
1

1

Bruce D'Ambrosio

Incremental

E�cient Incremental

Abstract

1 Introduction

2 Desiderata

Incremental Probabilistic Inference

Acknowledgment: This work supported by NSF 91-
00530, AFOSR, and the Oregon Advanced Computing
Institute.

Department of Computer Science
Oregon State University

dambrosi@research.cs.orst.edu

Propositional representation services such
as truth maintenance systems o�er pow-
erful support for incremental, interleaved,
problem-model construction and evaluation.
Probabilistic inference systems, in contrast,
have lagged behind in supporting this incre-
mentality typically demanded by problem-
solvers. The problem, we argue, is that the
basic task of probabilistic inference is typi-
cally formulated at too large a grain-size. We
show how a system built around a smaller
grain-size inference task can have the desired
incrementality and serve as the basis for a
low-level (propositional) probabilistic repre-
sentation service.

Propositional representation services such as truth
maintenance systems o�er powerful support for incre-
mental, interleaved, problem-model construction and
evaluation . However, while these systems provide
strong facilities for exploring alternate problem for-
mulations, they provide little control over tradeo�s
between inferential completeness and complexity, and
limited facilities for ranking alternate solutions. In
theory, probabilistic representations are ideal for rea-
soning about tradeo�s, but existing probabilistic infer-
ence systems are intended for inference within static
models, are ine�cient, and few o�er control over re-
source consumption. In summary, no existing general-
purpose low-level (propositional) representation ser-
vice provides incrementality with respect to model re-
vision and resource usage in a theoretically sound man-
ner. In this paper we begin by o�ering a rede�nition of
the basic probabilistic inference task. We sketch how
an inference engine which performs this task can serve

as the core of an incremental probabilistic representa-
tion service, and report on progress to date in actually
constructing such a system.

A belief net is a compact representation for the joint
probability distribution over a set of variables. The
representation consists of a directed acyclic graph over
the variables and a set of marginal and conditional
probability distributions, one for each variable [23].
While probabilistic inference in general is NP-hard
[2], current state-of-the-art belief-net algorithms ex-
ploit the independence information in the graph to
construct e�cient computations for probability dis-
tributions not explicitly stored in the belief net [23],
[17], [25]. However, in practice computational cost still
grows rapidly [18] (except in the case of a few special-
case net topologies), limiting application of these tech-
niques to belief nets with a few hundred variables at
most.

Also, the services o�ered by current belief-net based
systems are not well matched to the needs of higher
level problem solvers. As we discussed in [3] and [4],
problem solvers typically interleave model construc-
tion, revision, and evaluation. One class of proposi-
tional representation service, truth maintenance sys-
tems [11], [8], [20], [7], is optimized for this kind of
use: truth maintenance systems typically provide in-
cremental (but monotonic) model construction facil-
ities, and incrementally update inference when the
propositional model is expanded. Also, while resource
incrementality was not a feature of early TMS's, deK-
leer has found it desirable to extend the ATMS to in-
clude resource incrementality through various \focus-
ing" mechanisms [10], [9].

We believe a low-level representation service should
have two key properties: it should be and

. A system is with respect to
some capability to the extent that it can make use
of the results of previous computations to reduce the

P
t A;B t

E�ciency

j � �

� � � � � � � �

E�cient

skewed

P C P C B;A P B P A
: : : : : : : : : : : :
: : : :

3 Term Computation - a new task

de�nition

cost or improve the quality of results for subsequent
computations.

For example, a system would be incremental with re-
spect to queries if it took advantage of results com-
puted during processing of earlier queries in the pro-
cessing of some subsequent query. We identify four
aspects of incrementality possible in probabilistic in-
ference:

1. Resource incrementality: Any practically usable
system must o�er facilities for computing approx-
imate responses to queries. Incrementality with
respect to resources enables a system to use in-
crements of time to re�ne estimates or bounds.
This give the problem solver control over the
time/quality tradeo� in inference.

2. Query incrementality: Many probabilistic infer-
ence systems automatically compute the answer
to a �xed set of queries (eg, the set of marginal
probabilities for all the nodes in the net), and
most have no capability to process queries outside
this set. Incrementality with respect to queries
enables a system to accept multiple queries, and
to use partial results computed during processing
of earlier queries to simplify processing of subse-
quent queries.

3. Evidence incrementality: Evidence typically ar-
rives over time: A robot turns to scan a new part
of the scene, a medical lab reports a new test re-
sult, and so on. Incrementality with respect to
evidence enables a system to update its internal
representations when new evidence arrives, rather
than recompute all queries from the initial belief
net. Most modern belief net algorithms possess
evidence incrementality.

4. Representation incrementality: A belief net is an
impoverished representation: it is a minor exten-
sion of a propositional logic. We believe, there-
fore, that resource incrementality within a static
belief net is not enough, but rather that infer-
ence within a partial problem representation must
be able to be interleaved with representation ex-
tension operations, so that a problem solver can
heuristically search towards an appropriate prob-
lem representation. Incrementality with respect
to representation extension enables a system to
reuse results from prior computations even when
the representation on which those computations
is based is modi�ed between queries.

The last form of incrementality stated above may seem
a bit extreme. Yet, Wimp [1], a problem solver of the
kind sketched above, su�ered severly because the belief
net service it used was not incremental with respect to
representation extensions.

The goal of incrementality is e�ciency.
Not all e�ciency concerns, however, are captured un-
der the rubric of incrementality. A representation ser-
vice is to the extent that it maximizes the
information gain with respect to a query per resource
increment. Again, we can identify several desirable
forms of e�ciency:

1. E�ciency with respect to network structure:
There are three kinds of structure which can
be exploited: the network topology, intra-
distribution qualitative structure, and quantita-
tive structure. All modern belief net algorithms
exploit the conditional independence information
contained in the topology of a belief net to re-
duce computational complexity. However, there
is often considerable structure within the condi-
tional distributions in a belief net [5], [13], [26],
[12]. This structure can and should be exploited
to improve e�ciency. For a discussion of how this
structural information is captured and exploited
in SPI see [5]. Finally, there is often consider-
able numeric structure within a belief net, in the
form of skewness of distributions (a distribution is

when one of the probability masses in the
distribution is larger than the others, we will for-
malize this later). Several systems have explored
exploitation of this structure [22], [16], [15].

2. E�ciency with respect to resource incremental-
ity: We expect an incremental system to be only
minimallymore expensive than a non-incremental
system on comparable tasks.

Probabilistic inference in belief nets, as currently de-
�ned, is generally taken to be the computation of a
prede�ned set of prior or posterior marginal, conjunc-
tive, or conditional probability distributions in a �xed
network. This is often an unnecessarily restrictive for-
mulation of the problem. The actual computation of
any prior or posterior probability can in general be
viewed as a sum over a number of terms (in the ex-
treme case, this occurs as marginalization of the full
joint). While the number of terms to be computed is
exponential in the size of the network, the time com-
plexity of computation of a single term is linear in the
number of nodes relevant to the query. Consider the
network shown in �gure 1.

In this network:

() = () () ()
= 95 9 75+ 95 1 2+ 05 85 2+ 05 15 75
= 64125+ 019+ 0085+ 005625

We take the computation of a single term as an appro-
priate primitive task for probabilistic inference, and

P(A)
 t f
 .95 .05

A B C

P(B) t f
 At .9 .1
 Af .15 .85

P(C) t f
Bt .75 .25
Bf .2 .8

A

B C

E

F

G D

2

3

2

3

P

P P
P
P

t t t

A;B;C;E;F

F E

B;C

A

�

�

j �

j � j � �

j � j �

j �

� j

� j � j �

De�nition 1
skewed

Theorem 1

3.1 Basics of Probabilistic Inference

n =n
n

n

n =n n

=e

P B A P A

P D

D

P D P D B;C; F P F E P E

P B A P C A P A

P D P F E P E
P D B;C

P B A P C A P A

n Log n n

For example, through domain dependent knowledge of
paradigmatic \cases".

Proof in longer report.

A marginal probability distribution is

if one mass element is at least ,

where is the number of nodes in the network. A

conditional distribution is skewed if each row has this

property. In this case it need not be the same element

in each row.

Given a Belief-net over two-valued

variables such that all distributions are skewed with a

larger mass of at least , then the largest

terms in the joint distribution across the variables con-

tain a total mass of greater than .

Figure 1: Simple Belief Net

next show how an inference system with the needed
incrementality properties can be built around it.

A term computation approach will be interesting only
if we can get a signi�cant amount of information
through the computation of a small number of terms.
While there are many ways this might arise , we mo-
tivate the approach through the introduction of a crit-
ical assumption: we assume that most distributions in
a belief net are \skewed."

(1)

If all the distributions in a belief net are skewed, then
most of the probability mass for many queries is con-
tained in the largest few terms :

(1) +1

2

Note that this result is not based on any assumptions
about the structure of the network. The degree of
skewness assumed in the above theorem may seem ex-
treme. However, it is quite natural in many applica-
tions, such as failure modeling of engineered systems.
Thus, our answer to the question of which terms to
compute will be to compute the largest terms �rst.

It would be easy to construct a term computation
system which merely enumerated elements of the full
joint distribution across all variables in a network,
as in our example. Indeed, some existing proposals
for anytime probabilistic inference essentially do this
[15]. However, such an approach can be ine�cient.
There are several sources for this ine�ciency: First,
there would be a time ine�ciency due to unnecessary
repetition of sub-computations (eg, the computation
of () () in our example). Second, there

would be space ine�ciency resulting from keeping each
term separate. Finally, it is not obvious how such sim-
ple methods can be made incremental with respect to
newly arriving evidence, queries, or belief net exten-
sions.

Figure 2: Paradigmatic Belief Net

Developments in exploiting the probabilistic indepen-
dence relations expressed in the topology of a belief
net provide the necessary basis for designing compu-
tations which address these problems. In general, the
sparser a belief net, the more �nely any computation
can be partitioned into independent sub-computations
which share only a small number of variables. For ex-
ample, given the net in �gure 2, a query for () can
be computed by �rst computing the full joint probabil-
ity distribution, then marginalizing over all variables
except :

() = () () ()

() () ()

However, a much more e�cient form of the computa-
tion is:

() = (() ())
(()

(() () ()))

Having done this, we can eliminate redundant compu-
tation by caching intermediate results. Similarly, we
can reduce the space requirement by combining terms
when their bindings di�er only on variables not needed
in the remainder of the computation. In the extreme,
each of these can reduce the corresponding complex-
ity (time and space) for computing each term beyond
the �rst from to (), where is the number of
variables relevant to a query.

Construction of an optimal evaluation poly-tree for
an arbitrary query set is a hard problem [19]. How-
ever, simple, polynomial-time greedy heuristics per-
form quite well, and are described in [19]. This previ-
ous work was performed in the context of exact query

P(A) P(B!A)

P(C!A)

P(D!B,C,F)

P(G!F)

P(E) P(F!E)

G D

F E

X X

4

5

4

5

�

�

�

j � j �

G D P D
P G

P G P G F P F E P E

{

{

{

3.2 Basics of term computation

3.3 Term computation

Control

Actually, Z*, since step costs are multiplicative.

This selection criterion is similar to the techniques used
by deKleer [10] and Henrion [15]. Both use search on re-
stricted classes of networks for the diagnostic task of �nd-
ing most likely composite hypotheses, with good results.
One contribution of our work is to show how this technique
can be used in a more general setting.

evaluation (that is, computation of all terms), but the
theory remains applicable, and so will not be repeated
in detail here. The basic constraint is that a variable
may not be marginalized out unless it appears only
in the subtree below the node at which the marginal-
ization is to take place. One constraint we add for
term computation is that evaluation polytrees are built
such that, when searched depth-�rst left-to-right, the
marginal distribution for a root variable will be en-
countered before any conditional distributions naming
the variable. We enforce this constraint by construct-
ing the polytree bottom up, starting from the belief
net roots. The following is a sketch of the algorithm
we currently use to build the tree for a single query:

Select the nodes relevant to the query using a d-
separation algorithm.

Divide the nodes into layers, according to distance
from the furthest ancestor root.

For each layer, starting from the roots:

Partition the layer and the factors from the
previous layer into independent factors (fac-
tors with no overlapping variables).

Label each new factor with the variables it
contains which are needed by nodes in de-
scendant layers.

Build an internal evaluation tree for each fac-
tor using a modi�ed version of the set factor-
ing algorithm of Li, which always orders chil-
dren of a eval tree node so that a marginal,
if present, is on the left.

Consider the net in �gure 2, and assume our queries
are for and . The expression for () has been
given earlier. The expression for () is:

() = () (() ())

We can e�ciently combine these two expressions into
a single evaluation poly-tree, as shown in �gure 3

In the following section we �rst develop the basics
of term computation (which is inherently incremental
with respect to resource consumption, although not
e�cient, as we shall see) for a static network, set of
evidence, and set of queries. We then describe how
the fundamental computation can be made e�cient
and incremental with respect to queries, evidence, and
net extension.

The elementary primitive out of which we build a term
computation system is the construction of a stream of
terms for some node in the evaluation poly-tree for a

Figure 3: Evaluation Poly-tree for sample query set

set of queries. A stream of terms is a closure (a func-
tion with all of its parameters bound to some node in
the evaluation poly tree) which, each time it is invoked,
returns the next term for that node. This stream will
be constructed, recursively, by combining streams of
terms from child nodes in the poly-tree. We �rst de-
scribe the evaluation poly-tree and its construction,
then explain the term computation process.

Given an evaluation poly-tree for a query set, we can
recursively de�ne a primitive operation at each node
in the tree: generation of the next term at that node.
Term generation is simple: each term is generated by
forming the product of a term from the left child and
a term from the right child. There are, however, two
issues to consider: (1) Control: the decision of which
term to compute next; (2) E�ciency: Basic term com-
putation as outlined is quite ine�cient. We will show
how it can be made e�cient.

We earlier stated that we would attempt to
minimize the number of terms computed by comput-
ing largest terms �rst. We are exploring both optimal
(A*) and simple greedy search methods. A* requires
two measures, a measure of \distance so far" and a
heuristic estimate of remaining distance. We use the
mass computed so far as the inverted \distance trav-
eled so far," and the partial value returned by a partial
subterm as our heuristic estimate. This is an admissi-
ble heuristic, and so guarantees that the largest term
will be in front of the agenda upon termination . Prob-

6

�1

1

2

�

�

Z

Z

6

2

0

0

+ 5

Q

Q

n n

Q :

4 Error Estimates

E�ciency

Complexity

n
n

n

nlog n

n log n n

m
n

BinomialDistribution n; =n

m Binomial n; i

Q m Q <

Q Log Q Log m

:
Q

Q

NormalDistribution ; n =n

nA \ground" term is one with a unique binding for each
variable in the subtree rooted by the poly-tree node under
consideration.

lem solver guidance can be provided in the form of a
\scaling function" which has access to term bindings
and can scale the probability masses before they are
used to order the search agenda.

As we discussed earlier, a naive enumer-
ation of all terms is ine�cient in use of both space and
time. The space ine�ciency arises because the number
of terms computed in response to any query is expo-
nential in the number of relevant variables. However,
the major advance o�ered by recent developments in
probabilistic inference is reduction of the exponent for
computation of complete distributions from number
of relevant variables to number of relevant variables
manipulated at once at any node in the evaluation
polytree. We should not have to pay a higher price
simply to achieve incrementality. We can achieve this
e�ciency by merging, at each node, completed terms
which are distinguished only by bindings on variables
not needed at higher levels of the evaluation poly-tree.
This creates two problems. First, a term which has
already been incorporated into streams at higher lev-
els in the evaluation poly-tree can suddenly have its
value change (positively). Simple dependency tracking
mechanisms su�ce to record the information needed to
update these higher terms. Second, exactly what does
the Z* guarantee now mean? In poly-tree nodes where
marginalization takes place, a partial term can be ex-
tended in two ways: by multiplying its value by terms
from remaining distributions, or by adding additional
ground terms . While we use a heuristic which is ad-
missable in its estimate of the e�ect of the former,
our heuristic is inadmissable with regard to the lat-
ter (because it ignores marginalization). This means
we can only make a relatively weak statement about
terms in streams generated from poly-trees contain-
ing marginalization: that the �rst term returned will
be that term whose lower bound is highest after con-
sidering all complete ground subterms computed so
far. Note that the term need not be \complete" in the
sense that further ground terms may be added into it
during later computation. It is, however, complete in
the sense that it is a sum of a set of complete ground
terms.

SImilarly, the basic method is quite time ine�cient.
This is because in the course of search a node will be
typically be expanded many times. Marginalization re-
moves some, but not all, of this redundancy. Caching
streams, indexed by the node and the relevant bind-
ings, removes the remaining redundancy, and makes
term computation as space e�cient as standard exact
algorithms when computing all terms.

The key assumptions we make are
that: (1) the probability distributions are su�ciently

skewed and; (2) the graphical structure of the belief
net is su�ciently sparse. Under these assumptions, the
evaluation poly-tree will be such that the total num-
ber of terms computed in all streams, in the course
of computing the �rst term requests for each query
in the query set, will be times the number of nodes
in the poly-tree. Since the poly-tree is a binary tree,
this in turn is 2 in the number of variables relevant
to the query set. All the operations we have described
are either constant time, linear, or at worst ()
(reordering the agendas) in the number of terms in an
agenda. Therefore, the total complexity, in the ad-
mittedly most optimistic case, is 2 () where is
the number of variables relevant to a query set and the
number of terms requested. Our experience in actually
applying this procedure to three tasks, computation of
marginal probabilities, most likely composite hypothe-
ses, and complete decision analysis, con�rms that this
estimate is in fact realistic for a typical class of belief
nets describing decision models for diagnosis and con-
trol of simple digital circuits. The biggest unknown in
all of this is, of course, search complexity. We present
some experimental data on this point later.

Under the skewness assumption, the total mass con-
tained in the largest terms (ignoring marginaliza-
tion) from a computation involving variables is at
least:

[1]

Where:

= � []

This later is di�cult to solve for . For small (
3), we can approximate it as:

+ 2 [1] =

Using a normal to approximate the binomial, we can
approximate the total mass as (the \+ 5" adjustment
to in the cumulative makes the estimate more accu-
rate for small values of):

[1 ((1))]

In most real nets, some distributions will not meet
skewness requirements, while others will be more
skewed than required (eg, deterministic). We can use
least-squares �t of the cumulative density to obtain an
e�ective in these cases, and so estimate convergence
rate, remaining mass, and normalization factor when
needed.

ncLog c n
c

Queries

Observations

Model extension/reformulation

5 Making Term Computation

Incremental

6 Experimental Evaluation

The basic process sketched above is incremental and ef-
�cient with respect to computation of additional terms
for a static query set. In this section we discuss ex-
tensions to the basic method to make it incremental
with respect to new queries, evidence, and model ex-
tensions/revisions.

Given the recursive query decomposition
process we sketched above, it should be obvious that
the process is inherently incremental with respect to
newly arriving queries. One can incrementally elabo-
rate the evaluation tree for the new query, top-down,
testing for existence of a stream for a subquery before
creating a new stream.

New evidence (in the form of asser-
tions that a variable has been observed to take on a
speci�c value) a�ects an existing term computation
structure in several ways: (1) Terms which are bound
to unobserved values of the evidence variable must be
removed from all streams in which they appear; (2)
Terms for consequents of the observed variable are no
longer dependent on the antecedents of the evidence
variable, requiring pruning of the mass dependency
structure of the a�ected terms and propagation of the
resulting mass changes upward through the evalua-
tion poly-tree. (3) Certain query evaluation subtrees
will require additional child subtrees (e�ectively, con-
ditioning on the new evidence - see the discussion of
d-separation in, for example, [23] for further details).
We handle this by invalidating and recomputing all
streams on a line from the poly-tree node at which a
new subtree is added to the roots of the evaluation
poly-tree. All of these operations can be performed in
time proportional to (), where is the number
of nodes in the poly-tree and is the number of terms
in any one agenda. However, note that on completion
of these updates streams may not contain the same
number of completed terms. The underlying theory
has already been developed in [25]. The contribution
here is simply to point out its applicability to incre-
mental term computation.

We consider
monotonic network growth only. Network extensions
include both arc and node addition (we do not cur-
rently permit modi�cations to variable value spaces).
Both addition of new nodes and addition of arcs to
new nodes are trivial, neither a�ects the current eval-
uation polytree. Addition of arcs to existing nodes has
two e�ects: �rst, it may create a new loop in the net,
requiring that a marginalization be delayed. Second, it
introduces a new variable (the new antecedent) at the
point where the new arc has been introduced. Both
of these consequences are handled similarly: existing

terms in a stream must be split (conditioned) on the
values of the new antecedent. This later is work in
progress, and not fully implemented at this time.

We have been applying term computation to a vari-
ety of problems, but our core application is real-time
decision-making [6] (although not discussed in this pa-
per, the approach easily extends to arbitrary in
uence
diagrams). Figure 4 shows how term computation us-
ing Z* search scales with problem size (number of com-
ponents), as compared with exact, exhaustive evalua-
tion using a traditional belief net inference algorithm
(SPI, [25]). The two tasks are computation of the most
likely composite hypothesis (MLCH), and computa-
tion of the optimal action over a range of alternatives
including sensing and repair actions. The exact MLCH
computation is performed using the algorithm by Li
presented elsewhere in this conference. The decision
evaluation requires MSEU estimation over a two stage
decision problem (ie, we use one-step lookahead to es-
timate value of information for probe actions). Ex-
act decision evaluation rapidly becomes intractable,
while term computation scales more tractably. The
problem is more di�cult than it might seem: The de-
cision network for the 4 component system contains
27 nodes (eleven in the �rst stage, eleven in the sec-
ond stage, four outcome nodes, and the value node),
many of which do not have the skewed property. Each
component state node contains 4 values, includes an
\unknown" behaviour mode with uniform distribution
over outputs, and each input bit (1 for the one and two
gate circuits, two for the four gate circuit, and 3 for
the nine gate circuit, present and unobserved in the
second decision stage) has uniform distribution over
possible values it might take. Finally, the value node
does not meet our de�nition for skewness.

Gates MLCH MSEU
TCS Exact TCS Exact

1 .03/7 .02/12 1.5/271 .45/2308
2 .04/20 .04/64 3.7/607 3.7/30k
4 .11/33 .8/128 4.6/902 900/5M
9 .29/83 24/183k 45/4166 ?

Note: \n1/n2" indi-
cates cpu-secs/#-of-terms created for TCS,
cpu-sec/#-of-multiplications for Exact eval-
uation.

Figure 4: No fault

Several aspects of our approach are di�cult to eval-
uate theoretically, and best examined experimentally.
These include the use of Z*, marginalization, and sub-
stream caching.

7

7

log n

7 Discussion

8 Conclusion

References

Details in extended technical report.

et al

Proceedings of the

Ninth National Conference on Arti�cial Intelli-

gence

Gates MLCH MSEU
TCS Exact TCS Exact

1 .03/7 .02/12 .83/184 .45/2308
2 .19/40 .04/64 .19/40 3.7/30k
4 .40/104 .8/128 7.4/1300 900/5M
9 1.4/313 24/183k 107/3113 ?

Note - all entries generated using Z* except
the 9 component decision, which used greedy
search.

Figure 5: One fault

First, why use Z*, a potentially exponential time
method, for �nding largest terms? In fact, while �g-
ure 4 was generated using Z* (except for the single
fault 9 gate decision), in practice we often use a mod-
i�ed best-�rst strategy for decision evaluation . Z*
performs quite well for the MLCH task, handling the
di�cult nine gate case quite well. It has more trouble
with decision evaluation. Its behavior is extremely sen-
sitive to the quality of the factoring and the particular
data available. With the best-�rst search, however, we
have obtained decision times of 2-8 secs for both nom-
inal and di�cult scenarios. We are unsure at this time
whether Z* is a practical control strategy for use in
the kind of problem solving which has motivated this
research, or more domain speci�c control mechanisms
will be needed. Future research will be aimed at inves-
tigating this issue. When we abandon Z*, however, we
lose theoretical guidance regarding how many terms to
compute, and must rely on experience and heuristics.

Second, is marginalization worth it, under the assump-
tion that only a few terms will be computed, and
therefore marginalization opportunities will be rare?
In fact, little marginalization occurs in typical appli-
cations to date. On the other hand, the overhead of
checking for opportunities to marginalize is less than
10% of execution time.

Third, is caching of substreams worth it, for the same
reason? Here the data is less ambiguous. The four
component decision problem exceeds available space
without substream caching.

We have sketched a process which is essentially heuris-
tic search for the set of bindings across a set of vari-
ables that maximizes the posterior probability across
those variables. In another context, deKleer has re-
ferred to this as the \Most Likely Composite Hypoth-
esis" problem [9], Henrion has described an algorithm
for diagnosis in very large knowledge bases [15], Pearl
has discussed the problem of \Distributed Revision of

Composite Beliefs" [21], and Poole has sketched meth-
ods for probabilistically guided search [24]. Srinivas
[27] treats a dual problem, that of obtaining the pos-
terior probabilities of assumptions in an ATMS. From
another perspective, Horvitz have been develop-
ing bounded conditioning as an approach to anytime
probabilistic inference [16]. We believe the contribu-
tions of our work are several: (1) We have shown how
this approach can be extended to arbitrary queries;
(2) We have shown how, with caching and marginal-
ization, an incremental probabilistic inference system
based on computation of individual terms can be made
as e�cient at computing all terms (within a factor
of ()) as the best algorithms for exact inference;
(3) We have demonstrated that this process can be
made incremental with respect to queries, evidence,
and model revisions; (4) We have argued that such a
system can serve as the basis for a tractable general-
purpose low-level representation service.

Finally, a note regarding the relationship between this
approach and propositional truth maintenance sys-
tems. Many of the internal dependency tracking mech-
anisms we have sketched are similar to those in an
ATMS. There are several key di�erences. First, due to
the loss of modularity in probabilistic inference [14], we
propagate along the evaluation polytree rather than
the original network. Second, The query driven na-
ture of the control strategy permits us to marginalize
over variables no longer needed on a path, avoiding
the (potentially) exponential explosion of ATMS la-
bel size with network depth. Finally, ATMS nogood
maintenance is replaced by Bayesian conditioning on
evidence.

Problem solvers demand more interaction with an un-
derlying representation service than is typically pro-
vided by current implementations either of truth main-
tenance or of e�cient probabilistic inference in belief
nets. We have sketched the current status of work in
progress to develop an appropriate functional interface
to a probabilistic representation service based on be-
lief nets. This work is based on a rede�nition of the
basic inference task from exact computation of a prior
or posterior probability distribution to computation of
a single term, or conjunct, in that prior or posterior.
It further provides incremental revision capabilities,
rather than assuming a static network.

[1] E. Charniak and R. Goldman. A probabilistic
model of plan recognition. In

, pages 160{165, 1991.

Arti�cial Intelligence

Proceedings

of the 1988 Workshop on Uncertainty in AI

Inter-

national Journal of Approximate Reasoning

Proceedings of the

Seventh Annual Conference on Uncertainty in Ar-

ti�cial Intelligence

Proceedings, Third International Workshop on

the Principles of Diagnosis

Proceedings of the Seventh Conference on

AI Applications

Arti�cial

Intelligence

Proceedings of the Ninth National Conference on

Arti�cial Intelligence

Proceedings of the Eleventh

International Joint Conference on Arti�cial In-

telligence

Arti�cial

Intelligence

Proceedings of the Seventh

Annual Conference on Uncertainty in Arti�cial

Intelligence

Proceedings of

the Fifth Conference on Uncertainty in AI

Proceedings of AAAI-87

Proceedings of the Seventh Annual Conference on

Uncertainty in Arti�cial Intelligence

Proceedings of

the Fifth Conference on Uncertainty in AI

Journal

of the Royal Statistical Society

Pro-

ceedings of the Annual Canadian Arti�cial Intel-

ligence Conference

Arti�cial Intelligence

Arti�cial Intelligence

Arti�cial Intelli-

gence

Probabilistic Reasoning in Intelligent

Systems

Proceedings of the Third International

Workshop on Principles of Diagnosis

Proceedings Eighth National Conference

on AI

Ninth Annual Conference on Uncertainty on

AI

[2] G. Cooper. The computational complexity of
probabilistic inference using bayesian belief net-
works. , 42(2-3):393{406,
1990.

[3] B. D'Ambrosio. Process, structure, and modular-
ity in reasoning under uncertainty. In

, pages
64{72. AAAI, August 1988.

[4] B. D'Ambrosio. Incremental evaluation and con-
struction of defeasible probabilistic models.

, July
1990.

[5] B. D'Ambrosio. Local expression languages for
probabilistic dependence. In

, pages 95{102, Palo Alto, July
1991. Morgan Kaufmann, Publishers.

[6] B. D'Ambrosio. Value-driven real-time diagnosis.
In

, October 1992.

[7] B. D'Ambrosio and J. Edwards. A partitioned
atms. In

, pages 330{336. IEEE, February
1991.

[8] J. de Kleer. An assumption-based tms.
, 28(2):127 { 162, March 1986.

[9] J. de Kleer. Focusing on probable diagnoses. In

, pages 842{848. AAAI, July
1991.

[10] J. de Kleer and B. Williams. Diagnosis with be-
havioral modes. In

, pages 1324{1330. IJCAI, August 1984.

[11] J. Doyle. A truth maintenance system.
, 12(3):231{272, 1979.

[12] D. Geiger and D. Heckerman. Advances in prob-
abilistic reasoning. In

, pages 118{126. Morgan Kaufmann,
Publishers, July 1991.

[13] D. Heckerman. A tractable inference algorithm
for diagnosing multiple diseases. In

, pages
174{181, August 1989.

[14] David Heckerman and Eric. Horvitz. On the ex-
pressiveness of rule-based systems for reasoning
with uncertainty. In ,
pages 121 { 126. AAAI, August 1987.

[15] M. Henrion. Search-based methods to bound di-
agnostic probabilities in very large belief nets. In

, pages 142{
150. Morgan Kaufmann, Publishers, July 1991.

[16] E. Horvitz, H. J. Suermondt, and G. Cooper.
Bounded conditioning: Flexible inference for de-
cisions under scarce resources. In

, Au-
gust 1989.

[17] S. Lauritzen and D. Spiegelhalter. Local compu-
tations with probabilities on graphical structures
and their application to expert systems.

, B 50, 1988.

[18] Z. Li. Experimental characterization of several
algorithms for inference in belief nets. Technical
report, Master's thesis, CS Dept., Oregon State
University, 1990.

[19] Z. Li and B. D'Ambrosio. An e�cient approach
to probabilistic inference in belief nets. In

. Canadian Association for Ar-
ti�cial Intelligence, May 1992.

[20] D. McDermott. A general framework for reason
maintenance. , 50(3):289{
330, August 1991.

[21] J. Pearl. Distributed revision of composite beliefs.
, 33(2):173{216, 1987.

[22] J. Pearl. Evidential reasoning using stochastic
simulation of causal models.

, 32(2):245{258, 1987.

[23] J. Pearl.
. Morgan Kaufmann, Palo Alto, 1988.

[24] D. Poole. Search in bayesian horn clause net-
works. In

, October
1992.

[25] R. Shachter, B. D'Ambrosio, and B. DelFavero.
Symbolic probabilistic inference in belief net-
works. In

, pages 126{131. AAAI, August 1990.

[26] R. Shachter and R. Fung. Contingent in
uence
diagrams. Tech report, Advanced Decision Sys-
tems, September 1990.

[27] S. Srinivas. A probabilistic extension of the atms.
In

, July 1993.

