states are propagated
to the memory eagerly. The baseline also uses a hardware
buffer to store the pre-transaction states to support fast abort
recovery. Conflicts are detected eagerly using the coherence
protocol. Upon a conflict, the receiver transaction resolves
the conflict using the time-based policy [11]. To mitigate
conflicts, a nacked requester node backoffs for a fixed 20
cycles before retrying the request. The performance of the

Node

 0

Node

 4

Node

 8

Node

 12

Node

 1

Node

 5

Node

 9

Node

 13

Node

 2

Node

 6

Node

 10

Node

 14

Node

 3

Node

 7

Node

 11

Node

 15

Core

HTM Support

L1

L2 cache

Directory
UD ptrs + Prio-Buf

Router

Register Checkpoint

Read/Write Signature

Fast-abort Support

Transaction Logging

Overflow Handling

Tx Length Buffer

Figure 9. The baseline chip multiprocessor architecture. PUNO augmen-
tation in bold rectangles.

baseline HTM is comparable to that of contemporary eager
HTM designs (e.g., FASTM [7]). The underlying 2D mesh
on-chip network uses dimension-order routing and virtual
channel flow control. The pertinent characteristics of the
system configuration are in Table II. We implemented PUNO
on top of the baseline system in the simulator. It takes one
cycle for the directory to access the P-Buffer and one cycle
to determine whether to unicast the request. The remaining
PUNO operations (i.e., notification, accessing UD-pointer)
do not add latency as they can either run in parallel with
the rest of the system or operate off the critical path.
PUNO is compared against two other existing mechanisms
that can reduce transaction aborts: 1) Random backoff
[17]: aborted transactions enter randomized linear backoff
before restarting. Transactions that abort frequently will have
longer backoff. 2) Read-Modify-Write predictor(RMW-Pred)
[5]: transactions exhibiting the read-modify-write memory
access pattern can request exclusive permission upon the
read, thereby avoiding abort due to the later dueling write.
Each node has a RMW predictor to track up to 256 load
instructions.

B. Reduction in Transaction Abort
One of the main design objectives for PUNO is to

mitigate unnecessary transaction aborts. Figure 10 shows the
impact of PUNO on transaction aborts. It is observed that,

 -

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

B
a

se
li

n
e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li

n
e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li

n
e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li

n
e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li

n
e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li

n
e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li

n
e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li

n
e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li

n
e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

Bayes Intruder Labyrinth Yada Genome Kmeans SSCA2 Vacation Average

Abort caused by GETS Abort caused by GETX

2.74 1.78 2.62 3.42 1.66

High-Contention Low-Contention

Figure 10. Normalized transaction abort count.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bayes Intruder Labyrinth Yada Genome Kmeans SSCA2 Vacation Average

Baseline Backoff RMW-Pred PUNO

2.55 2.25 2.32 1.53

High-Contention Low-Contention

Figure 11. Normalized on-chip network traffic.

on average, PUNO reduces transaction aborts by 43% (up
to 98%) compared with the baseline. In particular, PUNO
is effective in reducing aborts caused by the transactional
GETX requests which are the main causes of most trans-
action aborts in the workloads. PUNO achieves significant
abort reduction in the high contention benchmarks (61%
less aborts). This result is expected as workloads with high
contention usually incur more false aborting due to frequent
transaction writes and extensive read-read sharing.

PUNO incurs an average of 17% fewer aborts compared
with random backoff, indicating that the notification-guided
backoff scheme of PUNO is more effective in avoiding
conflicts. In the random backoff scheme, the backoff pe-
riod is determined by local transaction statistics such as
number of retries. Nonetheless, the backoff period should
essentially be dependent on the remote nacker transaction
with which the local transaction has data conflicts. In PUNO,
a local transaction receives reliable information from the
notification from the remote transactions so that it can better
optimize the backoff period.

Previous work [5] demonstrates the effectiveness of
RMW-Pred to reduce conflicts in expertly optimized work-
loads that have very low contention and fine-grain trans-
actions. Our evaluation results echo this finding as RMW-
Pred reduces transaction abort significantly in Kmeans and
SSCA2, both consisting of short transactions with few
conflicts (for instance, the transaction abort rate is 0.3% in

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Bayes Intruder Labyrinth Yada Genome Kmeans SSCA2 Vacation Average

Baseline Backoff RMW-Pred PUNO

High-Contention Low-Contention

Figure 12. Normalized cycle count when the directory is blocked while
servicing transactional GETX.

SSCA2). However, the results also suggest that RMW-Pred
is inefficient in workloads with frequent conflicts among
coarse-grain transactions. RMW-Pred tends to convert read-
read sharing to write-read conflicts by obtaining exclusive
permission upon loads. As the abort rate is already very
sensitive to the number of conflicts in most contemporary
and expected future TM applications, RMW-Pred exhibits
many more transaction aborts (e.g., 2X more in vacation)
than the other mechanisms.

C. Reduction in Network Traffic

Figure 11 shows the normalized on-chip network traffic
measured in router traversals by all the network flits. As
can be observed, PUNO eliminates 33% (up to 68%) of
the traffic in high-contention benchmarks compared with
the baseline scheme. Across all the workloads, the network
traffic is reduced by an average of 17%. The traffic reduction
is due to three facts. First, PUNO replaces the wasteful
multicast of GETX requests with unicast when possible.
Second, the notification mechanism suppresses unnecessary
transaction polling. Third, the reduction in transaction aborts
translates to less futile traffic from aborted transactions.

In comparison with random backoff, PUNO reduces the
network traffic by 34% in the high-contention workloads.
As both random backoff and PUNO significantly reduce the
transaction aborts (see Figure 10), the difference in network

0

0.2

0.4

0.6

0.8

1

1.2

1.4

B
a

se
li
n

e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li
n

e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li
n

e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li
n

e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li
n

e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li
n

e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li
n

e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li
n

e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

B
a

se
li
n

e

B
a

ck
o

ff

R
M

W
-P

re
d

P
U

N
O

Bayes Intruder Labyrinth Yada Genome Kmeans SSCA2 Vacation Average

Backoff Stalled Aborting Aborted Tx Commit Tx Barrier Non-tx

High-Contention Low-Contention
2.33 2.90 2.08 5.94 2.18

Figure 13. Normalized execution time.

traffic reduction largely comes from the difference in the
traffic from committed transactions. The backoff period is an
important factor in determining the traffic generated by the
committed transactions. The results in Figure 11 show that
the notification-guided backoff in PUNO is more effective
than the random backoff in throttling transaction traffic.

D. Reduction in Directory Blocking
When the directory forwards a GETX request to the

sharer nodes, it cannot service subsequent requests to the
same cacheline until the requester sends an UNBLOCK
message to the directory after receiving responses from all
the sharers. Reducing directory blocking leads to potential
performance gains in workloads bounded by memory band-
width. Figure 12 shows the impact of PUNO on directory
blocking. The values are obtained by averaging the number
of cycles during which directory entries stay in a blocking
transient state when servicing transactional GETX requests.
As can be seen, PUNO eliminates 18% (up to 42%) of
such directory blocking compared with the baseline. This
improvement is mainly because the unicast of GETXs
minimizes the number of sharer nodes that need to respond
to the requester. Statistically, the expected waiting time for
response from a single sharer is shorter than the waiting
time for responses from multiple ones. Thus, the directory
blocking time is reduced with a minimized set of sharer
nodes. In particular, transactions in Labyrinth read in the
entire global maze grid and write to a small portion of
the grid. So, the writer transactions in the baseline need
to wait for responses from a large number of sharers before
unblocking the directory. In contrast, the predictive unicast
significantly minimizes the sharer transactions to respond
to the request, thereby reducing the waiting time. Thus,
PUNO incurs 42% less directory blocking in Labyrinth. The
reduction in directory blocking allows more requests to be
serviced instead of waiting, increasing the concurrency in
the cache system.

E. Impact on Performance
Figure 13 presents the normalized execution time. As

it is observed, PUNO achieves an average of 12% (up to
31%) performance improvement over the baseline scheme
in high-contention workloads. Across all the workloads,

PUNO improves the performance by an average of 8%. The
performance advantage of PUNO stems from the fact that
it succeeds in suppressing false aborting, thereby improving
transaction throughput.

Compared with the random backoff scheme, PUNO
performs consistently better in all the workloads. It is worth
noting that, although random backoff mitigates aborts in
Labyrinth (see Figure 10), it hurts performance by limiting
the concurrency among transactions. Execution statistics of
random backoff show that transactions in Labyrinth spend
more time in backoff than in execution. Hence, compared
with PUNO, the random backoff is too conservative and
less effective in Labyrinth, which represents workloads with
extremely high contention.

Compared with the RMW-Pred scheme, PUNO performs
better in six out of eight workloads. In the remaining
two workloads (Kmeans and SSCA2), the performance
advantage of RMW-Pred is very marginal (less than 1.6%).
As discussed in Section 4.2, RMW-Pred performs well
in Kmeans and SSCA2 as it can mitigate conflicts in
workloads with very low contention. However, as observed
in Figure 13, RMW-Pred incurs a performance penalty
(1.83X slow down) in high-contention workloads due to the
extra conflicts caused by upgrading GETS requests early on.

Note that the performance improvement is not necessarily
proportional to the reduction in transaction aborts. For
instance, PUNO eliminates more than 90% of the transaction
aborts and reduces the execution time by 31% in Bayes while
it eliminates 40% of the aborts and reduces the execution
time by only 5% in Yada. The reduction of transaction aborts
may not be translated directly to a performance advantage
as transactions surviving the abort can be stalled due to
conflicts with other transactions. Nonetheless, the amount
of wasted transaction work is reduced.

F. Transaction Execution Efficiency

Transactions can be stalled instead of aborted to avoid
discarding valid transaction computation. The interesting
tradeoff between abort and stalling reveals an opportunity to
improve the efficiency of transaction execution. To evaluate
the efficiency of transaction execution, we measure the
number of cycles in transactions that commit and the number

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Bayes Intruder Labyrinth Yada Genome Kmeans SSCA2 Vacation Average

Baseline Backoff RMW-Pred PUNO

2.98 5.00

High-Contention Low-Contention

Figure 14. Normalized transaction G/D ratio indicating the efficiency of
transaction execution (the larger the better).

of cycles in transactions that are aborted due to conflicts.
The former metric is named good transaction effort, while
the latter is named discarded transaction effort. The ratio
of the two efforts, namely the G/D ratio, signifies whether
the system can execute transactions with minimal waste.
A large G/D ratio indicates that a significant amount of
transactional computation is valid and committed to the
memory eventually. In contrast, a small G/D ratio suggests
that a sizable amount of transactional computation is wasted.
Figure 14 shows the G/D ratio of the four designs. As
can be observed, on average, the G/D ratio of PUNO is
higher than the baseline, random backoff and RMW-Pred
schemes by 1.65X, 1.24X and 2.11X respectively. This result
highlights that PUNO improves execution efficiency due to
its capability to mitigate false aborting.

G. Hardware Overhead

The implementation of PUNO introduces little area and
power overhead. The Prio-Buffer, TxLB and UD pointers are
the main contributors of the extra area and power dissipation.
We estimate the area and power of the structures using a
commercial memory compiler with a clock frequency of
2.3GHz and Vdd value of 0.9V. Table III reports the area
and power estimation of PUNO targeting 65nm technology.
The configuration of the Prio-Buffer and TxLB is identical
to that used in the full system simulation, as shown in Table
II. The area and power of UD pointers are overestimated as
each pointer is set to 8 bits instead of 4 bits due to con-
straints of the memory compiler. The overhead estimation
is derived by comparing with the Sun Rock processor [18]
which is a 16-core chip multiprocessor with HTM support.
The Rock processor is clocked at 2.3GHz and fabricated
using 65nm technology. Each of the 16 cores has an area
of 14,000,000um2 and a power dissipation of 10W. The
overhead estimation in Table III shows that PUNO incurs
less than 0.41% more area and 0.31% more power, which
further justify its deployment into future HTM designs.

V. RELATED WORK

Herlihy and Moss introduced Transactional Memory as
a new concurrency control mechanism to provide lock-free
synchronization [19]. In the past decades, extensive research
was conducted on implementing high-performance HTM
systems [6], [20], [21], [22], [23], [7], [24]. In particular,

Table III
AREA AND POWER OVERHEAD ESTIMATION

Components Area (um2) Power (mW)
Prio-Buffer 4700 7.28

TxLB 5380 7.52
UD pointers 47400 16.43

Overall 57480 31.23
Overhead 0.41% 0.31%

LogTM is a representative design that piggybacks onto
the conventional directory-based cache coherence protocol
for conflict detection. The transactional write requests are
always forwarded by the directory to all the sharer trans-
actions. The baseline scheme in our experiment follows the
same conflict detection mechanism. As HTM designs usually
piggyback onto the directory protocol to detect conflicts,
their performance is susceptible to false aborting.

Bobba et al. [5] studied the pathological behaviors due
to transaction conflicts. Then, the authors propose a set of
techniques to mitigate conflicts. We have compared two
of their techniques in our evaluation to show that our
mechanism could reduce more transaction aborts in high
contention wordloads. Titos et al. [25] noticed that the
high abort rate not only hurts performance but also incurs
excessive on-chip network traffic, which has a significant en-
ergy implication. More recently, as HTM becomes available
on commercial implementations [2], performance studies
on those systems [26] indicate that HTM performance is
sensitive to conflict and abort rates. Beyond previous studies
on transaction conflicts, our analysis is this work shows
the inherent difference between the coherence scheme and
conflict detection in eager HTM creates a significant source
of unnecessary conflicts and aborts.

Reducing transaction aborts is one of the main design
objectives in many high-performance HTM designs. [8],
[27], [28] provides hardware support for a hybrid-mode
execution of transactions. While the hybrid approach could
boost performance, the complexity of implementing an
unbounded lazy mode can be considerably high. PUNO can
be implemented with the hybrid HTM designs to mitigate
false aborting in the eager execution mode. Also, conflicts
can be reduced through contention management. Scherer
and Scott [17] introduced and analyzed a variety of reactive
conflict resolution policies. Contention management can be
proactive. The ATS [29], BFGTS [30] and PTS [30] schemes
implement either low overhead counters or sophisticated
filters to track and predict conflicts between transactions,
thereby mitigating aborts by serializing transactions with
a high probability to conflict. The basic idea of PUNO is
orthogonal and complementary to these proactive contention
management mechanisms. To the best of our knowledge,
PUNO is the first to identify and combat false aborting.

As PUNO uses a prediction scheme to decide the unicast
destination, we also look at related works on destination-set
prediction. Acacio et al. [31] proposed a two-level predictor
to predict the possible node that can service a request.
Therefore, the request can be sent directly to the predicted
node. Besides, Martin et al. [32] leveraged workload charac-
teristics to predict the destination of coherence requests. The
authors proposed a cluster of predictor designs to predict the
destination nodes of coherence requests in order to remove
the directory indirection. Each of the predictor designs

targets a specific sharing characteristic in the workloads.
However, both approaches, if implemented in HTM-enabled
microprocessors, are incapable of avoiding false aborting
as coherence protocols always attempt to notify all the
sharers with the write requests to maintain coherence. In
contrast, PUNO takes advantage of additional information
from transaction execution to reduce false aborting.

VI. CONCLUSION AND FUTURE WORK

HTM designs typically piggyback onto the cache co-
herence protocol for conflict detection. In this paper, we
identify an intrinsic mismatch between the coherence pro-
tocol and eager conflict detection of HTM, which leads to
a performance and energy pitfall called false aborting. We
propose the Predictive Unicast and Notification (PUNO)
scheme to combat false aborting. First, PUNO replaces
the wasteful multicast of transactional write requests with
unicast, thereby preventing the requests from disrupting the
execution of concurrent transactions unnecessarily. Second,
a proactive notification scheme restrains transaction polling,
thereby further suppressing false aborting. PUNO does not
require modification to the existing coherence protocol states
or transitions. Full-system simulation demonstrates that,
compared with a typical high performance HTM design, our
approach reduces transaction aborts by 61% in benchmarks
representative of future TM applications. Meanwhile, the
network traffic is reduced by 32%. These improvements are
achieved with a mere 0.41% area overhead.

Our future work includes optimizing and leveraging the
unicast destination predictor design to predict transaction
behaviors under high contention. The prediction can be
used to perform coherence actions speculatively to accelerate
inter-transaction communication. Furthermore, reducing the
coupling between conflict detection and coherence protocols
could be promising in improving the performance-per-joule
of HTM-enabled multiprocessors.

REFERENCES

[1] “http://www.top500.org/.”
[2] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, P. Boyle, N. Chist,

C. Kim, D. Satterfield, K. Sugavanam, P. Coteus, P. Heidelberger,
M. Blumrich, R. Wisniewski, A. Gara, and G. Chiu, “The IBM Blue
Gene/Q Compute Chip,” Micro, IEEE, 2011.

[3] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H. Zeffer, and M. Tremblay, “Rock: A High-Performance SPARC
CMT Processor,” Micro, IEEE, vol. 29, no. 2, March-April 2009.

[4] I. Corp., “Intel Architecture Instruction Set Extensions Programming
Reference,” February 2012.

[5] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift, and
D. A. Wood, “Performance Pathologies in Hardware Transactional
Memory,” in Procs. of the Int’l. Symp. on Computer Architecture,
2007.

[6] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“LogTM: Log-based Transactional Memory,” in Procs. of the 12th
Int’l. Symp. on High Performance Computer Architecture, 2006.

[7] M. Lupon, G. Magklis, and A. Gonzalez, “FASTM: A Log-based
Hardware Transactional Memory with Fast Abort Recovery,” in
Procs. of the Int’l. Conf. on Parallel Architectures and Compilation
Techniques, 2009.

[8] M. Lupon, G. Magklis, and A. Gonzalez, “A Dynamically Adaptable
Hardware Transactional Memory,” in Procs. of the 43rd Int’l. Symp.
on Microarchitecture, 2010.

[9] C. Jacobi, T. Slegel, and D. Greiner, “Transactional Memory Archi-
tecture and Implementation for IBM System z,” in Procs. of the 45th
Int’l Symp. on Microarchitecture, 2012.

[10] C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-uniform
Cache Structure for Wire-delay Dominated On-chip Caches,” in
Procs. of the 10th Int’l Conf. on Architectural Support for Program-
ming Languages and Operating Systems, 2002.

[11] R. Rajwar and J. R. Goodman, “Transactional Lock-free Execution
of Lock-based Programs,” SIGARCH Comput. Archit. News, vol. 30,
no. 5, 2002.

[12] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hall-
berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “SIMICS:
A Full System Simulation Platform,” Computer, vol. 35, 2002.

[13] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Mul-
tifacet’s General Execution-driven Multiprocessor Simulator (GEMS)
Toolset,” SIGARCH Comput. Archit. News, vol. 33, November 2005.

[14] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A Detailed
On-chip Network Model inside a Full-system Simulator,” in Procs.
of the Int’l. Symp. on Performance Analysis of Systems and Software,
2009.

[15] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford Transactional Applications for Multi-Processing,” in Procs.
of Int’l. Symp. on Workload Characterization, 2008.

[16] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly
Scalable Server,” SIGARCH Comput. Archit. News, vol. 25, no. 2,
May 1997.

[17] W. N. Scherer III and M. L. Scott, “Advanced Contention Manage-
ment for Dynamic Software Transactional Memory,” in Procs. of the
24th Symp. on Principles of Distributed Computing, 2005.

[18] M. Tremblay and S. Chaudhry, “A Third-generation 65nm 16-core
32-thread plus 32-scout-thread CMT SPARC Processor,” in Solid-
State Circuits Conference, 2008. Digest of Technical Papers. IEEE
International, 2008.

[19] M. Herlihy, J. Eliot, and B. Moss, “Transactional Memory: Archi-
tectural Support for Lock-free Data Structures,” in Procs. of the 20th
Int’l. Symp. on Computer Architecture, 1993.

[20] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood, “LogTM-SE: Decoupling Hardware
Transactional Memory from Caches,” in Procs. of the 13th Int’l Symp.
on High Performance Computer Architecture, 2007.

[21] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun, “Transactional Memory Coherence and Consistency,” in Procs.
of the 31st Int’l Symp. on Computer architecture, 2004.

[22] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald, C. C. Minh,
W. Baek, C. Kozyrakis, and K. Olukotun, “A Scalable, Non-blocking
Approach to Transactional Memory,” in Procs. of the 13th Int’l. Symp.
on High Performance Computer Architecture, 2007.

[23] H. E. Ramadan, C. J. Rossbach, and E. Witchel, “Dependence-aware
Transactional Memory for Increased Concurrency,” in Procs. of the
41st Int’l. Symp. on Microarchitecture, 2008.

[24] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin,
“Making the Fast Case Common and the Uncommon Case Simple in
Unbounded Transactional Memory,” in Procs. of the 34th Int’l. Symp.
on Computer Architecture, 2007.

[25] J. R. T. Gil, M. E. A. Sanchez, and J. M. G. Carrasco, “Character-
ization of Conflicts in Log-based Transactional Memory (LogTM),”
in Procs. of the 16th Euromicro Conference on Parallel, Distributed
and Network-Based Processing, 2008.

[26] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael, “Evaluation of Blue Gene/Q Hardware
Support for Transactional Memories,” in Procs of the 21st Int’l Conf.
on Parallel Architectures and Compilation Techniques, 2012.

[27] R. Titos-Gil, A. Negi, M. E. Acacio, J. M. Garcı́a, and P. Stenstrom,
“ZEBRA: a Data-centric, Hybrid-policy Hardware Transactional
Memory design,” in Procs. of the Int’l Conf. on Supercomputing,
2011.

[28] L. Zhao, W. Choi, and J. Draper, “SELTM: Selective Eager-Lazy
Management for Increased Concurrency in Transactional Memory,”
in Procs. of the International Parallel and Distributed Processing
Symposium, 2012.

[29] G. Blake, R. Dreslinski, and T. Mudge, “Proactive Transaction
Scheduling for Contention Management,” in Procs. of the Int’l Symp.
on Microarchitecture, 2009.

[30] G. Blake, R. Dreslinski, and T. Mudge, “Bloom Filter Guided Trans-
action Scheduling,” in Procs. of Int’l. Symp. on High Performance
Computer Architecture, 2011.

[31] M. E. Acacio, J. González, J. M. Garcı́a, and J. Duato, “Owner
Prediction for Accelerating Cache-to-cache Transfer Misses in a cc-
NUMA Architecture,” in Procs. of the Conf. on Supercomputing,
2002.

[32] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and
D. A. Wood, “Using Destination-set Prediction to Improve the
Latency/bandwidth Tradeoff in Shared-memory Multiprocessors,” in
Procs. of the 30th Int’l Symp. on Computer architecture, 2003.

