
Some Experiments with Real-time Decision Algorithms
Bruce D’Ambrosio
Computer Science

Oregon State University
Corvallis, Oregon 97331

dambrosi@research.cs.orst.edu

Scott Burgess
Computer Science

Oregon State University
Corvallis, Oregon 97331

burgess@research.cs.orst.edu

Abstract
Real-time Decision algorithms are a class of
incremental resource-bounded [Horvitz, 89] or
anytime [Dean, 93] algorithms for evaluating
influence diagrams. We present a test domain
for real-time decision algorithms, and the results
of experiments with several Real-time Decision
Algorithms in this domain. The results
demonstrate high performance for two
algorithms, a decision-evaluation variant of
Incremental Probabilisitic Inference
[D’Ambrosio, 93] and a variant of an algorithm
suggested by Goldszmidt, [Goldszmidt, 95], PK-
reduced. We discuss the implications of these
experimental results and explore the broader
applicability of these algorithms.

Introduction

The problem
A variety of algorithms have been proposed as candidates
for anytime [Dean, 93] or resource-bounded [Horvitz et
al, 89] inference, including [D’Ambrosio, 93], [Horvitz et
al, 89b], and a variety of simulation-based algorithms
such as [Fung, 89]. The need for such algorithms arises
because implementable agents have finite computing
resources [Russell, 91]. The world in which an agent is
embedded continues to evolve while the agent chooses an
action. Thus, the utility of an action depends not only on
the action selected, but also on the time at which the
action is performed, which in turn depends on how long it
takes the agent to choose the action. In these
circumstances, a fast but approximate decision algorithm
may outperform an “optimal” but slower one. In this
paper we present experimental results characterizing
several promising candidate real-time decision algorithms.
We begin with a short review of the set of algorithms we
chose to characterize: a search-based algorithm
(Incremental Probabilistic Inference, [D’Ambrosio, 93])
and two variants of a decision algorithm suggested by
Goldszmidt [Goldszmidt, 95]. Characterizing such
algorithms is non-trivial. We describe the On-Line
Maintenance Agent (OLMA) [D’Ambrosio, 92],
[D’Ambrosio, 96], an idealized task domain that has the
necessary properties to permit informative experimental

estimation of the performance properties of the various
algorithms. We then present experimental results
obtained using each of the test algorithms (and two
reference algorithms, exact inference and random choice)
on a sample problem in the OLMA domain. We close
with a discussion of the results.

Our primary findings are, first, that real-time algorithms
do indeed make sense in this domain and, second, that the
best algorithms exhibit a smooth tradeoff between time
spent and quality of decision. Our experimental evidence
supports our intuition that, as more time is available, it
pays to “think” more deeply before acting. The algorithm
with the best overall performance is one of the variants of
the Goldszmidt algorithm, although we will place some
caveats on this conclusion in the discussion section.

The Candidate Algorithms
Our evaluation focused on two promising approximate
decision algorithms we term D-IPI and K-reduced. D-IPI
is an extension of the IPI search algorithm [D’Ambrosio,
93] to include decision and value nodes. K-reduced is a
use of Goldszmidt’s fast method of computing prior
Kappa values [Goldszmidt, 95]. In this section we briefly
describe each of these algorithms, as well as several
reference algorithms we used to establish benchmark
solution values.

D-IPI
D-IPI is a simple extension of the IPI incremental
inference algorithm [D’Ambrosio, UAI-93]. IPI is an
incremental search-based variant of the SPI [Li &
D’Ambrosio, 94] algorithm. It first forms a symbolic
expression (marginalization over the joint pdf)
corresponding to a query. It then constructs an evaluation
tree for the query by applying simple algebraic transforms
to convert the expression into efficiently evaluable form.
Finally, it searches the tree top-down for large-value joint
instantiations of the variables. IPI uses caching to identify
repeated visits to a tree node, and dependency tracking to
update all parents when a subtree is searched further. We
have shown that, through these techniques, IPI retains the
space and time complexity of efficient exact inference
algorithms. The IPI algorithm as described in
[D’Ambrosio, 93] searches over evaluation trees
consisting of conformal product operations. It is a simple
extension to enable IPI to search over more general

expressions, including sum and difference operators. This
yields an algorithm capable of performing incremental
inference over our full local expression language
[D’Ambrosio, UAI-91; D’Ambrosio, IJAR-95]. D-IPI is
a further extension of the IPI algorithm to include a
maximization operator. This yields an algorithm capable
of searching over MSEU expressions. Construction of an
incremental form of the maximization operator is an
interesting programming exercise, but presents no
interesting theoretical challenges.

We should note that the factoring algorithm used in IPI is
quite different from that used in normal SPI. The goal of
factoring for SPI is to minimize the size of the largest
intermediate conformal product. This is one of the goals
for factoring an expression for IPI, but a second, equally
important goal, is to place highly skewed distributions
early in the search process. Finally, the version of D-IPI
used in these experiments is a relatively simple one that
makes no attempt to optimize maximization operators: we
simply form the expression for expected utility and then
repeatedly maximize and marginalize, working back from
the last decision in the diagram.

K-reduced
Goldszmidt [Goldszmidt, UAI-95] has presented an
algorithm for rapid computation of prior Kappa values in
a belief net. In that paper, he suggested that this algorithm
could be used to compute reduced domains for the
variables in a network (i.e., for each variable select only
those domain values with Kappa = 0), and that exact
inference over these reduced domains might be an
interesting form of approximate inference. We
implemented a variant of this technique as follows: rather
than actually compute Kappa values, we simply compute
prior probabilities for every node in the network ignoring
loops. That is, given a node ordering, we compute for
each node in order:

P n P n P ni i i j iji
() (|) ()= π επΠ

where π i is the set of immediate parents of node i. This
step can be performed in time linear in the number of
nodes in the network. We then build a list of all
probabilities thus computed, in descending order
(duplicates eliminated). This step takes n log(n) time.
Finally, we select the highest probability value computed
for each node, and then select the smallest value in this set
(the least-greatest-prior). We then construct an anytime
algorithm as follows:

1. Find the least-greatest-prior in the sorted list of all
priors. Call this the current-minimum-prior.

2. For as long as you like, iterate:
2.1 For each node in the network, reduce its
domain to include only those values whose prior is
greater than or equal to the current-minimum prior.
Notice that, by construction, every node will have
at least one such domain value.

2.2 Apply your favorite decision algorithm to the
resulting network. This yields the decision
recommendation for this iteration.

2.3 Replace the current-minimum-prior with the next
smaller entry in the sorted list of priors.
We call this algorithm Kappa-reduced Exact, or K-
reduced, even though we don’t explicitly compute Kappa
values, since it is essentially identical to the procedure
described by Goldszmidt in conversation.

PK-reduced
As will be seen shortly, experimental results showed
mediocre performance for K-reduced. This led us to try a
variant in which we estimate posterior probabilities, rather
than priors. We call this variant PK-reduced. This variant
makes two changes to the K-reduced algorithm. First, we
reduce the distributions at all evidence nodes and each of
their immediate children by selecting only values
consistent with the evidence. Then we perform the prior
estimation described above. Finally, we perform a sweep
back through the net, starting at evidence nodes1. That is,
for each parent of each evidence node, we compute
P(p)ΠjP’(ej|p).

This computation proceeds backward through the net in a
manner analogous to Λ message propagation. In fact,
some thought should make it clear that this procedure is,
in fact, a sloppy variant of Pearl’s polytree propagation
algorithm.2

Once posteriors are estimated, we sort them into
descending order and use them to reduce variable domains
as described in the K-reduced algorithm description
above.

Random
As a benchmark, we used a random choice of action. We
surmised there might be circumstances in which “doing
something, anything” might be better than spending any
time computing, or that spending a short time computing
might invariably lead to choosing exactly the wrong
action. Random provides a lower bound on available
performance.

Exact
Finally, we used the SPI [Li and D’Ambrosio, 94]
algorithm, extended for decision evaluation, to compute

1This is not necessary if all evidence is at root nodes.
However, for the sensor-based applications we focus on,
evidence is typically at leaf nodes.

2 It would be better to use the full polytree algorithm, and
there is no reason not to do so. However, due to the
topology of the particular networks used in our
experimental evaluation, that would not change the
experimental results we present in this paper.

exact action recommendations. This algorithm provides
another benchmark against which to evaluate the real-time
decision algorithms: there is no point using a real-time
algorithm in those areas of parameter space where it
performs no better than exact inference.

The Task: On-Line Maintenance
We chose the task of diagnosis and repair for evaluating
our candidate algorithms. Diagnosis is often formulated as
a static, detached process, the goal of which is the
assessment of the exact (or most probable) state of some
external system. In contrast, we view diagnosis as a
dynamic, practical activity by an agent engaged with a
changing and uncertain world. Further, we extend the task
to include the repair task to focus diagnostic activity. Our
initial investigations have focused on the task of
diagnosing a simple digital system in situ. Our
formulation of embedded diagnosis has the following
characteristics:

• The equipment3 under diagnosis continues to
operate while being diagnosed.

• Multiple faults can occur (and can continue to
occur after an initial fault is detected).

• Faults can be intermittent.
• There is a known fixed cost per unit time while

the equipment is malfunctioning (i.e., any
component is in a faulted state).

• The agent senses equipment operation through a
set of fixed sensors and one or more movable
probes.

• Action alternatives include probing test points,
replacing individual components, and simply
waiting for the next sense report. Each action has
a corresponding cost.

• The agent can only perform one action at a time.
• The overall task is to minimize total cost over

some extended time period during which several
failures can be expected to occur.

We term this task the On-Line Maintenance task, and an
agent intended for performing such a task an On-Line
Maintenance Agent (OLMA). An interesting aspect of this
reformulation of the problem is that diagnosis is not a
direct goal. A precise diagnosis is neither always
obtainable nor necessary. Indeed, it is not obvious a priori
what elements of a diagnosis are even relevant to the
decision at hand.

Our first commitment is that the task is essentially a
decision-theoretic one. That is, the essential task of the
agent is to act in the face of limited information. In order
to formulate this problem decision-theoretically, the agent

3 We will use system or agent to refer to our diagnostic
system, and equipment to refer to the target physical
system.

must have knowledge of several parameters of the
situation: It must know the cost of each type of
replacement or probe act, the cost of system outage, and
expected probabilities of component failures over the next
decision cycle4. The latter two costs will vary with agent
processing capacity, since a slower agent will take longer
to make a decision. This will increase the chance of a
component failure during a single decision cycle, and
increase the cost of a system outage over a decision cycle.
A naive attempt to formulate this task decision-
theoretically encounters three problems.

First, a proper decision-theoretic consideration of this task
would require looking ahead over all decisions over the
entire operational life of the equipment in order to
optimize the first decision. This is clearly computationally
infeasible, at least on-line. Second, even if the first
problem can be solved, time is passing while the agent is
computing the first action, and it is not clear how the
agent should trade quality of a decision for timeliness of
the solution in choosing actions. Finally, the agent must
act repeatedly, yet each action is in a new context: not
only must a new set of input data be considered, but also a
new set of beliefs about system state, based on prior
information and computation.

The infinite look-ahead problem can be broken into two
subproblems, one for replacement actions and another for
probe actions. We circumvent the first subproblem, that of
infinite look-ahead for replacement actions, as follows.
For replacement actions we use an assumption of policy
stability to derive long term utilities for these actions. This
assumption is roughly as follows: If I choose not to
replace a component now, then, all other things being
equal (i.e., no new unexpected sense data), I will make the
same choice next time. Under this assumption, the
temporal consequences of a decision extend, not for a
single sense/act cycle, but several decision cycles into the
future. This effectively translates into a multiplier for the
equipment downtime cost. The equipment/agent pair
retains interesting behavior as long as the multiplier, t,
obeys the following constraints:

t >> r/f
t << r/pf

where:

1. t is the outcome state duration (effectively, the
multiplier for failure costs),
2. r is the cost of component replacement,
3. f is the cost of component failure for a unit
clock time, and

4 Not strictly true: one could formulate the problem as a
model-free reinforcement learning problem and address it
with decision-theory grounded algorithms, such as various
forms of asynchronous dynamic programming (e.g., Q-
learning).

4. p is the probability of component failure
during a unit time interval.

For further discussion of these constraints see
[D’Ambrosio, 92].

We resolve the second subproblem, that of determining
the expected value of probe actions, by using the standard
decision-theoretic heuristic of one-step look-ahead. The
result of these two techniques gives us an abstract
decision-basis for the first decision as shown in Figure 1,
where the link from the state at time one to the value node
reflects the costs of operating in that state for one decision
cycle, and the link from the state at time two to the value
node reflects the cost of operating in that state for t time
units. We follow standard influence diagram notation in
this figure: circles represent abstract stater node,
rectangles represent decision nodes, and the rounded
corner object is the utility node. The dashed arrows
between O0 and D0 and between O1 and D1 indicate
information arcs. Finally, we label the third state node Sn
rather than S2 to indicate is represents the long term
consequences of the second decision, as described above.
Note this is an abstraction of the actual decision basis
used. S0, for example, actually contains 6 nodes for the 4
gate circuit studied in this paper, and O0 contains 4 nodes.

S0 S1 Sn

O0 O1D0 D1

V

Figure 1: Abstract Influence Diagram for First Decision

Our second problem was that of trading quality-of-
solution against time-to-solution. There are two issues
here. First, if the equipment is faulted, the longer we
delay taking a repair action, the higher the cost incurred.
Second, since equipment operation is in parallel with
agent operation, a fault may occur while the agent
“wastes” time reasoning about a prior set of sense data.
For this set of experiments we adopt a very simple agent
architecture: once the agent begins reasoning it ignores all
further input until it has chosen an action and executed it.

We resolve our final problem, that of making subsequent
decisions, by simply extending the above decision basis
forward in time by one decision stage each cycle. A
sample decision basis for the second decision made by the
maintenance agent is shown in Figure 2. This method
would seem to have a problem: one would expect that
decision time (and space) would increase at least linearly
with time. In fact, both time and space requirements are
constant. We simply replace the previous decision stage
with the factored joint across posterior component state.
Details of this vary somewhat depending on the decision

algorithm used. For all algorithms except random and
exact we used IPI to estimate the factors of the updated
prior. For exact we used exact inference to compute the
factors of the updated prior.

S1 S2 Sn

O1 O2D1 D2

V

Prior

Figure 2: Influence Diagram for time 2

In summary, our agent executes the following cycle each
time it is called upon to choose an action:

1. Extend the decision basis forward in time by
one decision stage.
2. Acquire current sense data (including probe
value if any).
3. Find the action with minimum expected cost.
4. Post the selected act as evidence in the belief
net, prune (via posterior prior computation as
discussed above) the now unneeded oldest stage
from the net, and return selected action.

One final comment: the problem is surprisingly complex.
The simple problem instance studied in this paper is well
beyond the capability of current POMDP solution
methods (the MDP state space for the simple 4 gate
problem studied in this paper has 256 states, ignoring the
stocahstic behaviour of the unknown mode!). Simple
policies which only consider current observations can
perform arbitrarily poorly

Method
Our goal was to characterize the performance of the real-
time algorithms with respect to variations in cpu speed.
In particular, there are several hypotheses we wished to
test:

1. The fundamental hypothesis on which both IPI
and K-reduced are based is that it is possible to
make effective decisions by considering only a very
few instantiations of the decision model.
2. A further assumption of most real-time and
anytime algorithm research is that it is in fact useful
to vary the amount of computation performed as
the time available (or equivalently, cpu speed)
changes.

3. Finally, that there is a range of cpu speed over
which the real-time algorithms outperform other
alternatives, and become the decision method of
choice.

Our experimental testbed has a “cpu-clock” parameter
(Quantum) that controls the number of cpu seconds given
the agent between each advance of the simulation clock.
The greater the number of seconds given, the more time
allowed for computation, and so the faster the effective
speed of the cpu executing the decision algorithm. Each
algorithm has a step parameter which controls the number
of steps the algorithm should execute.

We designed test scenarios within the parameter space
described earlier that would typically yield 7-10
component failures per scenario. In order to keep failure
rates low enough this meant all runs were for at least 1000
simulation steps. We then adopted as our cost metric cost
per failure, that is, total cost for a run divided by the
number of failures which occurred. Each value shown in
the graphs which follow is an average of at least two, and
usually three, runs (each testbed run is made with a
different random seed to generate a new pattern of
component failures). Finally, the real-time algorithms (D-
IPI, Κ-reduced, and PΚ-reduced) each have a parameter
which must be set (number of terms to compute to D-IPI,
and threshold probability to use for Κ-reduced and PΚ-
reduced). We gathered data at each cpu-clock setting for a
range of settings of these parameters, for each setting of
the cpu-clock parameter. In all, several cpu-months of
Sparc-2 time were consumed in gathering the data
presented in the next section.

Results
In this section we present numerical results of our
experiments. We show detailed measurements for D-IPI,

Κ-reduced, and PΚ-reduced, and overall results
comparing all five algorithms. These results are discussed
in the following section. We used the following
parameters for all the runs in this section:

1. Failure probability (per gate): .003 (distributed
uniformly among Stuck0, Stuck1, and Unknown,
the three failure modes we modeled.)

2. Replacement cost: 3 per gate replaced

3. Probe cost: 1

4. Failure cost: 1 for each time step at least one gate
is in a failure mode.

D-IPI
Table 1 shows the numerical results obtained by averaging
three runs for each point. The table shows Cost/Failure,
the total cost of the run divided by the number of failures
that occurred. Steps, for D-IPI, is the number of calls to
the top of the search tree (number of terms or
instantiations computed, sort of, see [D’Ambrosio, 93]).
Missing entries in the table reflect missing data: we simply
ran out of time to collect all the data needed.

Quantum
Steps 1 2 4 8 16 32 64 128

1 40.7 27.8 25.9 20.56 26 29.5 21 20.6
2 37.3 34.4 28 27.3 28.7 21 26 22
4 40.3 27.7 23 22.9 21 19.8 21.5 19
8 41.2 35.9 25.4 23.3 30 19.2 35

16 65.6 72.8 60.5 23.4 23 38.3 28 22
32 59.2 63.6 48 24.8 21.9 18 23 29
64 40.1 50 19.75 22.6 19 19 20

128 107 63 32 23.5 15 18.6 18.8
256 122.7 86.5 58 45.5 24 24.8 21.4

Figure 3: D-IPI costs

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

Quantum

1
2
4
8
16
32
64
128
256

Figure 4: D-IPI Cost/Failure

Κ-reduced
Next we present results for Κ-reduced. Preliminary data
indicated that this algorithm was not competitive, so we
did not collect a full data set for Κ-reduced.

Steps
Quantum 1 4 16 64

1 850 380 500 135
4 500 200 130 110

16 68 28 20 19
64 150 55 25 16.5

Figure 4: Κ-reduced cost/failure

10

100

1000

1 4 16 64

Quantum

C
o

st
/F

ai
lu

re

1

4

16

64

Figure 5: K-Reduced

PΚ-reduced
We hypothesized that the reason for poor performance of
Κ-reduced was that, since it was estimating priors to
decide which values to include for each variable, it was
ignoring the current evidence and making poor choices. A
simple solution is to modify the algorithm to estimate
posteriors instead, as described earlier. In this section we
show the data collected for that modified algorithm.
Figure 7 shows the cost/failure data for PK-reduced in
tabluar form. the same data is showed in graphical form
in figure 10.

Quantum
Steps 2 4 8 16 32 64 128

1 41.4 33.1 23.9 21.8 28.4 24.3 21
2 21.3 34.5 20.6 17 18.6 17 19.2
4 25 26 20 38.9 19.95 18.9 18.6
8 29.7 20.3 22.1 21.1 17 18.34 18.1

16 36.9 23 18.5 16.95 17.7 20.6 15.9
32 53 31.8 22.9 25.4 17.9 19.1 15.8
64 76.3 41.9 29.9 31.6 17.3 15 18.6

128 175.1 39.7 34 36.6 17.3 18.8 15.5
256 90.7 43 29 40.2 14.8 18 14.1
512 113.4 50 38.8 37.7 17.6 17.3 18.3

Figure 6: PΚ-reduced Cost/Failure

Overall
Finally, we show the overall results for all algorithms,
including random and exact. For the three incremental
algorithms we plot, for each quantum, the lowest
cost/failure achievable by that algorithm at that quantum.
Notice in the earlier charts that the optimum (minimum
cost/failure) number of steps varies with quantum. As a
result, these curves are generally “flatter” than any single
curve in the previous graphs.

Quantum
Algorithm 1 2 4 8 16 32 64 128
Random 70.8 70.8 70.8 70.8 70.8 70.8 70.8 70.8
Exact 74 37 23 18
Search 37.3 27.7 23 19.75 21 18 18.6 18.8
Kappa 68 28 20 16.5
PKappa 21.3 20.3 18.5 16.95 14.8 15 14.1

Figure 8: Overall Comparison of Algorithms

10

100

1 2 4 8 16 32 64 128

Quantum

Random
Exact
Search
Kappa
PKappa

Figure 9: Overall Cost/Failure

10

100

2 4 8 16 32 64 128

Quantum

1
2
4
8
16
32
64
128
256
512

Figure 10: PΚ-Reduced

Discussion

OLMA results
All three real-time algorithms generally followed the
expected trend:

1. For a given number of steps of computation,
the algorithm generally performs better when given
more cpu time.
2. The number of steps at which minimum
cost/failure is obtained generally increases as more
cpu time is available.

These results are consistent with, and support, the general
theoretical framework for resource-bounded algorithms.
Observation 2 is particularly interesting. While intuition
predicts such results, it is reassuring to see that these
algorithms do effectively trade cpu-time for solution
quality in the step-size range of interest for real-time
performance.

There are three interesting aspects of the results that we
believe to be reproducible. First, we notice that for D-IPI
and PΚ-reduced, very small amounts of computation, even
a single increment, result in surprisingly good decision
making. We are surprised that one can make reasonable
decisions with so little computation, and are investigating
the study problem further to understand why this is so.

One reason, we believe, is that the problem is relatively
benign. That is, there are no dramatic costs for missteps.
However, while there are no dramatic consequences for
bad actions, faults must be corrected fairly quickly, since
otherwise failure costs continue to accrue. Second,
especially for D-IPI, the cost/failure curves holding
number-of-steps fixed are not generally monotonic. This
implies that practical use of this algorithm might require
careful “tuning” of the number of steps. We are planning
to explore strategies in which the number of steps is
context dependent. Finally, both D-IPI and PΚ-reduced
substantially outperformed both the random strategy and
exact computation over the entire range of our
experiments.

D-IPI and PΚ-reduced were the clear winners in this set of
experiments. PΚ-reduced, in particular, provided very
smooth and consistent performance over the entire
experimental range, and required less tuning than D-IPI.
On the other hand, Κ-reduced performed reasonably well,
but its performance was not terribly predictable, and it
performed very poorly in the early stages of computation.

Scaling
These results are interesting, but it is difficult to
generalize from a single data point. Three questions are of
interest:

1. How do the results scale with increasing
problem size?

2. How do the results scale with increasing look-
ahead depth (number of decision stages)?
3. How are the results affected by parameters of
the particular problem (failure probabilities,
replacement costs, inspection costs, etc.)?

We are beginning to explore these issues, and have some
preliminary data on the first two questions.

Scaling with Problem Size
In earlier work with D-IPI we tested scaling with problem
size by building a series of test problem instances of
increasing size [D’Ambrosio, 92]. The problem instance
used in this paper, a 4-gate “half-adder” circuit, was
drawn from the middle of that series, in which problem
instances ranged from one to sixteen gates. In that study
we found that both posterior estimation and decision
evaluation times, for small numbers of steps, grew only
slightly faster than linearly with number of gates.

Scaling with Look-ahead Depth
A recent study by one of us (D’Ambrosio) at Prevision
looked at evaluation complexity of multistage decision
problems as a function of both the number of steps of
computation and the number of decision stages. The
problem studied was target identification. In the variant
we studied, a single platform (aircraft) would be detected
at a random distance, moving directly towards the agent.
The agent had available a number of noisy sensors, and its
goal was to “declare” the identification of the target as
soon as possible. Sensors had varying costs per use, and
improved in reliability as the target approached. The
utility of declaring the correct identification declined as
the target approaches, and there was a substantial dis-
utility for incorrect declaration.

The table below shows the inference time required per
decision by D-IPI, in cpu seconds for Common lisp on a
Macintosh Quadra 610.

Depth Steps: 1 3 6 10 16
1 2.1 3.7 4 7 16
2 3 3.5 4.5 15.5 20.6
4 3.5 3.5 6.2 15.5 25
5 6.5 6 9.2 19.5 45
6 6.7 6.7 14 31 64
7 10.5 14 23 24.5 87.5
8 10.5 9.7 15.7 30 116
9 11 10.5 19.2 37 108

10 19 25 55 35 120

Table 7: Inference Time Per Decision

These results are surprising. We did not expect IPI to be
able to search to depth 10 without incorporation of
significant domain heuristics. We did include one simple
heuristic in the search: we ruled out consideration of
declaration acts for any target id other than the actual id
hypothesized in the current scenario5. This heuristic did
not require modification of the algorithm since it can be
expressed as a local expression [D’Ambrosio, 91] on the
decision node domain.

In contrast, our experiments revealed a problem in
applying PΚ-reduced to the single-target ID problem. As
shown in the table below, PΚ-reduced is intractable for
depth greater than 3. We believe these results are due to
the fact that PΚ-reduced restricts domains statically,
rather than dynamically. As a result, it must consider the
full cross product of the restricted domains, a
phenomenon to which D-IPI is not subject.

Depth Steps: 4 16 64
2 2 3.6 4.5 6
3 9.8 25 65 67
4 35 61
5 113

Table 8: Evaluation Complexity of PK-reduced

Sensitivity to other parameters of the decision model
Both D-IPI and PΚ-reduced depend on skewness in the
given probability and utility distributions. Without this,
neither can be expected to perform well. However, not all
of the distributions in our test problem satisfy the
“skewness” criterion in [D’Ambrosio, 93]. Each of the
gates has an unknown mode in which its output
distribution is uniform.

Further, it is not obvious why they should perform well in
a decision context, even when all distributions are skewed.
For example, even when a few high-utility scenarios
contribute the bulk of expected utility to each decision
alternative, it is not clear that the remaining scenarios
might not contribute enough mass to change the decision.
They apparently do, at least some of the time: if this were
not the case, performance in the OLMA problem would
never improve with increasing computation. However,
our experimental results indicate that while performance
starts out quite good, it does in fact improve with
increased computation for both D-IPI and PK-reduced.
Further study is needed to better understand the conditions
that enable this.

5 Remember that IPI is a search-based algorithm that
proceeds by instantiating variables in the network - we
call each such instantiation a scenario.

Related work
[Draper & Hanks, 94] investigate localized partial
evaluation of Bayesian belief networks to perform
anytime inference. [Poole, 93] has done work on the use
of conflicts for reducing necessary computation, and
[Wellman & Liu, 94] have applied state space abstraction
to address resource-bounded computation. While the
ideas are promising, further empirical validation is
necessary to demonstrate that these techniques are
scalable to and competitive on large, general problems.

The OLMA may be viewed as a POMDP. Many
researchers in machine learning seek optimal or near-
optimal policies for POMDPs using variations on value
iteration and Q-Learning [Parr & Russell, 95; Jaakkola,
Jordan and Singh; Littman, Cassandra, & Kaelbling, 95].
Finding optimal policies for models requiring even tens of
states currently stretches the limits of feasible computation
[Parr & Russell, 95]. Still, these papers demonstrate a
marked improvement in the ability to calculate optimal
policies. Closer to home, we have begun to investigate
POMDP methods for the OLMA domain [D’Ambrosio,
NIPS96-submitted].

Most closely related to our work are examinations of
resource-bounded algorithms for belief networks. [Horvitz
et al., 89] employs bounded conditioning, a technique we
believe may perform well in the OLMA and which we
hope to include in some future investigations. We
likewise will seek competitive forms of stochastic
simulation [Fung & Chang, 89], and continue our
explorations with the kappa calculus [Goldszmidt, 95].

Conclusions
We are interested in developing and characterizing
decision algorithms with robust real-time performance.
We presented the On-Line Maintenance domain, a domain
we think is uniquely suited for effective evaluation of real-
time decision methods. We then presented preliminary
results indicate that two algorithms, D-IPI and PK-
reduced, exhibit the tradeoff between computation time
and decision quality necessary for good performance in
this test domain.

Acknowledgments
This work done with the support of NSF grants IRI-
950330 and NSF CDA-921672.

References
[Cassandra, Kaelbling, & Littman, 94] Acting Optimally
in Partially Observable Stochastic Domains. Brown Univ.
Tech. Report CS-94-20

[D’Ambrosio, 92]. B. D’Ambrosio. Value-driven real-
time diagnosis. In Proceedings, Third International
Workshop on the Principles of Diagnosis, October 1992.

[D’Ambrosio, 93]. B. D’Ambrosio. Incremental
Probabilistic Inference. In Proceedings of the Ninth
Annual Conference on Uncertainty in Artificial
Intelligence, pp 301-308, July 1993. Morgan Kaufmann,
Publishers.

[D’Ambrosio, 95], B. D'Ambrosio, Local Expression
Languages for Probabilistic Dependence. International
Journal of Approximate Reasoning, 13, #1, pp. 61-81,
July, 1995.

[Dean, 93] T. Dean and M. Boddy. An Analysis of Time-
Dependent Planning. In AAAI88, pp 49-54.

[Draper & Hanks, 94] Localized Partial Evaluation of
Belief Networks. In Proceedings of the Tenth Conference
on Uncertainty in AI, pp 170-177.

[Fung & Chang, 89] R. Fung, and K. Chang. Weighing
and Integrating Evidence for Stochastic Simulation in
Bayesian Networks. In Proceedings of the Fifth
Conference on Uncertainty in AI. pp 112-117, August,
1989.

[Goldszmidt, 95] M. Goldszmidt. Fast Belief Updating
Using Order of Magnitude Probabilities. In Uncertainty in
Artificial Intelligence, Proceedings of the Eleventh
Conference. pp 208-216. Morgan Kaufmann, Publishers,
July, 1995.

[Horvitz, et al, 89]. E. Horvitz, G. Cooper, and D.
Heckerman. Reflection and action under scarce
resources: Theoretical principles and empirical study. In
Proceedings of IJCAI89. IJCAI, August 1989.

[Horvitz et al, 89b]. E. Horvitz, H. J. Suermondt, and G.
Cooper. Bounded conditioning: Flexible inference for
decisions under scarce resources. In Proceedings of the
Fifth Conference on Uncertainty in AI , August 1989.

[Li & D’Ambrosio, 94] Z. Li and B. D’Ambrosio.
Efficient Inference in Bayes Nets as a Combinatorial
Optimization Problem, International Journal of
Approximate Reasoning, 11, 1: 55-81, 1994.

[Littman, Cassandra, & Kaelbling, 95] Learning Policies
for Partially Observable Environments: Scaling Up.
Machine Learning 12: 362-370.

[Parr & Russell, 95] Approximating Optimal Policies for
Partially Observable Stochastic Domains. Proceedings
IJCAI95, pp 1088-1094.

[Poole, 93] The Use of Conflicts in Searching Bayesian
Networks. In Proceedings CUAI93, pp 359-367.

[Russell & Wefald, 91] S. Russell and E. Wefald. Do the
Right Thing. MIT Press, 1991.

[Wellman & Liu, 94] State-Space Abstraction for
Anytime Evaluation of Probabilistic Networks, In
Proceedings CUAI 94, pp 567-574

