
1

Chapter 4 - MicroArchitecture
• Overview
• IJVM ISA
• Mic-1
• Mic 2-4
• Further Speedup
• Examples
• Homework:

– Chapter 4 #1, 2, 7, 11, 12, 17, 24, 27 (Due 5/5)

Chapter 3 - digital logic. We’ll look at gates, basic digital logic, and boolean
algebra. Then we’ll see how these are used to build memory, cpu, and busses -
the three core elements of a computer.

Homework: Here is the next

Basic flow of chapter: we will study in detail the implementation of a
microarchitecture for the integer portion of the java virtual machine. Java
virtual machine is an ISA that java compiler’s produce code for. In most cases
this machine doesn’t actually exist, but rather it is one designed so that it can
be efficiently supported by the actual ISA of whatever actual hardware is
available.

2

The MicroArchitecture level

As computers got more complex, there was just too much stuff to try to go
directly from digital logic to ISA, so an additional level was introduced:
microarchitecture.

At digital logic level basic elements were boolean logic and a bit of low level
detail for timing and storage.

At micro-arch level not really many principles, but some basic concepts appear
(ie, new words:)

Datapath
Cache
Microprogram (sometimes)

Upper right shows the instruction format for micro-instructions. Narrow
columns are single bit - often control lines that will go directly to cpu or
datapath control inputs (notice F0, F1, ENA, ENB, INVA, INC)

Lower left shows instruction format for IJVM.

Our task is to design a microprogrammed cpu, AND microprogram, that can
run the IJVM instruction set at the ISA level.

3

Java -> IJVM

The java compiler translates java code into IJVM instructions

Above is a small sample piece of Java and the corresponding IJVM, in IJVM
symbolic assembly language and in hex.

Look at first java line, and first four IJVM lines: I=j+k translates to load I, load
j, add, store.
Now remember: IJVM is compiler output, the ISA level our microcode has to
support.

This is just eye candy for now, we will actually understand the IJVM by the
end of the chapter.

4

MIC-1

Here is the MIC-1 architecture
As you can see, it has a familiar looking data path and a micro-programmed
control.
Let’s look at instruction word again, in context.
Left part of word goes to micro program counter (every instruction is a
branch!)
Next is Jump control, we’ll be talking more about that.
Then shift control bits (note picture makes it look like they are to the right of
alu control, actually to left
Then ALU control
Then lines for which register to load from C bus
Then lines for main memory control
Finally, b bus address. Why is B bus adress encoded in word, but C bus not?

5

MIC-1 datapath

The MIC-1 ALU is constructed out of the alu bit slices we saw last chapter.

At left is an interpretation of the control line inputs to the ALU, in terms of
what they cause the alu to do.

Note that B input comes directly from B bus (so, whatever register is instructed
to write to B bus, whereas A input of ALU comes from special register H.
That means to add to registers together, we will first have to move contents of
one to H.

What are control lines?

6 ALU control lines
9 “write from Cbus” lines, one for each reg that can store data from ALU
8-9 “write to B Bus” lines, one for each reg that can put data on B bus
2 Shift control lines
3 memory (cpu external bus) lines.

These are what microprogram must control.

Do probs 3, 4!!!!

6

DataPath Timing

We can both read AND write a register in one cycle

This is possible, even though there are no storage elements in datapath,
because of delays.

Example: add 1 to PC. Put PC on bus in x, store back into PC during z.

Memory: Note the MAR, MDR, PC, MBR registers on the datapath.
MAR contains WORD addresses.
PC contains BYTE addresses.
So, putting 2in MAR loads bytes 8-11 into MDR
Putting 2 in PC loads byte 8 into MBR - How? Just tack two zeros on the end
of MAR addresses before sending them to memory!

MAR/MDR reads/writes data
PC/MBR reads instructions

MDR/MBR data are available one cycle FOLLOWING address loads. In the
meantime, old values can be assumed to persist.

7

MPC
Control

ISA’s assume sequential execution.

Microarchitectures rarely do.

MIC-1 takes next address from the current instruction, then:

1. Or’s the high order bit with ALU Z or N output, if microinstruction JAM 0
or 1 is true

2. ALU N? ALU Z? Depending on the result of the function, the ALU outputs
two bits, called N and Z. N is a one when the result is negative (i.e. the left-
most bit is a one), and Z is a one when the result is zero

3. Or’s the lower eight bits with MBR, if JMPC is true. This latter is for ISA
instruction decode:

4. Remember MBR will hold IJVM instruction opcodes. So, this is a way to
jump to a specific routine in micromemory depending on the ISA opcode
to be executed. Instruction decode in 1 microcycle! Pretty tricky, huh?

5. Do Prob 5 at chap. end

8

MPC logic
Instruction decode:
if (instr == x1)

goto y1;
else if (instr == x2)

goto y2;
else …

Goto y2 == MPC = y2

What if x1 == y1
 x2 == y2
 …
 ?
Then just:
MPC = instr;

• if (!JMPC) {
– MPC0-7 = ADDR0-7
– MPC8 = (JAMZ & Z) +

(JAMN & N)
• }
• else {

– MPC = MBR
– MPC8 = (JAMZ & Z) +

(JAMN & N)
• }

MicroArch:
PC = MPC
IR = MIR

IJVM:
PC = OPC
IR = MBR

I want to spend a bit more time on the microprogram address logic, as this is
crucial to understanding this chapter and the microcode we will study later.

What’s the problem? Instruction decode. In general, in a microprogrammed
machine we expect to see “software” for each part of instruction execution.
Remember we talked earlier about fetch, decode, op-fetch, execute, result-
store. Well, we are focusing, for the moment, on decode.

Remember also that most cpus’ will have at least two dedicated registers: the
program counter and the instruction register. Since we are dealing with two
cpus (!), we shold expect to see two sets of these.

MPC and MIR are the micro-level program counter and instruction register.
MAR and MBR are the IJVM-level program counter and instruction register.

So here is the problem. Suppose MBR holds a 0x36 (WHAT IS this? 36 hex =
54 decimal = 00110110B) How do we “decode” this? Decode means figure
out what to do (not actually do it, yet).

In the quiz we did this via an if statement: if (opcode == xx) {…} else if
(opcode == yy) {…} else …
This is slow. Even if the opcode is at the front of the list, as we will see, doing
a compare to a constant is going to take several microinstructions, and we
might have to do many (20 IJVM instructions)

So - here is the idea. Let’s recode our Java as
 if (opcode == x1) goto y1 else if (opcode == x2) goto y2
(note this is really if (opcode == x1) then MPC = y1 else if (opcode == x2)
then MPC = y2…

Now, suppose we can arrange the IJVM language and where we put routines
for each IJVM instruction in microstore such that x1 == yi, x2 == y2, and so
on for ALL IJVM instructions?

Then, we can replace the whole chunk of code with: MPC = INSTR.

9

IJVM

• Stack Architecture
• Memory Model
• The ISA

– Basic instructions
– Procedure invocation

10

IJVM - a stack architecture

Public int funnyFunc(int m, int n) {
 int a;
 if (n == 0)
 return 1;
 else
 a = funnyFunc(m, n-1);
 return m*a + n;
}

mPowerN(3, 2); ?
 3*funnyFunc(3,1)+2
 3*(3*funnyFunc(3,0)+1)+2
 3*(3*1+1)+2
 14

A
N
M

Stacks: What is a stack? Like a stack of dishes: you put things on the top, you
take things off the top.
Two uses for stacks: (1) local variables during procedure calls. (2) arithmetic
operations.

Local variables: methods can refer to local variables. Consider:

Public int funnyFunc(int m, int n) {
 int a;
 if (n == 0)
 return 1;
 else
 a = funnyFunc(m, n-1);
 return m*a + n;
 }

First idea: assign every local variable a fixed location in memory.
Try executing above: problem -
 first by hand - right answer is (((3*1)+1)*3)+2 = 14
 next with fixed addrs for m, n, a
note that n gets overridden and you get wrong answer!

Alternative: assign a fresh copy of variables for each invocation.
Go through how this would work.
Introduce notion of an LV pointer. - now instead of hard addresses for local
variables, they are
Referred to as offsets of local Variable base address.

Side benefit: more efficient memory use, since all procedures aren’t in use at
once: only assign memory when procedure is called.

11

IJVM - a stack architecture II

m*a + n;
3 *4 + 2

Load m
Load a
Multiply
Load n
Add

How do we do this?

Stack execution model of operand management

Load m
Load a
Multiply
Load n
Add

Notice t his is different problem than we addressed earlier, but same basic
solution.
Can we combine?

12

IJVM Stack Architecture III

m*a + n;
3 *4 + 2

Load m
Load a
Multiply
Load n
Add

Public int funnyFunc(int m, int n) {
 int a;
 if (n == 0)
 return 1;
 else
 a = funnyFunc(m, n-1);
 return m*a + n;
}

LV is base address for local variables in current method
SP is base addrress of next free entry in stack - 1

Step through funnyFunc one last time.
FunnyFunc (3,2) - LV at bottom, three for local vars,
 then call to funnyFunc(3,1)
 again three for local vars, then call to funnyFunc(3, 0)
 again three for local vars, then return 1 (set a to 1)
 back at (3,1) - push M on stack, push A on stack, *, push n, add
 back at (3, 2) - set a to result
 push M, pushA, *, push N, add.
return

13

IJVM Memory Model
Public int funnyFunc(int m, int n) {
 int a;
 if (n == 0)
 return 1;
 else
 a = funnyFunc(m, n-1);
 return m*a + n;
}

…
Load m
Load a
Multiply
Load n
Add
…

1
0

Ok, so we have seen that local variables are not referenced as absolute
addresses to main memory, but rather as offsets from a current LV base
address managed by the IJVM ISA.

There are two other base addresses:
(1) CPP is the base address for all the constants in the program. A separate

base address protects them from being modified, one standard way to cause
“unintended” consequences (ie, either a bug or a hack).

(2) PC is the base address for code, another chunk of stuff that (usually)
shouldn’t be modified, except, in Java’s case, by dynamically loading
classes at run-time.

14

Java -> IJVM Example

We now know enough to actually map some java code to real IJVM
instructions.
Top left is java
Below is IJVM assembler
Top right is actual hex for the first few insructions.

Note loads and stores as expected.
Note upper right: j is local var 2, k is local var 3, I is local var 1
Note also BIPUSH - constant is loaded directly from instruction, rather than
constant area.
Why - faster - why load address of data when you can load data directly.
Constant area used for longer things like character strings.

15

IJVM Procedure Invocation
Public int funnyFunc(int m, int n) {
 int a;
 if (n == 0)
 return 1;
 else
 a = funnyFunc(m, n-1);
 return m*a + n;
}

0x0002 // parms
0X0001 // locals
BIPUSH 0
ILOAD N
IF_ICMPEQ L2
BIPUSH 1
RETURN
L2: BIPUSH 0
ILOAD M
ILOAD N
BIPUSH 1
ISUB
INVOKEVIRTUAL
ILOAD M
IMULT
PUSH N
IADD
ISTORE 0
RETURN

Simplified calling mechanism - essentially C or Pascal.
At right above is possible IJVM ISA for our funnyFunc
Note a function needs to say how many parameters and how many locals it
has, so machine can set up stack appropriately.

Below is how IJVM expects stack
Note this is different from what we talked about earlier. A little more
complicated - why?
1 need to store previous LV & PC so we know how to restore things when we
return.

2 “ObjRef - don’t really need that. However, we will use it to point to caller
PC and caller LV so we can restore these on return. In this case we set it to
Zero at L2

3. Now put parameters on stack. Note we have N, but need to put N-1 on stack.
Now call INVOKEVIRTUAL

4 INVOKEVIRATUAL - 2 parms tells INVOKEVIRTUAL how far back to
go to find OBJREF.

4. 1 local tells INVOKEVIRTUAL how far to skip before storing Caller’s PC
and LV.

So, INVOKEVIRTUAL
 1. Assumes OBJREF and parameters have been pushed onto stack
 2. Pushes 0 for each local var
 3. Pushes PC
 4. Pushes LV
 5. sets LV to loc of OBJREF in stack
 6. Sets OPC to routineAddr+4 (addr of first BIPUSH 0!)

0x0002
0X0001 // number of locals
ILOAD N
IF_ICMPEQ L2
BIPUSH 1
RETURN
L2: PUSH 0
ILOAD m
ILOAD n
INVOKEVIRTUAL
ILOAD M
IMULT
PUSH N
IADD
ISTORE 0
RETURN

16

IJVM Procedure Invocation

3
1

Caller PC
Caller LV

A
N
M

SP

LV

RETURN
ISTORE 0
IADD
ILOAD 1
IMULT
ILOAD 0
INVOKEVIRTUAL
ISUB
BIPUSH 1
ILOAD 1
ILOAD 0
L2:BIPUSH 0
RETURN
BIPUSH 1
IF_CMPEQ L2
ILOAD 1
BIPUSH 0
0x0001
0x0003

On entry, LV points to”Link Ptr”,in the stack area of main memory, SP points
to A (the current top of the stack). M and N were set by the caller, we’ll see
when we get there.

If (N==0) goto L2
BIPUSH 0 pushes 0 on the stack (update SP)
ILOAD 1 pushes the value of N on the stack - 1 is the offset of N from LV -

ILOAD always refers to offsets from LV
IP_CMPEQ compares the two top stack entries AND pops them off the stack!
We branch first time
BIPUSH 0 pushes 0 on the stack.
ILOAD 0 pushes m on the stack
ILOAD 1 pushes n on th estack
BIPUSH 1 pushes 1 on the stack
ISUB subtracts the top stack entry form the next one down (pops both), and

pushes the result back on the stack
Hey - cool - we are now set for the INVOKEVIRTUAL! What does it do?
1. Look at code, and push # of locals on stack
2. Save PC and LV on stack
3. SET LV to current SP - 2 - #parms - #locals
4. Set PC to method offset + 4.
5. Voila! (now follow execution thru return of 1 by base case of recursion -

notice RETURN has to move return value.)

6. This kind of trace is a great midterm II question!

17

MAL
• SP = SP+1; rd

– B=0100 (4)
– Mem = 010 (rd)
– C=000001000 (SP)
– ALU = 00110101 (F0+F1+ENB+INC)
– JAM = 000 (0)
– ADDR = ?

We are ready to write/examine microcode. But, don’t want to write binary. So,
let’s invent a notation that is more mnemonic.

Suppose we want to increment the value of the SP register, initiate a read from
main memory, and have a next instr at loc 122.

SP = SP+1; rd

Huh? Is that all? How could that work, what does that have to do with the 36
bit microinstruction?
How indeed. Good question.

B = 4
JAM = 0
ALU = F0+F1+ENB+INC (What do I mean by this? See 4-2)

What about addr? We’ll let assembler decide that. It can actually put the next
instruction anywhere, as long as it sets the addr field right.

Why would it want to put it somewhere strange? Because of the way JMPC,
JAMZ, JAMN work. For example, POP and DUP are only 2 apart (0x57,
0x59).

So, SP = SP+1; rd is ONE microinstruction

18

MAL
• MDR = SP

– B=0100 (SP)
– Mem = 000 (no operation)
– C=000000010 (MDR)
– ALU = 00110100 (F0+F1+ENB+INC)
– JAM = 000 (don’t jump)
– ADDR = ?

Another simple MAL statement and its binary.

19

MAL
• MDR = H+SP

– B=0100 (SP)
– Mem = 000 (no operation)
– C=000000010 (MDR)
– ALU = 00111100 (F0+F1+ENA+ENB)
– JAM = 000 (don’t jump)
– ADDR = ?

Note that H is ALWAYS the A input to the ALU. It can be disabled or
inverted, but no other register can be A input. Why not? (Cost, of course).

20

MAL
• MDR = MDR+SP?

– B=0100 (SP)
– Mem = 000 (no operation)
– C=000000010 (MDR)
– ALU = 00111100 (F0+F1+ENA+ENB) ???
– JAM = 000 (don’t jump)
– ADDR = ?

This seems reasonable as MAL symbolic code, but we can’t generate a
microinstruction for it. Why NOT? Because one input to ALU is NOT
selectable, it is always H.

We could use TWO microinstructions: one to move MDR (or SP) to H, the
second to add and store.

H = H-MDR is similarly illegal. Can only do H as the subtrahend (note table in
lower right - all we have is B-A, not A-B, and H is A input to ALU).

21

Legal arithmetic ops

• Source, dest, can be:
– MAR
– MDR
– PC
– MBR
– SP
– LV
– TOS
– OPC

• Dest can also be H

22

Branches

• If (Z) goto L1; else goto L2
– Sets JAMZ bit

• If (N)…
– Sets JAMN bit

• goto (MBR or value)
– Sets JMPC bit

• Note L1 and L2 must be 256 bytes apart
– Assembler problem

• goto (MBR); fetch

Note final goto will not be affected by rd, it takes several (3) microcycles for
data to show up.

23

Mic-1 Microcode - Main Loop

Quiz:
instr = program[PC];
PC = PC+1;
execute(instr);

How about:
PC = PC+1;
nextInstr = program[PC];
execute(instr);

• Main Loop Microcode
– B=0001 (PC)
– Mem = 001 (fetch)
– C=000000101 (PC+MAR)
– ALU = 00110101

(F0+F1+ENB+INC)
– JAM = 100 (JMPC)
– ADDR = 00000000

What does main loop have to do?
Increment PC
Fetch instruction
Decode.

Let’s assume we already have current instruction. Remember it takes a while to
get an instruction.
So how about: increment PC to point to next instruction; start fetch of that
instruction, and decode
All in ONE microinstruction!

24

ILOAD 0

H = LV
MAR = MBRU+H; rd
MAR = SP = SP + 1
PC = PC + 1; fetch; wr
TOS = MDR; goto Main1

First instruction moves LV into H
Next sets MAR to LV + MBRU and initiates a read.
MBRU?

1. Remember we started a load of the next byte after the opcode
in main, so MBR now has the offset we need (e.g., ILOAD 0).

2. MBRU means expand MBR to 32 bits with high order zeros.
3 Updates MAR and SP (why? Because we are adding a new entry on the
stack)
4 Update PC to point past the offset, and start a fetch (when we go back to
main loop, need to have opcode in MBR!!!) Also start a write - this writes
contents of MBR to MAR addr. This is confusing, track carefully!)
5. Move MDR (value we just loaded) to TOS register, which always holds the
top entry in the stack, to save having to load it when needed, and go back to
main loop

Good quiz question - trace operation of an instruction like this, or implement a
new instruction.

25

ISUB

MAR = SP = SP-1; rd
H = TOS
MDR = TOS = MDR - H; wr; goto Main1

4

1

Pretty simple, huh? Now we see reason for TOS - this would require two reads,
which would require an additional two microcyles, without TOS

