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Abstract. In this paper, we consider the link prediction problem, where
we are given a partial snapshot of a network at some time and the goal
is to predict the additional links formed at a later time. The accuracy
of current prediction methods is quite low due to the extreme class skew
and the large number of potential links. Here, we describe learning al-
gorithms based on chance constrained programs and show that they ex-
hibit all the properties needed for a good link predictor, namely, they
allow preferential bias to positive or negative class; handle skewness in
the data; and scale to large networks. Our experimental results on three
real-world domains—co-authorship networks, biological networks and ci-
tation networks—show significant performance improvement over base-
line algorithms. We conclude by briefly describing some promising future
directions based on this work.

1 Introduction

Network analysis, performed in domains including social networks, biological net-
works, transaction networks, and the web, has received a lot of interest in recent
years. These networks evolve over time and it is a challenging task to under-
stand the dynamics that drives their evolution. Link prediction is an important
research direction within this area. The goal here is to predict the potential fu-
ture interaction between two nodes, given a partial view of the current state of
the network.

This problem occurs in several domains. In many cases, we are interested in
the links that are likely to form in the future. For example, in citation networks
describing collaboration among scientists, we want to predict which pairs of
authors are likely to collaborate in future; in social networks, we would want to
predict new friendships; in query graphs, we want to predict the related queries
in the context of web search and in biological networks we want to predict
which proteins are likely to interact. On the other hand, we may be interested
in anomalous links; for example, in financial transaction networks, the unlikely
transactions might indicate fraud, and on the web, they might indicate spam.

There is a large literature on link prediction. Early approaches to this prob-
lem are based on defining a measure for analyzing the proximity of nodes in the

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part I, LNAI 6321, pp. 344–360, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Learning Algorithms for Link Prediction Based on Chance Constraints 345

network [1,19,14]. For example, shortest path, common neighbors, Katz mea-
sure, Adamic-adar etc., all fall under this category. More recently, Sarkar et al.
[22] gave a theoretical justification of these link prediction heuristics. Liben-
Nowell and Klienberg studied the usefulness of all these topological features by
experimenting on bibliographic datasets [14]. It was found that, no one mea-
sure is superior in all cases. Statistical relational models were also tried with
some success [7,8,24,20]. Recently, the link prediction problem is studied in the
supervised learning framework by treating it as an instance of binary classifi-
cation [9,11,4,25,27]. These methods use the topological and semantic measures
defined between nodes as features for learning classifiers. Given a snapshot of
the social network at time t for training, they consider all the links present at
time t as positive examples and consider a large sample of absent links (pair
of nodes which are not connected) at time t as negative examples. The learned
classifiers performed consistently across all the datasets unlike heuristic meth-
ods which were inconsistent, although the accuracy of prediction is still very
low. There are several reasons for this low prediction accuracy. One of the main
reasons is the huge class skew associated with link prediction. In large networks,
it’s not uncommon for the prior link probability on the order of 10−4 or less,
which makes the prediction problem very hard, resulting in poor performance.
In addition, as networks evolve over time, the negative links grow quadratically
whereas positive links grow only linearly with new nodes. Further, in some cases
we are more concerned with link formation, the problem of predicting new posi-
tive links, and in other cases we are more interested in anomalous link detection
[21], the problem of detecting unlikely links. In general, we need the following
properties for a good link predictor: allow preferential bias to the appropriate
class; handle skewness in the data; scale to large networks.

Chance-constraints and Second-Order Cone Programs(SOCPs) [15] are a spe-
cial class of convex optimization problems that have become very popular lately,
due to the efficiency with which they can be solved using fast interior point
methods. They are used in a variety of settings such as feature selection [3],
dealing with missing features [23], classification and ordinal regression algo-
rithms that scale to large datasets [18], and formulations to deal with unbalanced
data [17,10]. In this work, we give a scalable cost-sensitive formulation based on
chance-constraints which satisfies all the requirements needed for learning a good
link predictor mentioned above and show how it can be used for link prediction to
significantly improve performance. The chance constraints can be converted into
deterministic ones using Chebyschev-Cantelli inequality, resulting in a SOCP.
The complexity of SOCPs is moderately higher than linear programs and they
can be solved using general purpose SOCP solvers like SeDuMi1 or YALMIP2.

The main contributions of this paper include: 1. We identify important require-
ments of the link prediction task and propose a new cost-sensitive formulation
based on chance constraints satisfying all the requirements. We describe its con-
nections to other frameworks like biased classification and uneven margin

1 http://sedumi.ie.lehigh.edu
2 http://users.isy.liu.se/johanl/yalmip/
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algorithms. 2. We perform a detailed evaluation on multiple datasets from three
real-world domains–co-authorship networks, biological networks and citation
networks– to investigate the effectiveness of our methods. We show significant im-
provement in link prediction accuracy.

2 Cost-Sensitive Learning for Link Prediction

In this work, we consider the link prediction problem as an instance of binary
classification. We are given training data D = {(x1, y1), (x2, y2), · · · , (xn, yn)}
where, each xi ∈ �n is a feature vector defined between two nodes and yi ∈
{−1, +1} is the corresponding label that stands for the presence or absence of
an edge between the two nodes. In our case, we have a huge class imbalance prob-
lem, i.e., the number of negative examples � the number of positive examples.
There are two different ways of addressing the class imbalance problem. In the
first approach, it is turned into a balanced problem either by over-sampling the
minority class or under-sampling the majority class. However, both these sam-
pling methods have their drawbacks. By doing under-sampling, we lose some
information and over-sampling introduces noise into the data. In the second ap-
proach, class imbalance problem is addressed by reducing it to a cost-sensitive
learning problem where misclassification costs are unknown. Then, the ratio of
misclassification costs is varied to find out the best decision function based on
the validation set. In this work, we will follow the second approach which is con-
sidered to be more principled. In particular we are interested in a cost-sensitive
formulation in the max-margin framework. We require a solution which is scal-
able to large data sets; this is very important for the link prediction task. For
now, we work with only linear decision functions of the form f(x) = wT x − b.
However, all the formulations described in this work can be kernelized to con-
struct non-linear classifiers.

Cost-Sensitive Learning Problem: In the traditional binary classification
problem, all misclassifications are considered to be of the same cost, i.e., C12 =
C21 where, C12 is the misclassification cost of predicting a data point of class 1
as class 2 and C21 the misclassification cost of predicting a data point of class 2
as class 1. However, this assumption is not true for many real-world applications
like medical domains e.g., predicting whether a patient has breast cancer or not.
In these problems, some mistakes are considered more costly than others and
are studied under cost-sensitive framework. In a cost-sensitive learning problem,
we are given a set of training examples, along with the misclassification costs.
The goal of learning is to find a hypothesis that minimizes the expected cost of
misclassification.

3 Clustering-Based Cost-Sensitive Formulation

In this formulation, we assume that class conditional densities of positive and
negative points can be modeled as mixture models with component distribu-
tions. Let k1 and k2 denote the number of components in the mixture model
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for positive and negative class respectively and say k = k1 + k2. We can cluster
the positive and negative points separately, and estimate the first and second
order moments (μ, Σ) of all the clusters. Given these second order moments, our
goal is to find a discriminating hyperplane wT x − b = 0, which separates these
positive and negative clusters in such a way that it minimizes the expected cost
of misclassification. To this end, consider the following formulation:

min
w,b,ηi

1
2
‖w‖2

2 + Creg

{
C12

k1∑
i=1

ηi + C21

k∑
i=k1+1

ηi

}

s.t. Pr(Xi ∈ H2) ≤ ηi, : ∀i = 1, · · · , k1

Pr(Xi ∈ H1) ≤ ηi : ∀i = k1 + 1, · · · , k

0 ≤ ηi ≤ 1 : ∀i = 1, · · · , k

(1)

Here Xi, ∀i = 1, · · · , k1 and Xi, ∀i = k1 + 1, · · · , k are random variables cor-
responding to the components of the mixture models for positive and negative
classes respectively; H1 and H2 denote the positive and negative half spaces
i.e., H1(w, b) =

{
x|wT x − b ≥ 0

}
and H2(w, b) =

{
x|wT x − b ≤ 0

}
; ηi stands

for the probability with which any point drawn from a mixture component lies
on the wrong side of the hyperplane. The objective function consists of two terms:
the first term 1

2 ‖w‖2
2 is the standard squared-norm regularizer and second term

C12

∑k1
i=1 ηi + C21

∑k
i=k1+1 ηj is the empirical expected cost of misclassification.

Creg is the regularization parameter that controls the trade off between empirical
error and generalization error.

The above probabilistic constraints can be written as deterministic constraints
using multivariate Chebyshev-Cantelli inequality [10].

3.1 Conversion of Chance-Constraint to Second-Order Cone
Constraint

This conversion can be done in several different ways [12,10]. We present the
variant based on a multi-variate generalization of Chebyschev-Cantelli inequality
[16] which is stated below.

Theorem 1. Let Z be a random variable whose second order moments are
(μ, σ2). Then for any t > 0,

Pr(Z − μ ≥ t) ≤ σ2

σ2+t2

We can use the above theorem to do this conversion. Let X be an n-dimensional
random variable with second order moments (μ, Σ). By applying the above the-
orem to random variable −wT x, w ∈ �n and with t = wT μ − b, we get

Pr(−wT X ≥ −b) ≤ wT Σw

wT Σw + (wT μ − b)2
(2)
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Now, satisfying the constraint Pr(wT X − b ≥ 0) ≥ η is same as satisfying
Pr(−wT X ≥ −b) ≤ 1− η. By applying Theorem 1, we can satisfy Pr(−wT X ≥
−b) ≤ 1 − η if:

wT Σw

wT Σw + (wT μ − b)2
≤ 1 − η (3)

Re-arranging the terms in the above inequality gives us:

wT μ − b ≥ κ
√

wT Σw (4)

where, κ =
√

η
1−η .

3.2 Separable Case

By using the above conversion with X = Xi and η = 1 − ηi and re-writing it in
the standard SOCP form, we get the following formulation:

min
w,b,ηi

C12

k1∑
i=1

ηi + C21

k∑
i=k1+1

ηj

s.t. wT μi − b ≥ 1 + κi

√
wT Σiw : ∀i = 1, · · · , k1

b − wT μi ≥ 1 + κi

√
wT Σiw : ∀i = k1 + 1, · · · , k

0 ≤ ηi ≤ 1 : ∀i = 1, · · · , k

W ≥ ‖w‖2

(5)

where, κi =
√

1−ηi

ηi
; W is a user-defined parameter which plays similar role

as Creg in the previous formulation. The geometric interpretation of the above
constraints is that of finding a hyperplane which separates the positive and
negative ellipsoids whose centers are at μi, shapes determined by Σi, and the
sizes of the ellipsoids, i.e., κi (see Figure 1) to be classified correctly in order to
minimize the expected cost of misclassification.

3.3 Non-separable Case

In the above formulation, if the means of the clusters are not separable, then
the optimization problem is infeasible. For example, in the worst case say ηi is
1 for some of the non-separable ellipsoids; but even in this worst case the con-
straints require the means μi of these ellipsoids to lie on the correct side of the
hyperplane, i.e., wT μi − b ≥ 1 and wT μi − b ≥ −1. To avoid this problem, we
can introduce slack variables ξi as in soft-margin SVM formulation and fix the
values of η1 and η2, the false-positive and false-negative probabilities, to very
small values (say 0.1). Note that, η1 and η2 are shared by all the clusters of
positive and negative classes respectively. In this case the objective function will
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Fig. 1. Geometric interpretation of SOCP formulation

be replaced with slack variables ξi instead of ηi in the separable case and leads
to the following formulation:

min
w,b,ηi

C12

k1∑
i=1

ξi + C21

k∑
i=k1+1

ξj

s.t. wT μi − b ≥ 1 − ξi + κ1

√
wT Σiw : ∀i = 1, · · · , k1

b − wT μi ≥ 1 − ξi + κ2

√
wT Σiw : ∀i = k1 + 1, · · · , k

ξi ≥ 0 : ∀i = 1, · · · , k

W ≥ ‖w‖2

(6)

We can see that cost-sensitive SVM is now a special case of this formulation
when we consider each data point as a cluster, i.e., the covariance matrix is null.
By solving the above SOCP problem using standard SOCP solvers like SeDuMi,
we get the optimum values of w and b, and a new data point x can be classified
as sign(wT x − b).

3.4 Unbalanced Data

In the case of skewed class distribution, one class will have more representative
data points (majority class) when compared to the other class (minority class).
We can handle the unbalanced problem in three different ways.

1) Cost-Sensitive classification: we can transform the unbalanced problem
into a cost-sensitive learning problem where costs are unknown and by varying
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the costs based on a validation set to find the best discriminating hyperplane(CS-
SOCP). More specifically, we need to vary the ratio Cmin/Cmaj where, Cmin and
Cmaj corresponds to the misclassification costs of minority and majority class.

2) Biased classification: we can vary the preferential bias for each class η1

and η2 instead of varying the misclassification costs and try to find a maximum-
margin hyperplane in the biased classification framework (B-SOCP) [17].

3) Classification with Uneven margins: we can vary the positive margin
(τ+) and negative margin (τ−) to find the best decision function in the Uneven
Margin framework (PAUM) [13]. In the uneven margin setting, the constraints
in the above formulation will become wT μi − b ≥ τ+ − ξi + κ1

√
wT Σiw and

b−wT μi ≥ τ− − ξi +κ2

√
wT Σiw for positive and negative clusters respectively.

We will empirically evaluate these three frameworks for different kinds of link
prediction problems.

3.5 Advantages of CCP for Link Prediction

There are several advantages of using chance-constrained programs for the link
prediction.

Scalability: The SOCP formulation based on chance constraints is scalable to
large datasets because the number of constraints in this formulation is linear in
the number of clusters, whereas the number of constraints in the SVM formula-
tion (QP problem) is linear in the number of data points. In addition, there are
very efficient interior point algorithms for solving SOCP.

Missing Links: As described before, we consider a large sample of node pairs
which are not connected at time t as negative examples. However, some of these
negative examples may be noisy, i.e., the link may exist, but was simply not
observed at time t. In the case of SVMs the gemoetric interpretation of dual
is that of finding the distance between two convex hulls corresponding to the
positive and negative points respectively [2]. Conversely, the interpretation of
dual for SOCP formulation is that of finding distance between two convex hulls
corresponding to the positive and negative ellipsoids. In the presence of noisy
labels, The SVM solution is much more sensitive to noisy labels than the solution
with ellipsoids.

Missing features: Chance-constrained programs can naturally handle missing
features [23]. The key idea here is to use chance constraints to deal with uncer-
tainty in the missing values based on the second order moments. The Gaussian
assumption allows us to use EM to impute the missing values. The resulting
formulation again leads to an SOCP problem.

Applications: We can use this framework for several applications like recom-
mendations, collaborative filtering, online advertisement and marketing, and
anomalous link discovery in financial networks, terrorist networks, power grids
and disease transmission networks.
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4 Experimental Results and Discussion

In this section, we describe our experimental setup, description of datasets, fea-
tures used for learning the classifier, evaluation methodology, followed by our
results and discussion.

4.1 Datasets

We use three different kinds of real-world domains namely co-authorship net-
works, biological networks, and citation networks for evaluating our learning
algorithms.

Co-authorship networks. In co-authorship networks, we want to predict which
pair of authors are likely to collaborate in future. We use two different co-
authorship networks:

1) DBLP dataset: we use a dataset which was generated using DBLP collec-
tion of computer science articles3, and contains all the papers from the proceed-
ings of 28 conferences related to machine learning, data mining and databases
from 1997 to 2006.

2) Genetics dataset: The genetics dataset contains articles published in
14 journals related to genetics and molecular biology from 1996 to 2005. The
genetics dataset was generated from the popular PubMed database4.

For each dataset we have the data for 10 years. We consider the data from first
9 years for training and the data from the 10th year for testing. We consider
all the links formed in the 9th year as positive training examples and among
all the negative links (those links that are not formed in the first 9 years), we
randomly collect a large sample and label them as negative training examples.
Note that the features of these training examples are constructed based on the
first 8 years of data. Similarly for the test set, we consider all the links that are
formed during the 10th year as positive examples and collect a sample of all the
negative links as negative examples. Also the features of these testing examples
are constructed based on the first 9 years of data.

Biological networks. We use two biological networks, a protein-protein inter-
action network5 and a metabolic network6. The details are described below:

1) Metabolic network: This network contains 668 nodes and 2782 links. In
the metabolic network, proteins are represented as nodes, and an edge indicates
that the two proteins are enzymes that catalyze successive reactions between
them. This dataset has several features for each protein based on gene expression,
localization, phylogenetic profiles and chemical compatibility along with some
kernel features as well.

2) Protein-protein interaction network: This network contains 2617
nodes and 8844 edges. Each protein is described by a 76 dimensional feature

3 http://dblp.uni-trier.de/
4 http://www.ncbi.nlm.nih.gov/entrez
5 http://noble.gs.washington.edu/proj/maxent/
6 http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/ismb05/
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vector, where each feature indicates whether the protein is related to a particu-
lar function or not.

Since we do not have temporal information for either of these networks, we
will choose a random two thirds of the data for training and the remaining one
third for testing.

Citation networks. For the citation prediction task, we used the KDD Cup
20037 dataset which contains the citation network for both training and testing
periods separately. Also for each paper we have all the information including
the title, authors, abstract and textual content of the paper. We consider two
different kinds of prediction tasks.

1) Complete bibliography prediction: Given a new paper we want to
predict the complete bibliography of the paper, i.e., all those papers in the
training which will be cited by this paper. In this task, we connect this new
paper to all the previous papers written by its authors before the prediction for
constructing features.

2) Partial bibliography prediction: In this task, given a new paper and
its partial bibliography, we want to predict the remaining entries.

We sample roughly 10 times the number of positive links from the pool of
absent links resulting in a positive to negative class ratio of 1:10. The exact
number of positive and negative examples used for different link prediction tasks
are shown in Table 1.

Table 1. Details of training and testing data for different link prediction tasks

Prediction Task Training Testing

# positives # negatives # positives # negatives

DBLP 1404 14040 1021 10210

Genetics 2422 24220 3017 30170

Metabolic network 618 6180 928 9280

Protein network 1966 19660 2948 29480

Complete citation 3000 30000 3000 30000

Partial citation 3000 30000 3000 30000

4.2 Feature Description

We use two different kinds of features between two nodes, namely content features
and structural features.

The content feature function φcont : �d × �d 
→ �n is defined based on the
attributes of the two nodes. For example, in the case of co-authorship networks
the features of each author corresponds to occurrences of a particular word in the
author’s papers. The content feature function could be the kronecker product
of these binary vectors. Similarly for friend recommendation problems in social

7 http://www.cs.cornell.edu/projects/kddcup/datasets.html
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networks, content features will be defined based on the user profiles – geographic
location, college/university, work place, hobbies/interests, browsing/navigation
history on the network etc. In the case of protein-protein networks, content
features can be defined as the Kronecker product of the features of each protein.
Therefore, weights on each of these kronecker features will tell us how likely
those proteins will interact.

The structural feature function φstruct : Gn1,n2 
→ �m is defined over the local
subgraph around the two nodes n1 and n2. One can also call them relational
features, e.g., approximate Katz measure which is calculated on the ensemble
of paths between two nodes (say upto depth 4), number of common neighbors,
social connectivity which shows how connected these two nodes are with the
other nodes in their neighborhood etc., which are meaningful for each network.
For example, in the citation prediction task the network between papers and au-
thors is very complex, i.e., links are between one paper and another–paper1 cites
paper2, and between an author and a paper–author1 writes paper1. Therefore,
these complex multi-way relationships could be used to define relational features
which will be useful for our link prediction task.

4.3 Evaluation

We use the precision and recall metrics from Information Retrieval context
for evaluation, and compare the chance-constraints based algorithms, namely
cost-sensitive SOCP (CS-SOCP), biased SOCP (B-SOCP) against cost-sensitive
SVMs8 (CS-SVM) and perceptron with uneven margins (PAUM) [13]. We rank
all the test examples according to the margin of the classifiers and calculate pre-
cision and recall from top-k by varying the value of k. Here, precision is defined as
the percentage of true-positive links that are predicted correctly among the top-k
and recall is defined as the percentage of true-positive links that are predicted
correctly out of the total true-positive links. Note that, majority of the appli-
cations of link prediction algorithms are in recommendation systems like movie
recommendations in Netflix, music recommendation engines like last.fm, friends
suggestions in social networks etc. Therefore, link prediction algorithms should
be evaluated based on the quality of the top-k recommendations produced by
them. According to the above definitions of precision and recall, precision need
not always monotonically decrease with k. We report the precision and recall
curves by varying the value of k along the x-axis. We also report the AUC
values calculated for top 20% of the total testing links (see Table 2).

We use k1 = k2 = 100 clusters for all clustering-based SOCP formulations and
k-means++9, a variant of k-means algorithm which is fast and proven to be near
optimal for clustering in our experiments. We observe that the number of clusters
will not make much difference in the results as long as they are not too small a
number of clusters. As the number of clusters increases SOCP based algorithms
will tend to move closer towards their SVM counterparts. Note that, SOCP and

8 LIBSVM with -wi option to specify costs.
9 http://en.wikipedia.org/wiki/K-means++
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Table 2. AUC values for top 20% of the total testing links for different learning
algorithms

CS-SOCP B-SOCP CS-SVM PAUM

DBLP 0.4019 0.3707 0.3186 0.0682

Genetics 0.2314 0.1981 0.1526 0.0638

Metabolic 0.619 0.6183 0.6447 0.0816

Protein 0.2754 0.2786 0.2471 0.1274

Complete citation 0.3684 0.3186 0.3252 0.3586

Partial citation 0.4994 0.469 0.5356 0.3607

Table 3. Training and classification time results

Training time Classification time

CS-SVM CS-SOCP CS-SVM CS-SOCP

DBLP 39.68s 0.69s 7.64s 0.46s

Genetics 3m 34s 9s 1m 44s 27s

Metabolic 15.1s 4.89s 7.31s 4.29s

Protein 42m 23s 56.64s 1m 53s 19.64s

Complete citation 3m 17.6s 8.92s 1m 16.6s 13.92s

Partial citation 5m 19.5s 10.21s 1m 3.3s 13.78s

SVM based algorithms are exactly the same when we consider each data point as
a cluster, i.e., the covariance matrix is null. We use diagonal covariance for our
SOCP experiments. We report the best results for CS-SVM and CS-SOCP by
varying the ratio C+/C− on validation set. Similarly, we give the best results for
B-SOCP by varying η1 and η2 . For PAUM, we pick the best values for τ− from
{−1.5,−1,−0.5, 0, 0.1, 0.5, 1} and for τ+ from {−1,−0.5, 0, 0.1, 0.5, 1, 2, 5, 10, 50}
based on the validation set. We run PAUM for a maximum of 1000 iterations or
until convergence.

4.4 Results and Discussion

The precision and recall curves for all the 6 datasets are shown in Figures 2,3 and
4. As we can see, both CS-SOCP and B-SOCP outperform CS-SVM in precision
and recall for majority of the datasets namely, DBLP, genetics, complete and par-
tial bibliographic prediction tasks. Particularly, they achieve significantly higher
recall on the complete bibliography prediction task (72.4% and 66.16% com-
pared to 52.53% of CS-SVM) and partial bibliographic prediction task (82.96%
and 75.13% compared to 70.13% of CS-SVM). Similarly, if we look at the AUC
values in Table 2, SOCP based algorithms significantly outperform the other
algorithms on 4 out of 6 prediction tasks, including the protein-protein interac-
tion network which is a very high-dimensional dataset. We conjecture that noisy
labels for the missing links (explained in the previous section) might have con-
tributed to the bad performance of CS-SVM in both these tasks. Also note that
the prediction accuracies significantly improve in the case of partial prediction
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task compared to the complete prediction task because of additional information
in the form of partial references of each paper. These results show the strength of
rich information present in the link structure. It is important to note that, even
in the other cases like metabolic and protein networks, performance of SOCP
formulations are comparable to CS-SVM. In our experiments, we noticed that
behavior of PAUM was not consistent across all the datasets. For example, it
had the best performance for complete bibliographic prediction task and worst
performance for the metabolic network. This may be partly due to our restricted
search over the margin space. It appears that varying costs or probabilities might
be easier than varying margins to handle the problem of unbalanced data. Since
one of the main advantages of SOCP based formulations is scaling, we report
the training and classification time10 of both CS-SVM and CS-SOCP for all the
datasets in Table 3 (m stands for mins and s for secs). Note that, training time
for CS-SOCP includes clustering time and time taken to solve the SOCP prob-
lem. We can see that CS-SOCP is orders of magnitude faster than CS-SVM.
Furthermore, CS-SOCP requires less time for classification when compared to
that of CS-SVM. Since the learned link predictors need to be deployed in real-
time systems like recommendation engines, it is important to have low test time
computational cost. Note that, the classification time in SVMs is proportional to
the number of support vectors and support vectors grow linearly with size of the
data. On the other hand, the number of support vectors in CS-SOCP is bounded
by the number of clusters k and does not depend on the size of the data.

5 Conclusions and Future Work

In this work, we proposed a new cost-sensitive formulation based on chance
constraints and described its connections to other frameworks like biased clas-
sification and uneven margin algorithms. We showed how learning algorithms
based on chance-constraints can be used to solve different kinds of link prediction
problems and showed empirical evidence with experiments on several real-world
datasets. It is interesting to note that we could formulate link-prediction as a
complex structured prediction problem with exponential number of constraints.
The manner in which the absent links are sampled to be used as negative exam-
ples for our classification problem, is roughly equivalent to randomly sampling
the constraints for the structured prediction problem [6,5]. We believe that this
is a very fruitful direction towards solving some of these hard problems. Wick
et al. use similar ideas for their SampleRank algorithm and got some impres-
sive results [26]. In future, we would like to extend the current framework to
a relational setting similar to Taskar’s work [24]. However, formulating it as
relational or structured prediction poses an enormous inference problem, espe-
cially in large networks. One possible approach is to take a middle path between
complete independence and arbitrary relational structure.

10 All experiments were run on a machine with 2GB RAM and 2.16 GHz Intel dual
core processor.
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