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Abstract—Graphics processing units (GPUs) have been increas-
ingly used to accelerate general purpose computing. Thousands
of concurrently running threads in a GPU demand a highly
efficient memory subsystem for data supply. A key factor that
affects the memory subsystem is the order of memory accesses.
While reordering memory accesses at L2 cache has large potential
benefits to both cache and DRAM, little work has been conducted
to exploit this. In this paper, we investigate the largely unexplored
opportunity of L2 cache access reordering. We propose Cache
Access Reordering Tree (CART), a novel architecture that can
improve memory subsystem efficiency by actively reordering
memory accesses at L2 cache to be cache-friendly and DRAM-
friendly. Evaluation results using a wide range of benchmarks
show that, the proposed CART is able to improve the average
IPC of memory intensive benchmarks by 34.2% with only 1.7%
area overhead.

I. INTRODUCTION

With massive parallel computing ability, graphics process-
ing units (GPUs) are being increasingly used to accelerate
numerous scientific, economic and general purpose comput-
ing applications. GPUs employ single instruction, multiple
thread (SIMT) architecture, which allows thousands of threads
running simultaneously (e.g. up to 3584 threads in NVidia
GTX1080 Ti). These concurrent threads generate a large num-
ber of memory requests that put high pressure on the memory
subsystem (e.g., cache, on-chip network, DRAM) [1]. If not
designed with care, the memory subsystem can easily become
a serious factor that prevents GPUs from achieving peak per-
formance. With the current technology and application trends,
the issue of memory subsystem will likely worsen in the near
future. On the technology side, the development of memory
technology have been lagging behind processing, e.g., from
NVidia GTX480 to GTX1080 Ti, the core count increases
by more than 7.4X, but the DRAM bandwidth increases only
by about 1.7X. On the application side, irregular memory
access patterns have been exhibited in more and more GPU
workloads (such as trees, priority queues, key-value storage
[2], [3]), which often have poor cache locality and greatly
exacerbate the memory stress. Thus, it is imperative to explore
new opportunities in the memory subsystem, particularly at the
architecture level, to bridge the gap between technology and
application demands.

A key factor that determines the efficacy of memory sub-
system at all levels of the memory hierarchy is the order
of memory accesses. The order affects not only the hit/miss
of the current level, but also determines which accesses are
exposed to the next level. While prior research has investigated
the access reordering benefits in L1 cache and in DRAM
(More details in Related Work), the reordering opportunity

at L2 cache has largely been unexplored. Nevertheless, the
access order to L2 can have a large impact on both L2
cache and DRAM. On the one hand, the access order can
be utilized to extract potential data locality to increase cache
hit, as well as to reduce avoidable head-of-line blocking
in the request buffer of L2 cache. On the other hand, the
access order also determines the request order to DRAM. A
benign request sequence to DRAM offered by L2 can greatly
facilitate memory controllers to improve row-buffer hit and
bank-level parallelism (BLP), both of which are critical to
DRAM performance. Substantial research is needed on how
memory accesses can be reordered to achieve a cache-friendly
and DRAM-friendly order.

In this work, we explore the opportunity of reordering
memory accesses at L2 cache. We conduct an in-depth analysis
on when and why access reordering at L2 can be beneficial
to both cache and memory. The challenge, however, is to
design a well-rounded reordering architecture that addresses
data locality, row-buffer hit, bank-level parallelism and low
design cost at the same time.

To address this challenge, we propose Cache Access Re-
ordering Tree (CART), a novel yet effective architecture to
reorder memory accesses at L2 cache. The main idea is to
classify and group memory accesses by passing the accesses
through a reordering tree. The reordering tree takes into
account data locality in cache lines to increase cache hit, as
well as the bank, row and column information of the accesses
to increase DRAM efficiency in case of cache misses. We
propose a way to use a very small number of leaf queues
to mimic the effects of having a large number of queues to
reduce hardware cost. A fill policy and a drain policy for
memory requests are carefully designed to make full use of
the reordering tree. Cycle-accurate simulations based on a
wide range of benchmarks show that, the proposed CART is
able to improve the average IPC (geometric mean) of memory
intensive benchmarks by 34.2% with only 1.7% area overhead,
compared with the conventional design. Furthermore, CART is
able to complement other state-of-the-art techniques on GPU
caches to achieve higher performance. For example, when
combined with MRPB (Memory Request Prioritization Buffer)
[4] and RACB (Resource Aware Cache Bypass) [5], the two
combinations can achieve a total improvement of average IPC
by 38.6% and 41.5%, respectively.

II. BACKGROUND AND MOTIVATION

A. Memory Subsystem in GPUs

Figure 1 depicts a typical GPU architecture and where the
proposed CART fits. A GPU mainly consists of streaming



multiprocessors (SMs), interconnect network, L2 cache, and
DRAM. An SM has a number of SIMT cores (e.g. 128 cores
per SM in NVidia GTX1080 Ti) to execute multiple threads in
parallel. For the memory subsystem, L1 cache(s) exists inside
each SM and handles requests from multiple SIMT cores
within the SM; whereas L2 handles memory requests that
are coming from the SMs through the interconnect network.
The logically unified L2 cache is split into several partitions
and each partition is associated with a DRAM partition. To
track multiple outstanding misses to the DRAM, miss status
handling registers (MSHRs) are employed to keep track of
the needed information for each DRAM request, such as
the requester core ID, cache block address, returned data
destination, new data for write-back (in case of writing). For
a primary cache miss that requests a new cache block, one
MSHR entry is allocated. For a secondary cache miss (that
requests data in the same cache block that has been allocated
an MSHR entry and is currently pending), one slot in the
MSHR entry is allocated, provided that an empty slot is
available in that entry. A typical MSHR may have 32 or 64
entries, with each entry having 4 slots.

B. Impact of Access Order on L2 Cache
The order of memory accesses to L2 cache plays a signif-

icant role in determining memory access latency. The access
order not only affects the locality of data which in turn
influences cache misses, but also has a large impact on the
blocking time of memory accesses in the cache. The latter is
due to the FIFO nature of the incoming buffers in L2 cache.
In conventional GPUs, memory requests that come out of the
interconnection networks are enqueued in the incoming buffer
of the corresponding L2 cache partition (Figure 1 and Figure
2(a). When a request moves to the head of the buffer, L2
checks if the request is a hit in the cache; if not, the request
needs to be issued to DRAM by allocating an MSHR entry
or slot. However, a reservation fail (RF) may happen when no
entry/slot is available in the MSHR or when the miss queue
to DRAM is full. As a result, the request has to stay in the
incoming buffer and retries later. This blocks other memory
requests in the FIFO buffer, even though some of the requests
could hit in the L2 cache (no need for MSHR) or use MSHR
in other ways (more analysis in Section 3.1). This head-of-line
blocking is more pronounced for irregular memory accesses
that have burst patterns. One of our goals is to reduce the
occurrence of head-of-line blocking without affecting data
locality through a better cache-friendly reordering scheme.

C. Impact of Access Order on DRAM
The order of memory accesses also has a large impact

on the efficiency of DRAM because of row-buffer conflicts
and bank-level parallelism (BLP). DRAM has a three-level
structure, namely banks, rows and columns [6]. For example,
a DRAM chip may consist of 16 banks, with each bank having
thousands of rows and tens of columns in each row. The size
of each column in a row is usually the size of a cache line
(e.g., 128 bytes). Therefore, upon a cache miss, the memory
address is decoded to locate the correct bank, row and column
to fetch an entire cache line (i.e., a column). Modern DRAMs
employ a row buffer in each bank that serves as a ”cache”
function for temporarily storing the contents of one row, so as
to accelerate future accesses of columns in the same row. A
row buffer conflict occurs if the column from a different row is
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Fig. 1: A typical GPU architecture (MSHRs in L1 are omitted

for clarity). The proposed CART is added before L2.

requested, in which the row buffer is flushed and refilled by the
contents of the newly requested row. This results in additional
access latency. Several memory schedulers (e.g. [7], [8]) try
to reduce row buffer conflicts by reordering memory accesses
on the DRAM side. However, due to the above-mentioned
blocking issue in L2, many memory requests are congested
at L2. This leaves a limited number of requests at the front
of DRAM for reordering. Hence, it is important to create a
benign order of memory accesses early on at the L2 cache.
Similarly, as banks in a DRAM chip can work in parallel, it is
also beneficial to reorder memory accesses at L2 in a DRAM-
friendly way to help distributing memory requests more evenly
among different banks to increase parallelism.

D. Need for More Research on Reordering

To improve the effectiveness of the memory subsystem,
several optimization approaches have been proposed, but the
opportunity of reordering memory access order at L2 cache has
largely been unexplored. One approach is to increase MSHR
sizes to reduce reservation fails. However, enlarging MSHR
is often prohibitively costly due to its content-addressable
memory (CAM) circuitry [9], [10], and not all blocking cases
are caused by MSHR size limitation. Additionally, increasing
MSHR size does not improve DRAM efficiency as it could
not reorder memory requests to lower row buffer conflicts or
increase BLP.

In terms of reordering, reordering memory requests at
L1D in a cache-friendly order has been proposed to increase
cache hits and overall performance [4]. Cache bypassing is
used to reduce the penalty of reservation fails [5], [11],
[12]. Researchers also propose to reorder through memory
schedulers at memory controllers to reduce memory accessing
latency and increase DRAM working parallelism [13]. While
more related works are discussed in Section VII, existing
approaches have not explored the reordering at L2 cache,
which has large impact on both cache and DRAM as analyzed
in the above two subsections. In following sections, we present
how a reordering architecture and strategy can be designed at
L2 cache to address data locality, head-of-line blocking, row
buffer conflict, and bank-level parallelism at the same time.
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Fig. 2: Blocking vs. non-blocking request buffers.

III. EXPLORING ACCESS REORDERING AT L2

A. Blocking of Memory Requests at L2
The root cause of the blocking issue of memory requests at

L2 is the FIFO structure of the incoming buffer. Under such
design, if the memory request at the head of the incoming
buffer (head request) is stalled, all the subsequent requests are
blocked in the buffer. Specifically, there are three cases where
removing such blocking may lead to performance benefits:
(1) the head memory request is a primary cache miss and is
stalled due to the lack of available entry in MSHR; however, a
currently blocked subsequent request could have been merged
into an existing MSHR entry (i.e., a secondary miss). (2)
the head memory request is a secondary cache miss and
is stalled due to the lack of available slot in the matching
MSHR entry (i.e., needs to be merged with the primary miss);
however, empty MSHR entries are available and could have
been allocated to currently blocked subsequent requests. (3)
the head memory request is stalled due to reservation fail
or DRAM saturation (or any other reasons), but the blocked
subsequent requests could have hit in L2 cache and should
have proceeded.

B. A Straightforward Non-blocking Design
To reap the above benefits, we start by considering a

simple but non-blocking incoming buffer design that supports
any access order. As illustrated in Figure Figure 2(b), the
incoming buffer is restructured to enable parallel selection
of any memory request using a giant multiplexer. When a
request encounters a stall, a selection policy (e.g., round-
robin) is employed to select the next request that is qualified
for draining from the buffer structure. The selected request
must not be stalled by the same resource as the previously
stalled request. Although being straightforward, this design
can significantly reduce the number of stalls at L2 by 68.8%
on average, as shown in Figure 2(c). Nevertheless, this design
has two major drawbacks:

• It only solves the blocking that is local to L2 cache, while
neglecting other opportunities in DRAM down the line,
such as row buffer hit and bank-level parallelism.

• The arbitration can be quite complex, as the multiplexer
and control logic need to scan through all the requests in
the buffer to identify a qualified draining candidate.

C. An Improved Design for Access Reordering
To tackle these problems, we examine an improved design

that takes into account bank-level parallelism and arbitration.
As shown in Figure 3, in this design, the FIFO incoming buffer
remains the same, but B FIFO queues are added to classify

memory requests that come out of the incoming buffer. A
simple address extractor extracts the bank address from a given
memory request, and directs the request to one of the FIFO
queues by calculating (bank address mod B).

Note that if B equals the number of banks, memory requests
are essentially queued by their bank addresses. However, B
can be less than the number of banks, in which case memory
requests destined to different banks may share a queue. Finally,
for draining, a round-robin policy is used to select a non-empty
queue among the B queues in each cycle.

Compared with the parallel design in Figure 2(b), DRAM
bank-level parallelism is improved because every time a
memory request is selected to drain, its bank address is
guaranteed to be different from the last time, thus helping
to have multiple banks to work concurrently. Furthermore,
arbitration complexity is also reduced as the arbitrator only
needs to select among B choices. Simulation results show
10.8% improvement in IPC and 21.0% improvement in DRAM
efficiency (defined as DRAM active cycles over total DRAM
cycles) of this design, with arbitration time appropriately
accounted for. The improvement is greater for larger B due to
the higher degree of BLP.

Although this design addresses incoming buffer blocking,
arbitration, and BLP issues, it still has two drawbacks:

• While draining from different queues increases BLP, it
destroys the data locality in the original program. This
significantly increases miss rate (20.8% more on average).

• Memory requests that go into the same queue may have
mixed (random) row and column address, thus susceptible
to row buffer conflicts.

To address these issues, we need a more comprehensive, yet
low-cost, reordering scheme, as proposed next.

IV. CART: CACHE ACCESS REORDERING TREE

A. Overview
Our objective is to reorder memory accesses at L2 cache in

a cache-friendly and DRAM-friendly way. To achieve this,
in addition to classifying memory requests based on bank
addresses, the requests need to be further classified by row and
column addresses. Ideally, requests with the same bank, row
and column addresses should be grouped together, because
they access the same row buffer in the DRAM and belong
to the same cache line (i.e., same column). However, this
grouping method is highly impractical as there are thousands
of different rows in a bank and tens of columns in a row. It is
impossible to provide a separate queue for each combination
of (bank, row, column). Therefore, we need a way to mimic the
effects of having a large number of queues but using a limited
number of physical queues. To realize this, we propose Cache
Access Reordering Tree (CART).

Incoming buffer

Address 
Extractor

Fill Drain

Fig. 3: Reordering based on bank information.



As shown in Figure 1, CART is positioned right before L2
cache to actively reorder memory requests. Figure 4 illustrates
the structure within CART. Every memory request that pops
out from the incoming buffer will go through a reordering
tree to reach one of the FIFO leaf queues. To achieve a high
degree of BLP, CART provides a tree branch for each bank
(e.g., 16 branches if a DRAM chip has 16 banks). Within a
branch/bank, instead of having a leaf queue for each pair of
(row, column), there is a small pool of leaf queues (e.g., 8
queues). A leaf queue can be dynamically assigned to any
(row, column) pair to buffer memory requests that have the
matching row and column addresses. The fill policy determines
if a memory request should be put into an existing leaf queue
or be assigned a new leaf queue. The drain policy determines
which leaf queue to output a memory request. A leaf queue
is de-assigned when it is empty. A tag is attached to each leaf
queue to indicate the current (row, column) assignment of the
queue. As the bank address of a branch is implicitly known, the
tag includes only the information of row and column, where
Rx represents the row address and Cx represents the column
address. To provide fairness and avoid the cases where one row
uses up all the leaf queues in a branch, each row has a fixed
number of assigned leaf queues. For example, if this number
is 2 and the branch size is 8 leaf queues, then there are four
rows in a branch, with each row being capable of buffering
memory requests for two different columns. Each leaf queue
can be very small, with only a few entries per queue.

With this structure, requests are naturally grouped by rows
and columns, whereas accesses to different banks are separated
in different branches. These properties make it possible to ad-
dress data locality, row buffer hit, and BLP issues at the same
time. The carefully-designed fill and drain policies (described
in following subsections) utilize the CART structure to achieve
these objectives, while simplifying arbitration efforts.

Figure 5 exemplifies what can be achieved by the proposed
CART. MRn denotes memory request n, and Bi, Rj and Ck
represent the bank address, row address and column address
of this request, respectively. Figure 5(a) shows the original
order of a sequence of memory accesses (note: leftmost
request occurs first in time). With the FIFO incoming buffer in
conventional L2 cache designs, there are a number of places
where data locality and BLP are lost. For instance, MR0 and
MR4 belong to the same row in the DRAM bank. However, by
the time that MR4 arrives at the DRAM, the row buffer may
have been replaced by MR1’s row, causing an extra row buffer
conflict. Also, MR0 and MR2 belong to the same cache line
and MR2 could hit in L2 without going to DRAM. However,
due to MR1 that takes place between MR0 and MR2, MR0’s
cache line could be replaced by MR1 if they are mapped to
the same position in L2. This disrupts data locality and causes
MR2 to miss in the cache.

Figure 5(b) illustrates the access order after performing
cache-friendly reordering. By switching the order of MR1 and
MR2 (e.g., by filling MR1 and MR2 into different leaf queues
and then drain MR0 and MR2 consecutively), MR2 can result
in a cache hit without fetching from DRAM. Additionally,
DRAM-friendly reordering as illustrated in Figure 5(c) can
improve BLP and reduce row buffer conflicts. For example,
MR3 has a bank address that is different from that of MR2.
If MR3 and MR1 switch order (e.g., by draining different
branches in CART), Bank 0 and Bank 1 can fetch the required
data in parallel, increasing DRAM BLP. Furthermore, MR4

Fig. 4: Diagram of the proposed CART.
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Fig. 5: An example of the effects of CART. Bi/Rj/Ck denotes

that the address of the memory request (MR) is in bank Bi,
row Rj and column Ck.

can reuse the data in the row buffer of B0/R0 if MR4 is put
into one of the leaf queues that belong to B0/R0. This avoids
a potential row buffer conflict.

B. Leaf Queue Allocation

A key aspect of CART is to use a small number of leaf
queues to approximate the effect of having a large number
of queues in a branch. The rationale behind this that, despite
the tens of thousands of (row, column) address combination
for a bank, there are only a limited number of (e.g., tens
of) outstanding memory requests per bank. Moreover, some
of the outstanding requests share the same row and column
addresses, and can be merged in one leaf queue. This indicates
that it is possible to use a small number of leaf queues to buffer
all the outstanding memory requests, as long as there is a leaf
queue or an entry in a leaf queue available by the time a new
request comes.

With a given number of leaf queues in a branch, there are
several queue allocation strategies. We can allocate more leaf
queues to a row, so as to accommodate more memory requests
for different column addresses in the row, at the cost of fewer
rows. Or we can allocate fewer leaf queues to a row, which
increases the number and diversity of rows in a branch, but
at the cost of fewer columns per row. Additionally, under the
same total buffer space, the number of entries in a leaf queue
can be reduced to increase the number of leaf queues. To this
end, we conducted an extensive experimental study to identify
the best trade-off configuration. While details are presented in
Section VI-A, we observed that the performance of providing
two 2-entry leaf queues per row and four rows per branch is
within 3% of the performance of a configuration that has 32



times as many buffer resources. This demonstrates the viability
of using limited queues to reorder memory requests.

C. Fill Policy
The fill policy determines which leaf queue an incoming

memory request should be buffered. Since CART provides
one branch per bank, the fill policy only needs to select
among the leaf queues in a branch. The fill policy works in
a straightforward way: if one of the leaf queues contains the
same row and column information as the new request, the
request is merged into this queue by occupying an empty entry
(in the FIFO order). If there is no empty entry in the matching
queue or if there is no matching queue, a new available leaf
queue is allocated to store the request, with the tag information
set to the row and column addresses of the new request. Here,
“available” means that an empty leaf queue is available among
the leaf queues that are assigned to that row. Lastly, if no such
leaf queue is available, the new memory request is stalled in
the incoming buffer and retries later. Note that the probability
for stalling can be kept very low with a sufficient number of
leaf queues, and our study shows that the above configuration
with only 8 leaf queues per branch can already achieve a near-
zero probability in most cases.

D. Drain Policy
The drain policy is inherently more difficult to design than

the fill policy, as the effect of a not-so-good fill decision
may be delayed and partially compensated by the buffering
effect of the tree, but a drain decision directly affects which
requests are issued to the cache. Unfortunately, commonly-
used general drain policies such as greedy, longest-first, and
round-robin do not work well with CART. For example, if the
longest-first policy is applied to CART, the longest leaf queue
is selected to drain in every cycle. This increases locality as all
the requests in a queue share the same row and column, but
squanders the opportunity for bank-level parallelism. Figure
6 illustrates an example. When the longest-first drain policy
is applied, the first several selected requests would be in this
order is Q1 MR7, Q1 MR6, Q2 MR11, Q0 MR2, Q1 MR5,
Q2 MR10 (queue ID is used for tie-breaker). As can be seen,
no requests are selected for Bank 2 and Bank 3, and they are
not working during all this time. Similarly, round-robin policy
does not work well either as it actively selects requests across
different queues, thus destroying the data locality.

To address these issues, we propose a “rotating banks and
same-or-longest row” drain policy to achieve both cache-
friendly and DRAM-friendly order. The drain policy includes
two aspects. In the first aspect, the policy selects one and
only one request from a branch (i.e., leaf queues belonging
to the same bank), and then immediately rotates to the next
non-empty branch (bank) in the next cycle. In the second
aspect, when the policy rotates back the same branch, the
same leaf queue that was selected last time is selected this
time, or if that leaf queue has already been fully drained,
the longest leaf queue with the same row in the branch is
selected (if all the leaf queues of that row are drained, simply
select the longest leaf queue in the branch). Essentially, the
first aspect increases BLP; whereas the second aspect increases
data locality and row buffer hit, as the requests in the same
leaf queue access the same cache line (if cache hit) or the
same DRAM row (if cache miss). Take the example in Figure
6 again. Assuming the proposed policy starts with Bank 1,
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Fig. 6: Illustration of drain policies for a given tree status.

since this is the first time with no prior history, the longest
leaf queue, Q1 MR7, is selected. Then the policy rotates to
Bank 2 and selects Q3 MR13. This is followed by Q5 MR18
in Bank 3. When the policy rotates back to Bank 1, the
same leaf queue as the last time, Q1 MR6, is selected to
maintain the locality, regardless of whether Q1 is currently
the longest. Similar process continues, with the draining order
of Q3 MR12, Q5 MR17, Q1 MR5, Q4 MR15, Q5 MR16,
Q1 MR4, Q4 MR14, Q1 MR3, Q0 MR2 (because of same
row with Q1), Q0 MR1, Q0 MR0, Q2 MR11, Q2 MR10,
Q2 MR9, Q2 MR8. Compared with longest-first and round-
robin, this order achieves substantially reduced cache misses
and row-buffer conflicts while utilizing multiple banks effec-
tively.

TABLE I: CART design configuration.

# of leaf queue Bank: 16; Row: 4; Column: 2
Queue size 2 entry per queue
Tag Row + column addresses
Drain policy Rotating banks and same-or-longest row

TABLE II: Simulation configuration.

# of SMs 28
Warp Scheduler GTO
Per-SM limit 48 warps, 8 CTAs
# of Memory Partitions 8

L1D cache
16 KB, 32-set, 4-way, 32 MSHR,
Allocate on Miss, Local write-back,
global write-through

L2 cache
8x128 KB, 64-set, 16-way,
32 MSHR, Allocate on Miss, write-back

DRAM FR-FCFS scheduler, GDDR5, 16 banks
SM/L2/DRAM clock 1400/700/1150 MHz

V. EVALUATION METHODOLOGY

We implement the proposed schemes in a cycle-accurate
simulator, GPGPU-Sim 3.2.2 [14]. GPUWatch [15] is em-
ployed to evaluate the energy consumption of our proposed
scheme and baseline architecture. Table II lists the configura-
tion used in the simulator. The benchmarks from Rodinia [16],
Parboil [17], and Nvidia GPU Computing SDK are evaluated.
Table III lists more details of the benchmarks. The second
and fifth columns in the table illustrate the total number of
instructions executed by the entire SMs over the number of
L2 cache miss. These values reflect the extent to which the
performance of the benchmarks depends on cache performance
[18], [19]. The benchmarks whose total executed instructions
per L2 miss are less than 1500 are considered as the memory
intensive benchmarks and are marked M in the “Type” column.
Other benchmarks whose values are over 1500 are compute
intensive benchmarks and are marked C type.



TABLE III: Evaluated benchmarks.

Benchmarks Abbr. Inst./L2
Miss

Type Benchmarks Abbr. Inst./L2
Miss

Type Benchmarks Abbr. Inst./L2
Miss

Type

Backprop BP 1718 C Tpacf TP 842408 C Spmv SP 568 M
Bfs BFS 62 M Aligned Types AT 238 M Stencil STC 614 M

B+tree B+T 1497 M AsyncAPI AA 416 M Sgemm SG 9957 C
Cfd CFD 404 M Black Schole BS 476 M Transpose TRP 400 M

Dwt2d DW 530 M Convolution Separable CS 701 M Mri-q MRI 120455 C
Heartwall HW 5189 C Convolution Texture CT 3104 C Scan SCN 233 M

Nw NW 198 M Fast Walsh Transform FWT 641 M Lbm LBM 176 M
Kmeans KMS 19236 C QuasirRandom Generator QG 2798 C Merge Sort MS 1436 M
Cutcp CUT 400509 C Radix Sort Thrust RST 425 M Histo HIS 751 M
Sad SAD 2733 C Sorting Network SN 1160 M SobolQRNG SQ 1247 M

We compare CART against the baseline architecture, as well
as two state-of-the-art techniques, MRPB [4] and RACB [5].
MRPB uses memory request prioritization buffer to reorder
memory requests in the L1D cache and bypass selected
requests. RACB uses bypassing technique in both L1D and L2
cache according to the resource availability in these caches.
Note that all the schemes employs the widely used FR-FCFC
scheduling [8] at the memory controllers. Therefore, memory
request reordering opportunity before DRAM is exploited in
all the schemes.

VI. RESULTS AND ANALYSIS

A. Exploring CART Design Space
While CART works better with more leaf queues, it may

not necessary to provide a large number of queues, particularly
with cost consideration. To gain insight on how to identify a
good trade-off design between the resource consumption and
performance improvement, we have examined the impact of
different leaf queue numbers and queue sizes on performance.
Since the number of branch is fixed to one branch per bank,
we only need to explore the design space of row numbers,
column numbers and queue sizes (entry numbers). Figure 7
plots the impact on performance improvement over baseline
architecture for several memory-intensive benchmarks by us-
ing various configurations. nR denotes that there are at most
n different row addresses in the leaf queues belonging to each
bank. nC means that for the leaf queues belonging to a specific
bank and row address, there are at most n different column
addresses of memory requests; the nE represents the entry
numbers in each FIFO queue.

It can be seen that, more resource leads to higher per-
formance improvement for CART. However, the difference
is not very large, demonstrating that CART does not need
an impractical number of queues for each row and column
combination. Figure 7 shows a diminishing return when adding
more resources. In fact, the average performance improvement
drops only by 2.0% when the resource for CART is reduced
from 8R/8C/8E to 4R/2C/2E, which is a resource reduction
of 96.9% (512 entries vs. 16 entries). While not shown in the
figure, providing an extremely large number of leaf queues
and entries (approaching ideal performance) has a performance
improvement within 3% of the 4R/2C/2E configuration. Based
on this study, we select 4R/2C/2E as the current configuration
of CART in our further evaluation. The table I summarizes
the configuration of CART.

B. Performance Comparisons
Our performance comparison consists of two main parts.

The first part is to evaluate how effective the proposed CART
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Fig. 7: Finding good performance-cost tradeoff for CART.

is when applied alone, compared with other schemes (baseline,
MRPB and RACB) applied alone. The second part is to
evaluate if CART can complement other schemes to improve
the efficiency of memory subsystem. As with other works in
the area [18], we plot the results of memory-intensive and
compute-intensive benchmarks separately.

First of all, Figure 8 shows the overall performance im-
provement of different schemes for the memory-intensive
benchmarks. Compared with the baseline, the proposed CART
alone can achieve 34.2% average IPC improvement (geometric
mean). For some benchmarks, such as Transpose (TRP),
CART even achieves 2.26X IPC improvement. This shows that
actively reordering the incoming requests to a cache-friendly
and DRAM-friendly order can help relieve the pressure on
memory subsystem. MRPB mainly works on the L1D cache
efficiency by reordering the cache in a cache-friendly order and
bypassing upon associativity-stalled requests. MRPB improves
the average IPC of memory-intensive benchmarks by 23.4%.
In addition, RACB focuses on the resource-aware L1D and L2
cache bypassing. When the resource in L1D or L2 cache is no
longer available, the bypassing is activated. The average IPC
in RACB increases by 12.6% over the baseline. Therefore, the
proposed CART performs better than the other two schemes
by a large margin.

Second, as the proposed CART improves the efficiency of
both L2 cache and DRAM, the combination of CART and
MRPB or RACB can explore the benefits across L1D, L2
cache and DRAM. Figure 8 also shows the performance im-
provement of combined schemes. The combination of CART
and MRPB can improve the average IPC by 38.6%, and the
combination of CART and RACB can achieve average IPC
improvement by 41.5%. Those two improvements are much
higher than applying MRPB and RACB alone. This illustrates
that the proposed scheme exploits an new opportunity that is
largely complementary to existing ones.

We also examine the effect on compute-intensive bench-
marks by using different schemes. The results are shown



Fig. 8: Performance comparison of different schemes for memory-intensive benchmarks.

Fig. 9: Perf. comparison for compute-intensive benchmarks.

in Figure 9. The performance improvement of MRPB and
RACB are both within the 1.0%. CART is slightly better
with an average improvement of around 2.5%, although some
benchmarks have observed larger improvement (e.g., 20.8% in
QG and 12.7% in SAD). These results on compute-intensive
benchmarks are understandable as they are insensitive to mem-
ory. For a fair comparison, when considering all the memory-
intensive and compute-intensive benchmarks together, CART
is still able to achieve an average improvement of 26.5%.

C. Insight of Performance Improvement
Several factors may contribute to the performance improve-

ment of CART: reduction of row buffer conflicts, improvement
in L2 hits, and increase of bank utilization. The proposed
CART pursues the benefits of more row buffer hits by giving
a high priority in the drain policy to the memory requests that
have the same row addresses as the previously accessed row.
Figure 10a compares the number of row buffer conflicts in
the baseline architecture and CART. Many memory intensive
benchmarks are observed to have a reduction of row buffer
conflicts. On average, the benchmarks with CART have 12.3%
decrease in row buffer conflicts. This decrease helps to reduce
the time in replacing the content of row buffers, thereby
increasing DRAM efficiency. Similarly, Figure 10b and Figure
10c show the impact of CART on L2 cache hit and by
bank utilization, respectively. Note that, while not all the
benchmarks have improvement in all the three aspects, we
have observed and verified that each benchmark has large
improvement in at least one of the aspects.

D. Hardware Implementation
We use Cacti 6.5 [20] and RTL implementation to estimate

the area and timing of CART. All the key components of
CART are implemented and evaluated for hardware cost,

including the SRAM-based leaf FIFO queues, the address
extractor, the comparators in leaf queues (eight parallel com-
parators to allow an incoming request to be selected and
written into a leaf queue in each cycle), the request selector to
reflect the drain policy, etc. With all the components together,
CART incurs 0.016 mm2 per L2 cache partition under 45
nm, which is only 1.7% relative to each L2 cache partition.
In comparison, MRPB adds 10.5% hardware overhead (also
relative to L2).

E. Energy efficiency

Due to the small hardware overhead, the proposed CART
has very limited overhead on power consumption. As a result,
the overall energy consumption of the GPU is reduced due to
the shortened execution time. We lumped the CART power
overhead in GPUWattch, and simulation results show that
CART reduces the energy consumption by 18.9%, compared
with the conventional design.

VII. RELATED WORK

Cache bypassing: Several studies have focused on cache
bypassing to alleviate cache pressure for GPUs. Xie et al.
[21] use compilers to analyze cache utilization of the code
based on specific metric and select related instructions for
cache access and bypass. Dynamic cache bypassing is also
proposed [4], [5], [11], [12]. Besides using compilers, Xie et
al. [11] propose to bypass memory requests in a thread block
based on the ratio of thread blocks that cache or bypass at
runtime. A data locality monitoring mechanism is developed
by Li et al. [12] to select highly reusable data to be stored in
L1D cache. Jia et al. [4] and Dai et al. [5] both use resource
aware technique to bypass memory requests that are stalled
in cache to increase memory efficiency. However, all those
cache bypassing schemes do not consider the possible impact
on DRAM, whereas our work increases DRAM working
efficiency by improving DRAM BLP and reducing row buffer
conflicts during filling and draining.

Warp scheduling: The memory efficiency can be also
improved by optimizing the warp scheduler (e.g., [18], [22],
[23]). We evaluated several warp schedulers (GTO, LRR, two-
level). The proposed CART achieves similar relative improve-
ment for different warp schedulers, indicating that CART is
not sensitive to warp scheduling. It might be that the effects
of warp scheduling on the access order has been degraded
(filtered) by the L1 cache before L2.
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(a) Reduction of Row Buffer Conflicts.
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(b) Improvement of L2 Cache Hits.

0

0.25

0.5

0.75

1

1.25

1.5

B
FS

B
+T

C
FD D
W

N
W

L
B

M
H

IS SP
ST

C
A

T
A

A B
S

C
S

FW
T

R
ST SQ M

S
SC

N SN
T

R
P

N
or

m
al

iz
ed

 B
an

k 
Ut

ili
za

tio
n 

(c) Increase of Bank Utilization.

Fig. 10: More details on Performance Improvement.

Data-locality optimizing: Besides passively bypassing
memory requests, an active optimization, MRPB (memory
request prioritization buffer [4]), is proposed that actively
reorders the memory requests in the L1D cache to a cache
friendly order to increase cache hits. Also, a memory access
scheduling policy is proposed [13] to reduce the negative
impact brought by inter-thread interference. This improves
the throughput of DRAM. As our proposed CART aims to
change the memory requests to a cache-friendly and DRAM-
friendly order before entering L2 cache, CART can be used
to complement those schemes, as exemplified in evaluation.

Software-level: Software-level schemes can also be used
to improve GPU memory subsystem. Streamline is proposed
[24] to resolve irregular memory references and control flows
through data reordering and job swapping in software. An-
other work [25] proposes a new algorithm to minimize non-
coalesced memory accesses. However, requests to L2 may
come from different SMs, thus revealing new reordering
opportunity. This is exploited in our scheme that reorders
memory requests before entering L2 cache. It is completely
done in hardware without the need for application profiling.

VIII. CONCLUSION

The order of memory accesses plays a significant role in
determining the efficacy of memory subsystem. In this work,
we propose Cache Access Reordering Tree (CART), a novel
architecture that actively reorders memory requests in L2
cache to relieve the congestion of L2 and to increase DRAM
working efficiency. The proposed CART is able to improve
the IPC of a wide range of memory-intensive workloads by
34.2%. The results also show that the proposed scheme can
complement other memory subsystem optimization techniques
to further improve system performance.
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