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Abstract—As throughput-oriented processors incur a significant number of data accesses, the placement of memory controllers (MCs)
has a critical impact on overall performance. However, due to the lack of a systematic way to explore the huge design space of MC
placements, only a few ad-hoc placements have been proposed, leaving much of the opportunity unexploited. In this paper, we present
a novel deep-learning based framework that explores this opportunity intelligently and automatically. The proposed framework employs
a genetic algorithm to efficiently guide exploration through the large design space while utilizing deep learning methods to provide fast
performance prediction of design points instead of relying on slow full system simulations. Evaluation shows that, the proposed deep
learning models achieves a speedup of 282X for the search process, and the MC placement found by our framework improves the
average performance (IPC) of 18 benchmarks by 19.3% over the best-known placement found by human intuition.

Index Terms—Interconnection networks, memory controllers, deep learning, design space exploration
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1 INTRODUCTION

THE unprecedented success of deep learning has spurred
researchers to revisit conventional approaches to tackle

difficult problems in various application domains. A chal-
lenge recently conquered by deep learning is mastering
the game of Go that requires searching ∼ 250150 pos-
sible sequences of move solutions [1], [2]. Such superior
capability in searching through large solution spaces has
great potential in optimizing computer architecture [3], but
significant research is needed to make the idea tangible in
specific architectural problems. In this work, we take the
initiative to explore innovative application of deep learn-
ing in optimizing memory controller (MC) placements in
throughput-oriented processors.

While the MC placement for many-core CPUs has been
well studied, only very limited work has been conducted to
investigate the impact of the MC placement for throughput
processors (e.g., GPGPUs, many-core accelerators, etc.) [7].
Fig. 1 depicts a typical throughput processor, where com-
puting core (CC) nodes and memory controller (MC) nodes
are connected by a network-on-chip (NoC) through on-
chip routers and network interfaces (NIs). A CC node may
further include a cluster of small processing elements, and
a MC node includes a shared L2 cache bank and a memory
controller that interfaces with off-chip DRAM. Unlike CPUs,
the CC nodes in throughput processors rarely communicate
among themselves. Instead, most of the on-chip traffic is
directly between the CC nodes and MC nodes. Due to
the quantity difference between the two types of nodes,
a unique many-to-few-to-many (M2F2M) traffic pattern is
identified [6]. As all the off-chip data is supplied through the
MC nodes, the placement of memory controllers is critical
to application performance.

A recent work [7] shows that, a MC placement optimized
specifically for M2F2M in throughput processors can out-
perform the best MC placements proposed for CPUs (e.g.,
edge, diamond, top-bottom) [4] by a large margin. This is
achieved by using a bottom MC placement together with
a technique called virtual channel (VC) monopolization. In
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this technique, if a physical link carries only one type of
traffic (i.e., request or reply), all the VCs in the link are
allocated to that type instead of strictly reserving VCs for
both traffic types. While that work demonstrates promising
results in optimizing MC placements for throughput proces-
sors, the developed placement as well as all the previously
proposed MC placements in other works represent merely
a few design points in the huge solution space of MC
placements. Thus, much needed is a fundamentally different
approach that can explore the entire space automatically,
rather than proposing a few ad-hoc placements based on
human intuition.
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Fig. 1: A typical tile-based throughput processor.

To address this need, we propose a deep-learning based
framework that overcomes two major challenges that have
hindered such exploration before. The first one is the enor-
mous solution space. For instance, placing 6 MCs and 30
CCs in a 6x6 chip has nearly 2 million (1,947,792) combina-
tions. This number grows super-linearly as the numbers of
MCs and CCs increase. The second challenge is the time-
consuming performance evaluation of each design point. To
assess the “goodness” of a specific MC placement, cycle-
accurate simulations over a set of benchmarks are conven-
tionally needed, which takes days if not weeks. This con-
siderably limits the total number of design points that can
be assessed. The proposed framework employs a heuristic
search algorithm to efficiently guide exploration through the
large design space while utilizing deep learning to provide
fast performance prediction of design points. Evaluation
shows that, the MC placement found by the proposed
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framework is 19.3% better than the best-known placement
in terms of system performance (IPC). Furthermore, the pro-
posed deep learning model achieves 282X speedup for the
search process. To our knowledge, this is the first work that
intelligently and automatically explores the MC placement
design space for throughput-oriented processors.

2 PROPOSED APPROACH

2.1 Overview
The proposed deep-learning based framework is de-

picted in Fig 2. Design space search is guided by the SGA
(Simple Genetic Algorithm) in the dotted blue box. Each
design point is a MC placement, which is encoded as a gene
sequence, e.g., a 36-bit vector for a 6x6 mesh with “1”s and
“0”s indicating the positions of MCs and CCs, respectively.
A set of random genes are fed into the SGA as the first
generation of MC placements. The SGA mimics natural
evolution by evaluating a generation of genes, selecting the
good ones, and performing crossover and mutation to obtain
the next generation of genes. The process can be repeated a
number of times to explore better genes. The final genes (i.e.,
MC placements) produced by the SGA are validated by run-
ning benchmarks on a cycle-accurate, full system simulator
(GPGPU-Sim) to get the corresponding application perfor-
mance under those MC placements. As a critical step in the
exploration, a deep neural network (DNN) model is used to
evaluate the fitness of the genes (i.e., the performance of the
employed MC placements), as shown in the dotted red box.
This avoids using slow full system simulations to evaluate
every design point in the large space. The remainder of this
section explains why the DNN and the SGA are selected for
this task as opposed to choosing other algorithms/models,
and the detailed implementation and optimization of the
proposed framework.
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Fig. 2: Proposed deep-learning and SGA based framework.

2.2 DNN for Evaluating Design Points
Need for Non-linear Prediction: We start with assessing

whether application performance can be predicted straight-
forwardly from the MC placement using simple linear mod-
els. To verify that, 35 random placements are selected and
simulated. We perform traffic flow analysis that examines
the load on each physical channel when the flows of packets
between all pairs of MC and CC are superposed. We use
the average instruction-per-cycle (IPC) of 18 benchmarks
as the application performance. The correlation coefficient
is -0.10 between the maximum channel load and applica-
tion performance, and -0.33 between average hop count
and application performance. The low degree of correlation
coefficients prompts us to adopt deep learning methods for

non-linear prediction without the need for explicit equations
or strong assumptions.

Proposed DNN Model: The key idea of the proposed
framework is to use deep learning for expedited perfor-
mance comparison between genes. This is made possible
by the observation that precise full system performance of
different MC placements is not needed. Rather, the perfor-
mance prediction only needs to be precise enough to tell the
relative fitness of the two genes under comparison.

To select a specific DNN model, we notice that the task
of relative MC locations analysis for system performance is
very similar to that of image spatial analysis for image seg-
mentation. Thus, convolutional neural networks (CNNs),
which are most suitable for handling images, should take
priority over other deep learning methods. Fig 3 shows the
architecture of the proposed deep neural network model,
which is based on Autoencoder for its robustness to re-
dundant features and noises. It takes a MC placement and
several performance indicating features to predict the full
system performance (IPC). Specifically, the input of Encoder
1 is a boolean matrix of a MC placement that is converted di-
rectly from the gene vector. To increase prediction accuracy,
Encoder 2 is added to take four statistical features, which are
obtained by performing traffic flow analysis under each MC
placement to reflect its impact on the NoC. The features are:
1) the maximal channel load, 2) whether the channel in 1)
can be monopolized, 3) average hop count, and 4) the total
number of monopolizable VCs. The first and second statisti-
cal features reflect NoC throughput, the third indicates NoC
latency, and the fourth shows the potential for throughput
increase. Additionally, the input also includes benchmark
and kernel identification. Feature Fuser [8] is then used to
combine outputs from two encoders into one input of the
Decoder, thereby forming a complete Autoencoder. Fig 3
caption provides the details of each component and layer.

Data Preprocessing and DNN Training: To generate the
training data for the proposed DNN model, we have con-
ducted full system simulations of 18 benchmarks, repeated
with 35 random MC placements, and collected the IPC
values at the per kernel basis. To prevent training data bias
caused by some benchmarks having much greater numbers
of kernels than others, the data from up to 10 kernels of
each benchmark is used. To increase sensitivity of the DNN
model for each benchmarks, the selected kernels have the
largest IPC difference within a benchmark. For efficient
convergence, the IPC of placement i given benchmark b and
kernel k is normalized between (−1, 1) by calculating

IPCnorm
b,k,i =

IPCb,k,i − (IPCb,k,max + IPCb,k,min)/2

(IPCb,k,max − IPCb,k,min)/2
(1)

where

IPCb,k,max = maxi IPCb,k,i (2)
IPCb,k,min = mini IPCb,k,i (3)

With 35 placements and 102 kernels, there are 3,570
normalized simulation data. The batch size for training is
16. The popular Adam optimization is adopted for training:

θt+1 = θt − η ∗ f(∆θt,∆θt−1) (4)

where θt and ∆θt are the parameters of a DNN model
and the gradient of the parameters at the t-th iteration
respectively. η (=0.001) is the learning rate [8]. Following the
5-fold cross-validation to avoid overfitting [9], we partition
the training data into 5 portions, and use 4 portions for
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training and 1 portion for validation in a rotating fashion
for 5 times. One trained DNN from each fold is selected to
form an ensemble of 5 DNNs as a predicative model for
performance evaluation.
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Fig. 3: The proposed DNN model.(1) Encoder 1: there are three
convolutional layers, with the kernel size of 3x3x1, 3x3x8 and
2x2x16, respectively. In each convolutional layer, the batch nor-
malization after the convolution normalizes the value distribu-
tion and is followed by the max pooling operation of size 2x2x1
without overlapping. After three convolutional layers, a tensor
of size 1x1x32 is flattened to a 32x1 vector and used as the input
of the subsequent fully connected layer. The number of neurons
of fully connected layers is 60-30-15. (2) Encoder 2: the number
of neurons after input features is 60-30-15. (3) Feature Fuser: the
outputs of both encoders are first concatenated to be a single
input of the Feature Fuser. The number of neurons is 60-30-15.
(4) Decoder: there are 60-60-1 neurons for generating an output
value. The activation function for all the convolutional layers
and fully connected layers is the leaky ReLU. The dropout
probability is 0.5 for fully connected layers in the Encoder 1,
Encoder 2 and Feature Fuser, and 0.1 for the Decoder stage.

2.3 SGA for Searching Design Space
Why SGA: It is crucial to select an efficient searching

method that matches the nature of exploring the enormous
design space of MC placements. To achieve that, we have
calculated the differences (≥0) in statistical features (intro-
duced in the previous subsection using traffic flow analysis)
of 1000 placements after a horizontal or vertical shift of one
MC location in each placement. The median and standard
deviation (std) of the statistical differences of the first,
third and fourth statistical feature are 0 (std:11.19), 0.056
(std:0.04) and 2.0 (std:2.52), respectively. The small statistical
differences indicate that a MC placement generated from the
combination of similar MC placements may exhibit similar
traffic characteristics and NoC performance. This observa-
tion inspires us to consider genetic algorithms in which
offspring generations inherit the characteristics of parent
generations for gradual improvement over generations.

SGA Implementation: As shown in Fig 2, the SGA
explores the design space by iterating over four phases: eval-
uation, selection, crossover, and mutation. (1) Evaluation:
each generation has 35 genes. To evaluate them, instead of
running full system simulations, the proposed DNN model
is used as the fitness function to estimate system perfor-
mance given the MC placement, four statistical features,
and benchmark and kernel info. (2) Selection: Based on the
evaluation, the MC placements are ranked by their average
performance of all the benchmarks, and the top 7 are se-
lected to breed the next generation. Here, the performance
of a benchmark is the average performance of each kernel,

which in turn is defined relatively as the ratio of its IPC to
the IPC of the bottom MC placement (state-of-the-art) [7]. (3)
Crossover: A new set of 35 MC placements are generated.
In every new placement, the position of each MC randomly
comes from one of the parents. (4) Mutation: a MC position
may be shifted by one in either the horizontal or the vertical
direction with a small probability. This probability decreases
exponentially with generations. There is no repetition of 35
MC placements between generations.

3 RESULTS AND ANALYSIS

Model Validation: We evaluate 18 workloads from the
Rodinia [10] and NVIDIA SDK benchmarks. Simulations are
conducted on GPGPU-Sim, a cycle-accurate simulator for
throughput processors, augmented with VC monopoliza-
tion. The key configuration is shown in TABLE 1. During
the 5-fold cross-validation, we observe that the training and
testing loss curves for different folds are closed to each other,
and the loss value converges to less than 0.2 consistently
after 3,000 iterations. This loss value is reasonable for 35
MC placements in a generation and is sufficient for our
framework. The consistent loss value and the low actual
prediction error (12% for the top 5 found placements below)
confirm that there is no overfitting. To validate the feasi-
bility of using the DNN ensemble, we conduct full system
simulations of some of the top and bottom ranked MC
placements at the 10th, 20th, 30th, 40th and 50th generations
during the search. The relative comparison of the simulated
performance between two placements in each generation are
consistent with the predicted performance from the DNN
model. These results justify the comparison functionality of
the DNN for unseen MC placements.

TABLE 1: Configuration for full system simulation.

System Parameters Details
Computing Core 30 Cores, 1400 MHz
Memory Controller 6 MCs, 924 MHz
Memory Bandwidth 168 GB/s (28 GB/s x 6)
Interconnection 6x6 2D Mesh, 1400 MHz
Routing DOR with VC monopolization
Virtual Channel 2 VCs/port, 4 flits/VC
Shared Memory 48 KB
L1 Inst. Cache 2 KB (4 sets/4 ways LRU)
L1 Data Cache 16 KB (32 sets/4 ways LRU)
L2 Cache 64 KB per MC (8-way LRU)

MC Placement Results: The design space search starts
with a set of random MC placements and gradually intro-
duces new and better placements. The search is terminated
after 300 iterations after the results have been stabilized. In
Fig. 4(2)-(6), we visualize the top 5 ranked MC placements
from the final generation. For easier comparison, Fig. 4(1)
shows the bottom MC placement with VC monopoliza-
tion (the best-known scheme for GPUs [7] due to much
higher VC utilization), along with the max channel load
(the lower the better), average hop count, and the number
of monopolizable VCs. The actual performance of these MC
placements from full system simulations is plotted in Fig. 5.
Note that the light bars are the average performance of the
top 5 placements found by the proposed framework. These
placements, which are found by the deep-learning assisted
approach, achieve a significant performance improvement
of 18.8% (on average) over the state-of-the-art scheme that
is found by human observation. Additionally, it is worth
mentioning that, the top ranked MC placement in Fig. 4(2)
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achieves 19.3% average IPC improvement. The close perfor-
mance among the top ranked MC placements demonstrates
the effectiveness of our framework in finding multiple good
solutions with limited training data.
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Avg. Hop: 4.08
#Mono. VC: 69
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Avg. Hop: 4.18
#Mono. VC: 72
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Fig. 4: Comparison of MC placements. (1): State-of-the-art (bot-
tom+VC mono); (2)-(6): from the proposed framework.

Fig. 5: Performance comparison (IPC) of MC placements.

Further Analysis: Several interesting things can be no-
ticed upon a closer look at the found MC placements, which
may provide insights on the attributes of good placements.
First, in all the MC placements in Fig. 4(2)-(6), the memory
controllers are sparsely distributed. This is consistent with
the objective of minimizing the max channel load which
directly determines NoC throughput. Second, it can be seen
that MCs are often aligned diagonally. This reduces the
superposition of heavy traffic flows from the MCs if they
are aligned horizontally or vertically. Third, the diagonal
lines of MCs are also in parallel, e.g., in (3)(5)(6). Our traffic
flow analysis shows that, with the parallel alignment added
on top of diagonal positions, there is a larger potential for
VCs to be monopolized, particularly for the most congested
channels that are the bottleneck of the NoC. The proposed
deep-learning based approach is able to balance these po-
tentially contradictory attributes comprehensively and au-
tomatically. This can be very useful as more techniques are
being proposed to increase optimization dimensions.

Speedup: To search from the initial random MC place-
ments to the final solutions through 300 SGA generations,
the proposed framework only needs to evaluate 10,500 MC
placements out of 1,947,792 candidates, which is equivalent
to a 185X reduction. On top of that, for the DNN model,
it takes 280 hours to collect simulation/training data on

a linux workstation with 2.67GHz Xeon(R) CPU E7-8873,
2 hours for the training and 5-fold cross-validation, and
15 hours for evaluating 10,500 placements, totaling 297
hours (or 12.37 days). It would have taken 84,000 hours (or
3,500 days) if the 10,500 placements were evaluated in the
conventional full system simulations on the same machine.
Thus, the speedup from adopting DNN alone is 282X, which
is quite significant.

Comparison with Other Works: In the first work that
explores MC placement for CPUs [4], several MC place-
ments (e.g., edge, diamond, top-bottom) are proposed by
observational methods and a genetic algorithm is employed
to verify that diamond performs the best for CPUs. How-
ever, the fitness function in that work considers only the
max channel load while ignoring monopolizable VCs and
hop count. Consequently, the best MC placement found by
our approach achieves 36.4% higher IPC than edge, 27.8%
higher than diamond, 20.3% higher than top-bottom, and
19.3% higher than bottom+mono in throughput processors.
Interestingly, the best placement for CPUs (diamond) per-
forms worse than top-bottom in throughput processors.

4 CONCLUSION
This work explores the use of deep learning in optimiz-

ing MC placements in throughput processors. We propose
a framework that integrates deep learning with a genetic
algorithm to address the challenges of enormous design
space and slow evaluation of design points. The proposed
framework is able to find a MC placement that improves
system performance by 19.3% over the best-known place-
ment for throughput processors, while offering insights on
good MC placements. Moreover, the proposed DNN model
achieves 282X speedup for the search process by providing
expedited performance estimation. The substantial benefits
from this work exemplify the viability of utilizing deep
learning methods in improving computer architecture.
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