ECE/CS 472/572
Computer Architecture:
Concluding Remarks

Prof. Lizhong Chen
Spring 2016
Key Concepts: Part I

- **Instruction Set Architecture (ISA)**
 - Performance, speedup
 - CPU time = Instruction Count x CPI x Clock cycle time
 - MIPS: R-format, I-format, J-format, addressing mode
 - RISC vs. CISC

- **Single-Cycle Processor**
 - Components, Combinational & Sequential, Clocking
 - Datapath: Add/Sub, load/store, branch/jump
 - Control: Main control unit, ALU control
 - Put together
Single-Cycle Processor
Key Concepts: Part II

- Pipelined Processor
 - 5-stage: IF - ID - EX - MEM - WB
 - Datapath & How pipeline increases performance
 - Hazard: Structure, Data, and Control hazards
 - Solution 1: Insert Stall (Bubbles), where & how many
 - Solution 2: Forwarding
 - Within registers, EX->EX, EX->MEM (datapath & detecting)
 - Load-use data hazard
 - Solution 3: Code scheduling
 - Solution 4: Branch prediction, static & dynamic
 - Pipeline Control: carry signals along the stages
 - Put together
Final datapath and control
Key Concepts: Part III

- Memory Hierarchy
 - Principle of Locality: Temporal & Spatial
 - SRAM – DRAM – Flash SSD/Disk

- Cache
 - Basic concepts: hit/miss, AMAT, write-back vs. write through, replacement, multi-level, 3-C model
 - Structure: tag, block, valid bit, index, offset
 - Associativity: direct mapped, set & fully-associative
 - Interaction w/ CPUs and Software (sorting example)

- Virtual Memory
 - Physical vs. virtual address, page table, TLB
 - TLB miss, page fault, replacement, writes
Broader Vision

- **Real examples**
 - Opening the iPad, A5 processor
 - ARM Cortex-A8 and Intel Core i7

- **Terminology**
 - ITRS, Superpipeline, Superscalar, Static multiple Issue, Dynamic multiple Issue (Tomasulo), Speculation, VLIW, ILP, MLP, TLP, Multithreading, SISD, MIMD, SPMD, SIMD, Massive parallel processing, GPGPU, on-chip networks

- **Videos**
 - How computer is made ([link](#))
 - Thermal issue in CPUs ([cooling](#), [cooking](#))
 - 3D NAND Memory by Micron & Intel ([link](#))
 - HPC simulations for Science and Industry ([link](#))
Broader Vision

- Special Topics
 - Terminology
 - Security and AES
 - Abstract and Virtual Machines
 - Computer architecture in machine learning
Research Openings

- Multiple openings available in the STAR Lab
 - HPC/datacenters, GPUs, Acceleration for deep learning, wearables, security in processors, dark silicon, ...

- Requirements
 - Get an A from this class
 - Major in CS (or ECE with strong coding in C++)
 - Interested in doing research

- What you need to do
 - Send me an email with your CV
 - If selected, work with me for some time to prove yourself
CS519 / ECE599 in Fall 2016

- GPU Architecture
 - TR 8:30-9:50, 4-credit, prerequisite 472/572
 - Load: 1 HW, 1 paper presentation, 1 project
 - Might be 1 take-home exam
CS519 / EE599 in Winter 2017

- Interconnection Networks
 - Time/location: TBD, 4 credits
 - Load: 1 HW, 1 paper presentation, 1 project
 - On-chip networks & Off-chip networks
 - HPC Matters ([link](#))
Course Evaluation Reminder

- eSET is open from 5/30 to 6/13
- Very important to me; your participation is greatly appreciated 😊