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Towards Safer Spreadsheets!
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1 Introduction

Professional programmers are well aware that de-
bugging, testing, code inspection, etc. are part and
parcel of software development. Requiring end users to
carry out the same activities to reduce spreadsheet er-
rors might be asking too much. For one thing, they lack
the expertise and for another, they might not be willing
to invest the time and effort required by these activi-
ties. For example, testing is a standard and effective
technique for detecting faults in programs. The down-
side is that testing requires reasonable domain knowl-
edge (to come up with effective test cases at the very
least) and understanding of the program. End users
might be deficient in one or both areas. Another prob-
lem arises from the lack of tool support for running
test suites in currently available commercial spread-
sheet systems. This forces users to run one test at a
time, thereby taking up more time.

2 Program Generator for Spreadsheets

We have developed a system that allows the user to
create specifications that describe the structure of the
initial spreadsheet [2]. The system (named Gencel)
translates the specification into the initial spreadsheet
instance and also generates customized update opera-
tions (insert/delete operations for rows and columns)
for the given specification. This approach guarantees
that a spreadsheet instance generated by application
of any sequence of the update operations to the initial
spreadsheet instance conforms to the user-defined spec-
ification. Moreover, given that the initial specification
is type-correct, any spreadsheet instance generated by
the application of the customized update operations is
guaranteed to be free from omission, reference, or type
errors.

∗This work is supported by the National Science Foundation
under the grant ITR-0325273 and by the EUSES Consortium
(http://eecs.oregonstate.edu/EUSES/).

One concern that might arise about this approach
is that it could detract from the flexibility offered by
spreadsheet systems because of the constraints imposed
on the update operations. We believe that the advan-
tages will outweigh the intial investment (in training
and creation of the initial specifications) because of the
huge savings in debugging and testing effort—the user
only needs to audit the initial specification and the data
values entered in the generated instances.

To support the wide-spread adoption of the Gencel
system, we need tools that allow the user to extract the
specifications from arbitrary spreadsheets. We plan to
use some of the spatial analyses techniques developed
in [1] to help with this task.

3 Conclusion

Most of the current approaches are aimed at help-
ing end users detect errors in spreadsheets they have
already created. Programming language environments
used in commercial software development employ sim-
ple (syntax highlighting, auto completion) to sophisti-
cated (type checkers, program generators) techniques
to prevent the incidence of errors in programs. This
makes a strong case in favor of systems that help the
users create correct spreadsheets. In this context, we
believe that the Gencel approach is a big step towards
the prevention of errors in spreadsheets.

References

[1] R. Abraham and M. Erwig. Header and Unit Inference
for Spreadsheets Through Spatial Analyses. In IEEE
Symp. on Visual Languages and Human-Centric Com-
puting, 2004.

[2] M. Erwig, R. Abraham, I. Cooperstein, and S. Koll-
mansberger. Gencel — A Program Generator for
Correct Spreadsheets. Technical Report TR04-60-11,
School of EECS, Oregon State University, 2004.
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A Spreadsheet-Based View of the

End-User Software Engineering Concept1

Margaret Burnett, Curtis Cook and Gregg Rothermel
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97331 USA

{burnett, cook, grother}@eecs.orst.edu

End-user programming is arguably the most common form of programming in use today, but there has been little

investigation into the dependability of the programs end users create. Instead, most environments for end-user programming

support only programming. Giving end-user programmers ways to easily create their own programs is important, but it is not

enough. Like their counterparts in the world of professional software development, end-user programmers need support for

other aspects of the software lifecycle.

We have been investigating ways to address this problem by developing a software engineering paradigm viable for end-user

programming, an approach we call end-user software engineering. Because end users are different from professional

programmers in background, motivation and interest, the end user community cannot be served by simply repackaging

techniques and tools developed for professional software engineers. For this reason, end-user software engineering does not

mimic the traditional approaches of segregated support for each element of the software engineering life cycle, nor does it ask

the user to think in those terms. Instead, it employs a feedback loop supported by highly incremental testing, fault

localization heuristics, and deductive reasoning, which collaborate to help monitor dependability as the end user’s program

evolves. This approach helps guard against the introduction of faults in the user’s program and, if faults have already been

introduced, helps the user detect and locate them.

We have prototyped our approach in the spreadsheet paradigm. Our prototypes employ the following end-user software

engineering devices:

• Interactive, incremental systematic testing facilities.

• Interactive, incremental fault localization facilities.

• Interactive, collaborative assertion generation and propagation facilities.

• Motivational devices that gently attempt to interest end users in appropriate software engineering behaviors at

suitable moments.

We have conducted more than a dozen empirical studies related to this research, and the results have been very encouraging.

(More details about the studies are at http://www.engr.oregonstate.edu/~burnett/ITR2000/empirical.html.) Directly supporting

these users in software development activities beyond the programming stage—while at the same time taking their differences

in background, motivation, and interests into account—is the essence of the end-user software engineering vision.

For further reference:

M. Burnett, C. Cook, and G. Rothermel, “End-User Software Engineering,” Communications of the ACM, September 2004.

                                                

1 This work has been supported in part by NSF under ITR-0082265 and in part by the EUSES Consortium via NSF’s ITR-

0325273.
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Position Statement
Pat Cleary

Researchers need a shift in perspective. End User Development (EUD), and in

particular the use of spreadsheets, is essentially an organisational issue, not a technical

one. We must understand organisations and how they behave. Organisations consist

of people interacting within some sort of structure. People are complex, far more

complex than we as technologists understand, and people in organisations are even

more complex. As such, the solutions to EUD problems are organisational not

technical. We need to understand the context in which EUD takes place. Why do

users choose to model a business process using a spreadsheet rather than some

alternative vehicle? If a decision-maker is forced through organisational policy to

adopt an alternative, is there likely to be a loss of motivation? The answers are likely

to lie in the domain of psychology rather than computing. Ray Panko (Panko 2003)

has been encouraging us to look outside our own disciplines to seek understanding

and knowledge to help our research. At UWIC, we are embarking on a programme of

research aimed at understanding spreadsheet use and then attempting to provide a

framework for risk reduction:

- Categorise spreadsheet use within an organisation according to some agreed

criteria e.g. an estimate of financial risk; complexity; number of potential

users; motivation of the modeller;

- For each category, formulate a strategy for risk reduction; this may vary from

do nothing (continue as before) to do not use spreadsheets for this category.

Between these two extremes of the continuum, a variety of strategies may use

the variety of tools and techniques already available or may demand new tools

to be developed.

- Implement the strategies and monitor the effect.

A number of issues need to be understood and resolved at this initial stage, e.g. how

do you measure spreadsheet use? In particular, how do you measure motivation/de-

motivation? Clearly, without a suitable metric(s), it is not going to be possible to

recognise success and failure.

Reference:

Panko, R. R., ‘Reducing Overconfidence in Spreadsheet Development’, Proceedings

of EuSpRIG Conference, Dublin, 2003
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Position Statement by Grenville Croll

Background

By way of introduction, I should mention that as a young software engineer, I was responsible for

re-engineering Lotus 1-2-3 for the European marketplace, way back in 1984. I had the good

fortune to meet and work with Mitch Kapor, Jonathan Sachs and the software engineers who took

Lotus 1-2-3 through its early versions.  Subsequently, for an unbroken period of nearly fifteen

years I ran a couple of small UK companies (4-5-6 World and Eastern Software Publishing),

developing and marketing Lotus and Excel add-ins and related training. The products provided

anything from basic functionality – graphics, function libraries and printer drivers  – through to

more advanced technologies including Monte Carlo Simulation, Neural Networks and Linear

Programming. My present employer, Frontline Systems, was founded and is managed by Dan H.

Fylstra who previously founded Personal Computer Software, later renamed VisiCorp, publishers

of VisiCalc, the first mass market spreadsheet. Frontline Systems presently supply a diverse

range of optimisation software products for Microsoft Excel. For the last five years I have been

closely involved with the European Spreadsheet Risks Interest Group (EuSpRIG). At the

Amsterdam conference in 2001, I gave a presentation on the work of Mattesich, the originator of

the first electronic spreadsheet.

Frame Questions

HCI perspective. Given the 25 year history of spreadsheets, we can look forward with

considerable certainty to at least another 25 years of their business use in essentially their present

form. With this in mind, what set of five and ten year objectives might it be reasonable to aspire

to in order to positively influence the work and leisure lives of over 100 million spreadsheet users

over a period of this length?

Business Perspectives. We know almost nothing about how spreadsheets are used in business,

beyond our own experience – what are the uses of spreadsheets? We assume that we make better

business decisions using spreadsheets, but to what extent is this actually true? Can we identify

areas where spreadsheets should not be used and create or recommend a replacement? Are there

new areas where spreadsheets could be effectively deployed?

Programming perspective. An enduring theme through the life of spreadsheets has been the

desire to create and manipulate them programmatically, to compile them having been written

manually, then to decompile them automatically to assist in debugging. Can we conceive of and

implement a simple to use, integrated architecture that can achieve all this?

Quality Perspective.  How can we continue to improve the educational process relating to

spreadsheets - from their active use in primary education through their role in the teaching of

quantum chemistry.



FOS’04 Workshop — Position Statement

Martin Erwig, Oregon State University

We believe the two most promising ways to improve reliability of spreadsheets are the development of:

• Automatic tools for error detection
• Tools for automatically generating correct spreadsheets from specifications

The focus should be on automatic tools, because anything that has to be done “manually” in addition to
creating a spreadsheet takes time, which end users are reluctant to spend.

One promising approach to automatic error-detection tools is to define type systems that exploit the
labels and spatial structure of spreadsheets [6, 4, 2, 3, 1].

However, an even greater potential lies in the development of new programming approaches for spread-
sheets. Existing spreadsheet systems work with a simple programming model of a flat collection of cells that
do not contain any structure other than their arrangement on a grid. In particular, cells are identified by
global row and column numbers (letters) so that references have to be expressed using these global addresses.
This lack of structure puts current spreadsheet systems into the category of assembly languages when com-
pared to the state of the art in other programming languages. This situation is peculiar because spreadsheet
systems are equipped with very sophisticated user interfaces offering many fancy features, which can distract
from their intrinsic language limitations. The rigid, global addressing scheme makes computations vulnerable
to changes in the structure of the spreadsheet—much like in the old days of assembly language programming
where the introduction of a new item into the memory could cause some references to become invalid.

Instead of revealing this low-level memory structure to the user, we believe that spreadsheets should be
built using higher-level abstractions, such as, tables, headers, and repeating blocks. Correspondingly, instead
of creating spreadsheets through arbitrary, uncontrolled cell manipulations, spreadsheets should be allowed to
evolve only according to specification that describes the principal structure of the initial spreadsheet and all of
its future versions. Such a specification defines a schema or template for a spreadsheet that allows only those
update operations that keep changed spreadsheets within the schema. A program generator can create from
the specification an initial spreadsheet together with customized update operations for changing cells and
inserting/deleting rows and columns for this particular specification [5]. These customized operations ensure
that the spreadsheet can be changed only into new versions that always adhere to the table specification. A
type system for specifications can guarantee that all spreadsheets that evolve through the customized update
operations from a type-correct specification will never contain any reference, omission, or type errors.

References

[1] R. Abraham and M. Erwig. Header and Unit Inference for Spreadsheets Through Spatial Analyses. IEEE
Symp. on Visual Languages and Human-Centric Computing, 2004.

[2] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi. A Type System for Statically Detecting
Spreadsheet Errors. 18th IEEE Int. Conf. on Automated Software Engineering, pp. 174–183, 2003.

[3] T. Antoniu, P. A. Steckler, S. Krishnamurthi, Neuwirth, and M. Felleisen. Validating the Unit Correctness
of Spreadsheet Programs. Int. Conf. on Software Engineering, 2004.

[4] M. M. Burnett and M. Erwig. Visually Customizing Inference Rules About Apples and Oranges. 2nd
IEEE Int. Symp. on Human Centric Computing Languages and Environments, pp. 140–148, 2002.

[5] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger. Gencel — A Program Generator for
Correct Spreadsheets. Technical Report TR04-60-11, School of EECS, Oregon State University, 2004.

[6] M. Erwig and M. M. Burnett. Adding Apples and Oranges. 4th Int. Symp. on Practical Aspects of
Declarative Languages, LNCS 2257, pp. 173–191, 2002.

1



!"#$%&&'()*%$+',"-)$#'.%//0*10%*+'

2"134/)/%"$)-'."#0-5'"6'73*0)#5800/9:0;0-"310$/'
'

<=7>?>=@'7?A?B.B@?'

!

"#$%&'(!#)*(+,*-!./)'-'!0$1!2+&2!-11$1!1/(-'!+%!',1-/3'2--('4!*/.5!$0!,1$,-1!(1/+%+%&!/%3!

$0!3--,!)%3-1'(/%3+%&!$0!(2-!#$3-*!6-2+%3!',1-/3'2--(!.$#,)(/(+$%!/%3!3-7-*$,#-%(!+'!

%$(!(2-!*-/'(!/#$%&!(2-#8!92-!0/.(!(2/(!3-7-*$,+%&!',1-/3'2--('!+'!,1$&1/##+%&!/%3!(2)'!

%--3'! ,1$,-1! (1/+%+%&! '$#-2$:! .$%(1/3+.('! (2-! +%()+(+7-%-''! $0! 3-7-*$,+%&! '+#,*-!

',1-/3'2--('8! ;##-3+/(-! 0--36/.5! 1-,1-'-%(/(+$%! $0! 7/*)-'! $%*<4! (2-! ,$''+6+*+(<! ($! '2+0(!

.$#,*-=+(<!6<!',*+((+%&!0$1#)*/'!$7-1!3+00-1-%(!.-**'4!/%3!(2-!(/6)*/1!*/<$)(!2+3-!+%(1+./.<8!

92+'!+'!)'-0)*4!:2-%!:1+(+%&!/!',1-/3'2--(!,1$&1/#4!3+'()16+%&4!:2-%!(1<+%&!($!)%3-1'(/%3!

$1!#/+%(/+%!/!',1-/3'2--(8!!
!

")3+(+%&!($$*'!2-*,!($!1-3).-!-11$1!1/(-'8!>)(4!,$:-10)*!/'!(2-<!/1-4!(2-<!/1-!-=,-1(!($$*'8!

?,1-/3'2--('4!(2$)&24!/1-!@)+(-!$0(-%!:1+((-%!6<!,-$,*-!:+(2!#+%+#/*!0$1#/*!',1-/3'2--(!

(1/+%+%&8!9$!,1$7+3-!(1/+%+%&!($!(2+'!.$##)%+(<!+%!/..-,(/6*<!'#/**!3$'-'4!+(!+'!+#,$1(/%(!

(2/(!+(!./%!1-'(!$%!/!'+#,*-!6)(!%-7-1(2-*-''!'$*+3!.$%.-,()/*!#$3-*8!92-!(21--!*/<-1'!$0!/!

',1-/3'2--(! ,1$&1/#! A! (2-! 7/*)-4! (2-! 0$1#)*/! /%3! (2-! 3/(/! 0*$:! */<-1! /1-! /! .2/**-%&-8!

92)'4! /! ',1-/3'2--(! ,1$&1/##-1! 2/'! B#$1-! $1! *-''C! (2-! %$(+$%! $0! /! 3/(/! 0*$:! &1/,2! +%!

#+%3! :2+.2! 1-@)+1-'! ($! #-#$1+D-! (2-! .$2-1-%.-! $0! /! ',1-/3'2--(! ,1$&1/#! :+(2! %$!

-=,*+.+(!1-,1-'-%(/(+$%8!!
!

E$%'+3-1+%&! ',1-/3'2--(! '<'(-#! +#,*-#-%(/(+$%'4! 6$(24! 3/(/! 0*$:! /%3! &1/,2! 1-3).(+$%!

#$3-*'! /*#$'(! 0+(! ($! (2-! '-#/%(+.'! $0! ',1-/3'2--('8! >)(! %$%-! $0! (2-#! 0)*0+*'! /**!

1-@)+1-#-%('!$0!/!.$11-.(!.$%.-,()/*!',1-/3'2--(!#$3-*8!F8&84!%-+(2-1! *$$,'!%$1!.+1.)*/1!

1-0-1-%.-'! /1-! ,/1(! $0! (2-! #/+%! ',1-/3'2--(! ,/1/3+&#8! G$1-$7-14! (2-! +%(-1/.(+7-!

-7/*)/(+$%!,1$.-''!.$11-',$%3'!%-+(2-1!($!&1/,2!1-3).(+$%!%$1!3/(/!0*$:!,1$&1/#'8!92)'4!

/!.$%.-,()/*!#$3-*!.$%'+'(-%(!:+(2!(2-!',1-/3'2--(!,/1/3+&#!+'!1-@)+1-38!H+00-1-%.-'!+%!

+#,*-#-%(/(+$%'! /&&1/7/(-! (2-! '+()/(+$%8! E$##$%! $,-1/(+$%'! B*+5-! .$,<I/%3I,/'(-! $1!

31/&I/%3I31$,C!/1-!+#,*-#-%(-3!3+00-1-%(*<!$%!3+00-1-%(!'<'(-#'8!J%-!#/+%!/%3!,1$0$)%3!

,1$6*-#!+'!(2-!/,,1$/.2!$0!(1-/(+%&!.+1.)*/1!1-0-1-%.-'!+%($!(2-!',1-/3'2--(!,/1/3+&#8!J%!

$%-!2/%34!.+1.)*/1!1-0-1-%.-'!/1-!*+5-*<!($!2/,,-%!6<!/..+3-%(!B/%3!(2)'!/1-!-11$1'C4!$%!(2-!

$(2-1! 2/%34! (2-! *$$,! .$%.-,(! +'! )'-3! B+%! '$#-! +#,*-#-%(/(+$%'C! ($! '),,$1(! '.+-%(+0+.!

.$#,)(/(+$%'8!K-7-1(2-*-''4!(2-'-!/,,1$/.2-'!3+00-1!+%!(2-+1!3-,(2!/%3!+#,*-#-%(/(+$%8!
!

9$! -'(/6*+'2! /! .$##$%! /%3! .$%'+'(-%(! .$%.-,()/*!#$3-*4! (2-'-! 3+00-1-%.-'! 2/7-! ($! 6-!

(/5-%!+%($!/..$)%(8!L'-1'!0/#+*+/1!:+(2!(2-!(/6)*/1!&1+3!2/7-!($!)%3-1'(/%34! (2/(! (2-1-!+'!

'(+**!'$#-!'.$,+%&!/#$%&!(2-!3+00-1-%(!.-**'8!92+'!2/'!6--%!.$%.-,()/*+'-3!+%!/!,1$M-.($1I

'.1--%!#$3-*8!E$11-',$%3+%&!($!(2-!',1-/3'2--(!,-.)*+/1+(+-'4!+(!1-*+-'!1/(2-1!$%!7+'+6+*+(<!

(2/%!$%!3/(/!0*$:4!'+%.-!(2-!1-0-1-%.-!,$+%('!($!/!.-**!A!+11-',-.(+7-!($!+('!.$%(-%(8!G$7+%&!

$,-1/(+$%'! +%0*)-%.-! (2-! /331-''! $0! /! .-**4! %$(! (2-! .$%(-%(8! N$:-7-14! (2-! .$%.-,(! $0!

7+'+6+*+(<! +'! %/(+7-! ($! ',1-/3'2--('! +0! $%-! .$%'+3-1'! /! .-**! '--+%&! /**! (2-! .-**'! +(! +'!

1-0-1-%.+%&8! ;(! 3$-'! %$(! O'--P4! 2$:-7-14! .-**'! (2/(! /1-! 1-0-1-%.+%&! (2+'! .-**! +('-*08! E-**'!

.$%(/+%+%&!1/%&-!0$1#)*/'!$6'-17-!.-**'!+%!/!&-$#-(1+./*!,/((-1%8!"..$13+%&!($!.$##$%!

/,,1$/.2-'! +%! ',1-/3'2--(! ,1$&1/#'4! '$#-! (<,+./*! ,/((-1%'! $0! 1-0-1-%.-'! .$)*3! 6-!

+3-%(+0+-38!F=/#,*-'!/1-Q!#/%<I2/%3-3! 0+&)1-'!B$%-!.-**! 1-0-1-%.+%&!/!'-(!$0!$(2-1!.-**'!

M)'(! *+5-! /! '@)+3C4! (2-! @)-)-! $%! /! '(/+1./'-! B/! '-@)-%.-! $0! .-**'! 1-0-1-%.+%&! -=/.(*<! +('!

B&-$#-(1+./*C!,1-3-.-''$1C4!0*<+%&!./1,-('!B1/%&-!1-0-1-%.-'!$7-1!/!&-$#-(1+./*!,/((-1%!$0!

.-**'C! /%3! 1-.)1'+7-! +#/&-'! B($! -=,*/+%! .+1.)*/1! 1-0-1-%.-'C! #/<! 6-! )'-0)*! ,/((-1%'! ($!

,1$7+3-! /%! +%I3-,(2! )%3-1'(/%3+%&! $0! ',1-/3'2--(! ,1$&1/##+%&8! 92+'! /,,1$/.2! +'!

3+'.)''-3! +%I3-,(2! +%! O!"#$%&'&(")'*+,"-.*/+ "0+ 1$2.'-/3..&+4.5.*"$#.)&+ 6+ 7'/(/+ 0"2+

.-%8'&(")'*+'$$2"'83./P4!N$3%+&&4!E*-1#$%(4!G+((-1#-+14!F)?,R+S!TUUV8!



FOS 2004

Position Statement

David Wakeling 1

Bioinformatics Group, University of Exeter, Exeter, United Kingdom

Cell biologists often create mathematical models of cellular processes in
an attempt to understand them. Usually, the model is converted to a form
suitable for computer simulation, evaluated by comparing the simulated and
observed behaviour, and repeatedly revised until the two agree. Unfortunately,
though, the design, implementation and documentation of many cell simula-
tors can make this so wearing that all but the most determined cell biologists
soon give up.

In this context, we argue that spreadsheets are useful:

• from an HCI perspective, because they provide a familiar setting in which
to revise a model by asking “what if” questions;

• from a programming language perspective, because their natural purely func-
tional style avoids the (often troublesome) use of macros;

• from a quality perspective, because a type system could be added to prevent
the confusion of types , dimensions and units leading to nonsensical results.
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Abstract

It is widely recognized that spreadsheets are error-filled, their creators are over-
confident, and the process by which they are developed is chaotic. It is less well-
understood that spreadsheet users generally lack the skills needed to derive practical

insights from their models. Modeling for insight requires skills in establishing a base
case, performing sensitivity analysis, using back-solving, and (when necessary) car-
rying out optimization and simulation. Some of these tasks are made possible only
with specialized add-ins to Excel. In this paper we present an overview of the skills
and software tools needed to model for insight.

Key words: sensitivity analysis, software engineering, spreadsheet
engineering

1 Introduction

There is ample evidence that spreadsheets as actually used in industry are
highly problematic [1]. Many, if not most, spreadsheets harbor serious bugs.
The end-users who typically design and use spreadsheets are under-trained
and overconfident in the accuracy of their models. The process that most
spreadsheet developers use is chaotic, leading to time wasted in rework and in
high error rates. Few spreadsheets are tested in any formal manner. Finally,
many organizations fail to follow standard procedures for documentation or
version control, which leads to errors in use even if the spreadsheets themselves
are correct. While these problems are well known to a few researchers, and
widely suspected by many managers, few companies recognize the risks that
spreadsheet errors pose.

This paper is concerned with a much less well understood problem, involv-
ing missed opportunities to extract useful business insights from spreadsheet

1 Thanks are due to Ken Baker at Tuck School of Business, Dartmouth College, who co-
developed most of the ideas in this paper.
2 Email: Stephen.G.Powell@Dartmouth.EDU

c©2004 Published by Elsevier Science B. V.
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models. Many spreadsheet developers have extensive skills in Excel itself but
far fewer have a disciplined approach to using a model to inform a decision or
shed light on a business problem. We advocate an engineering approach to the
process of designing and building a spreadsheet. In the same spirit, the analy-
sis process itself can be improved by providing structure and specific software
tools. We will discuss in particular four analytic tools that are contained in
the Sensitivity Toolkit, a publicly-available Excel add-in we built.

2 Elements of Spreasheet Engineering

Spreadsheet modeling is a form of computer programming, although it is usu-
ally carried out by people who do not think of themselves as programmers.
Moreover, few spreadsheet developers are trained in software engineering. In
order to improve this situation we have undertaken the task of translating the
principles of software engineering into a form that end-users in business can
actually use. We call the resulting discipline spreadsheet engineering. Our
motivation is to improve both the efficiency and the effectiveness with which
spreadsheets are created. An efficient design process uses the minimum time
and effort to achieve results. An effective process achieves results that meet
the users’ requirements. Although spreadsheet modeling is a creative pro-
cess, and thus cannot be reduced to a simple recipe, every spreadsheet passes
through a predictable series of four stages: designing, building, testing, and
analysis. Some of the principles in each of the first three phases are given
below:

• designing
· sketch the spreadsheet
· organize the spreadsheet into modules
· start small
· isolate input parameters
· design for use
· keep it simple
· design for understanding
· document important data and formulas

• building
· follow a plan
· build one module at a time
· predict the outcome of each formula
· Copy and Paste formulas carefully
· use relative and absolute addresses to simplify copying
· use the Function Wizard to ensure correct syntax
· use range names to make formulas easy to read

• testing
· check that numerical results look plausible
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· check that formulas are correct
· test that model performance is plausible

Since the focus of this paper is on improving the analysis phase, we will not
discuss the first three phases of spreadsheet engineering further in this paper.
These are described in more detail in [2].

3 Insight: The Goal of Spreadsheet Modeling

In many business applications, the ultimate goal of a spreadsheet modeling
effort is not numerical at all; rather, it is an insight into a problem or situation,
often a decision facing the organization. In our minds, an insight is never a
number but can be expressed in natural language that managers understand,
often in the form of a graph. Insights often arise from surprises. For example,
Option A looks better than Option B on first glance, but our analysis shows
why B actually is a better choice. Many insights involve trade-offs. For
example, as we add capacity we find at first that service improves faster than
cost increases, but eventually increasing costs swamp improvements in service.

If we accept the notion that the purpose of many spreadsheet models is
to identify insights, it follows that the spreadsheet itself is not a particularly
good vehicle for the purpose. As convenient as the spreadsheet format is, it
does not display the relationships involved in a model, but hides them behind
a mass of numbers. Nor does it show how changes in inputs affect outputs,
which is where insight begins. Users of spreadsheets need to be taught how to
make the row-and-column format work for them to generate insights. There
are several powerful but obscure features built into Excel (like Goal Seek
and Data Table) that can assist in this process. To augment these tools we
have built a Visual Basic add-in called the Sensitivity Toolkit that automates
some of the most powerful sensitivity analysis tools. (This add-in is publicly
available at http://mba.tuck.dartmouth.edu/toolkit/)

Although Excel itself has thousands of features, most of the analysis done
with spreadsheets falls into one of the following five categories:

• base-case analysis

• what-if analysis

• breakeven analysis

• optimization analysis

• risk analysis

Within each of these categories, there are specific Excel tools, such as the
Goal Seek tool, and add-ins, such as Solver [3] and Crystal Ball [4], which can
be used either to automate tedious calculations or to find powerful business
insights that cannot be found any other way. Some of these tools, such as
Solver, are quite complex and can be given only a cursory treatment here. By
contrast, some of the other tools we describe are extremely simple, yet are
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underutilized by the majority of spreadsheet users.
We will use the spreadsheet model Advertising Budget (see Figure 1) to

illustrate each of these five categories of analysis. This model takes various in-
puts, including the price and unit costs of a product, and calculates revenues,
total costs, and profit over the coming year by quarters. The essential rela-
tionship in the model is a sales response to advertising function characterized
by diminishing returns. The fundamental question the model will be used to
answer is how we should allocate a fixed advertising budget across quarters.

3.1 Base-case analysis

Almost every spreadsheet analysis involves measuring outcomes relative to
some common point of comparison, or base case. Therefore, it is worth
giving some thought to how the base case is chosen. A base case is often
drawn from current policy or common practice, but there are many other
alternatives. Where there is considerable uncertainty in the decision problem,
it may be appropriate for the base case to depict the most likely scenario; in
other circumstances, the worst case or the best case might be a good choice.

Sometimes, several base cases are used. For example, we might start the
analysis with a version of the model that takes last year’s results as the base
case. Later in the analysis, we might develop another base case using a pro-
posed plan for the coming year. At either stage, the base case is the starting
point from which an analyst can explore the model using the tools described in
this paper, and thereby gain insights into the corresponding business situation.

In the Advertising Budget example, most of the input parameters such as
price and cost are forecasts for the coming year. These inputs would typi-
cally be based on previous experience, modified by our hunches as to what
will be different in the coming year. But what values should we assume for
the decision variables, the four quarterly advertising allocations, in the base
case? Our ultimate goal is to find the best values for these decisions, but
that is premature at this point. A natural alternative is to take last year’s
advertising expenditures ($10, 000 in each quarter) as the base-case decisions,
both because this is a simple plan and because initial indications point to a
repeat for this year’s decisions.

3.2 What-if analysis

Once a base case has been specified, the next step in analysis often involves
nothing more sophisticated than varying one of the inputs to determine how
the key outputs change. Assessing the change in outputs associated with
a given change in inputs is called what-if analysis. The inputs may be
parameters, in which case we are asking how sensitive our base-case results
are to forecasting errors or other changes in those values. Alternatively, the
inputs we vary may be decision variables, in which case we are exploring
whether changes in our decisions might improve our results, for a given set
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of input parameters. Finally, there is another type of what-if analysis, in
which we test the effect on the results of changing some aspect of our model’s
structure. For example, we might replace a linear relationship between price
and sales with a nonlinear one. In all three of these forms of analysis, the
general idea is to alter an assumption and then trace the effect on the model’s
outputs.

We use the term sensitivity analysis interchangeably with the term
what-if analysis. However, we are aware that sensitivity analysis sometimes
conveys a distinct meaning. In optimization models, where optimal decision
variables themselves depend on parameters, we use the term sensitivity anal-
ysis specifically to mean the effect of changing a parameter on the optimal

outcome. (In optimization models, the term what-if analysis is seldom used.)
When we vary a parameter, we are implicitly asking what would happen if

the given information were different. That is, what if we had made a different
numerical assumption at the outset, but everything else remained unchanged?
This kind of questioning is important because the parameters of our model
represent assumptions or forecasts about the environment for decision mak-
ing. If the environment turns out to be different than we had assumed, then
it stands to reason that the results will also be different. What-if analysis
measures that difference and helps us appreciate the potential importance of
each numerical assumption.

In the Advertising Budget example, if unit cost rises to $26 from $25, then
annual profit drops to $53, 700. In other words, an increase of 4 percent in the
unit cost will reduce profit by nearly 23 percent. Thus, it would appear that
profits are quite sensitive to unit cost, and, in light of this insight, we may
decide we should monitor the market conditions that influence the material
and labor components of cost.

When we vary a decision variable, we are exploring outcomes that we can
influence. First, we’d like to know whether changing the value of a decision
variable would lead to an improvement in the results. If we locate an improve-
ment, we can then try to determine what value of the decision variable would
result in the best improvement. This kind of questioning is a little different
from asking about a parameter, because we can act directly on what we learn.
What-if analysis can thus lead us to better decisions.

In the Advertising Budget example, if we spend an additional $1, 000 on
advertising in the first quarter, then annual profit rises to $69, 882. In other
words, an increase of 10 percent in the advertising expenditure during Q1 will
translate into an increase of roughly 0.3 percent in annual profit. Thus, profits
do not seem very sensitive to small changes in advertising expenditures in Q1,
all else being equal. Nevertheless, we have identified a way to increase profits.
We might guess that the small percentage change in profit reflects the fact
that expenditures in the neighborhood of $10, 000 are close to optimal, but we
will have to gather more information before we are ready to draw conclusions
about optimality.
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In addition to testing the sensitivity of results to parameters and decision
variables, there are situations in which we want to test the impact of some
element of model structure. For example, we may have assumed that there
is a linear relationship between price and sales. As part of what-if analy-
sis, we might then ask whether a nonlinear demand-price relationship would
materially alter our conclusions. As another example, we may have assumed
that our competitors will not change their prices in the coming year. If we
then determine that our own prices should increase substantially over that
time, we might ask how our results would change if our competitors were to
react to our pricing decisions by matching our price increases. These what-if
questions are more complex than simple changes to a parameter or a decision
variable because they involve alterations in the underlying structure of the
model. Nonetheless, an important aspect of successful modeling is testing the
sensitivity of results to key assumptions in the structure of the model.

In the Advertising Budget example, the relationship between advertising
and sales is given by the nonlinear function:

Sales = 35 × Seasonal Factor ×
√

Advertising + 3000. (1)

In the spirit of structural sensitivity analysis, we can ask how different our
results would be if we were to replace this relationship with a linear one. For
example, the linear relationship

Sales = 3, 000 + 0.1(Advertising × Seasonal Factor) (2)

lies close to the nonlinear curve for advertising levels around $10, 000. When
we substitute this relationship into the base-case model, holding advertising
constant at $10, 000 each quarter, we find that profit changes only slightly, to
$70, 000. But in this model, if we then increase Q1 advertising by $1, 000, we
find that profit decreases, while in the base-case model it increases. Evidently,
this structural assumption does have a significant impact on the desired levels
of advertising.

We have illustrated what we might call a “one-at-a-time” form of what-if
analysis, where we vary one input at a time, keeping other inputs unchanged.
We could, of course, vary two or more inputs simultaneously, but these more
complex experiments become increasingly difficult to interpret. In many cases,
we can gain the necessary insights by varying the inputs one at a time.

It is important not to underestimate the power of this first step in analysis.
Simple what-if exploration is one of the most effective ways to develop a deeper
understanding of the model and the system it represents. It is also part of the
debugging process. When what-if analysis reveals something unexpected, we
have either found a useful insight or perhaps discovered a bug.

Predicting the outcome of a what-if test is an important part of the learning
process. For example, in the Advertising Budget example, what would be the
result of doubling the selling price? Would profits double as well? In the base
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case, with a price of $40, profits total $69, 662. If we double the price, we find
that profits increase to $612, 386. Profits increase by much more than a factor
of two when prices double. After a little thought, we should see the reasons.
For one, costs do not increase in proportion to volume; for another, demand
is not influenced by price in this model. Thus, the sensitivity test helps us to
understand the nature of the cost structure — that it’s not proportional —
as well as one limitation of the model — that no link exists between demand
and price.

3.2.1 Data Sensitivity

The Data Sensitivity tool automates certain kinds of what-if analysis. It
simply recalculates the spreadsheet for a series of values of an input cell and
tabulates the resulting values of an output cell. This allows the analyst to
perform several related what-if tests in one pass rather than entering each
input value and recording each corresponding output.

The Data Sensitivity tool is one module in the Sensitivity Toolkit, which is
an add-in to Excel (available at http://mba.tuck.dartmouth.edu/toolkit).
Once the Toolkit is installed, the Sensitivity Toolkit option will appear on the
far right of the menu bar (see Figure 1). Data Sensitivity and the other
modules can be accessed from this menu. (An equivalent tool called Data
Table is built into Excel.)

We illustrate the use of the Data Sensitivity tool in the Advertising Budget
model by showing how variations in unit cost from a low of $20 to a high of
$30 affect profit. (Note: we will not describe the specific steps required to run
any of the tools in the Toolkit in this paper: details can be found in [2] or in
the Help Facility in the Toolkit itself).

Figure 2 shows the output generated by the Data Sensitivity tool. A
worksheet has been added to the workbook, and the first two columns on
the sheet contain the table of what-if values. In effect, the what-if test has
been repeated for each unit-cost value from $20 to $30 in steps of $1, and the
results have been recorded in the table. In addition, the table is automatically
converted to a graph. As the table and graph both show, annual profits drop
as the unit cost increases, and the cost-profit relationship is linear. We can
also see that the breakeven value of the unit cost falls between $29 and $30,
since profits cross from positive values to negative values somewhere in this
interval.

Note that the Data Sensitivity tool requires that we provide a single cell
address to reference the input being varied in a one-way table. The tool will
work correctly only if the input has been placed in a single location. By
contrast, if an input parameter had been embedded in several cells, the tool
would have given incorrect answers when we tried to vary the input. Thus, the
use of single and separate locations for parameters (or for decisions), which is
a fundamental principle of spreadsheet engineering, makes it possible to take
advantage of the tool’s capability.
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We can also use the Data Sensitivity tool to analyze the sensitivity of an
output to two inputs. This option gives rise to a two-way table, in contrast to
the one-way sensitivity table illustrated above. To demonstrate this feature,
we can build a table showing how profits are affected by both Q1 advertising
and Q2 advertising. By studying the results in Figure 3, we can make a quick
comparison between the effect of additional spending in Q1 and the effect of
the same spending in Q2. As we can observe in the table, moving across a row
generates more profit than moving the same distance down a column. This
pattern tells us that we can gain more from spending additional dollars in Q2
than from the same additional dollars in Q1. This observation suggests that,
starting with the base case, we could improve profits by shifting dollars from
Q1 to Q2. We can also note from the table, or from the three-dimensional
chart that automatically accompanies it, that the relationship between profits
and advertising expenditures is not linear. Instead, profits show diminishing
returns to advertising.

3.2.2 Tornado charts

Another useful tool for sensitivity analysis is the tornado chart. In contrast
to the information produced by the Data Sensitivity tool, which shows how
sensitive an output is to one or perhaps two inputs, a tornado chart shows how
sensitive the output is to several different inputs. Consequently, it shows us
which parameters have a major impact on the results and which have minor
impact.

Tornado charts are created by changing input values one at a time and
recording the variations in the output. The simplest approach is to vary each
input by a fixed percentage, such as ±10 percent, of its base-case value. For
each parameter in turn, we increase the base-case value by 10 percent and
record the output, then decrease the base-case value by 10 percent and record
the output. Next, we calculate the absolute difference between these two
outcomes and depict the results in the order of these differences.

The Sensitivity Toolkit contains a tool for generating tornado charts. The
Tornado Chart tool provides a choice of three options:

• Constant Percentage

• Variable Percentage

• Percentiles

We will illustrate the Constant Percentage case first. The tornado chart
appears on a newly inserted worksheet, as shown in Figure 4. The horizontal
axis at the top of the chart shows profits; the bars in the chart show the
changes in profit resulting from ±10 percent changes in each input. After
calculating the values (which are recorded in the accompanying table on the
same worksheet), the bars are sorted from largest to smallest for display in the
diagram. Thus, the most sensitive inputs appear at the top, with the largest
horizontal spans. The least sensitive inputs appear toward the bottom, with
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the smallest horizontal spans. Drawing the chart using horizontal bars, with
the largest span at the top and the smallest at the bottom, suggests the
shape of a tornado, hence the name. If some of the information in the chart
seems unclear, details can usually be found in the accompanying table, which
is constructed on the same worksheet by the Tornado Chart tool. In our
example, we can see in the table that price has the biggest impact (a range
of more than $108, 000), with unit cost next (a range of nearly $80, 000), and
the other inputs far behind in impact on profit.

The standardization achieved by using a common percentage for the change
in inputs (10 percent in our example) makes it easy to compare the results
from one input to another, but it may also be misleading. A 10 percent range
may be realistic for one parameter, while 20 percent is realistic for another,
and 5 percent for a third. The critical factor is the size of the forecast error
for each parameter. If these ranges are significantly different, we should assign
different percentages to different inputs. This can be accomplished using the
Variable Percentage option in the Tornado Chart tool.

To illustrate the Variable Percentage option in the Advertising Budget
example, suppose we limit ourselves to seven parameters: price, cost, four
seasonal factors, and overhead rate. Suppose that, based on a detailed as-
sessment of the uncertainty in these parameters, we choose to vary price by 5
percent, cost by 12 percent, seasonal factors by 8 percent, and overhead rate
by 3 percent. The resulting tornado chart is shown in Figure 5. As the results
show, cost now has the biggest impact on profits, partly because it has a larger
range of uncertainty than price.

3.3 Breakeven analysis

Many managers and analysts throw up their hands in the face of uncertainty
about critical parameters. If we ask a manager to directly estimate market
share for a new product, the reply may be: “I have no idea what market share
we’ll capture”. A powerful strategy in this situation is to reverse the sense of
the question and ask not, “What will our market share be?” but rather, “How
high does our market share have to get before we turn a profit?” The trick here
is to look for a breakeven, or cutoff, level for a parameter — that is, a target
value of the parameter at which some particularly interesting event occurs,
such as reaching zero profits or making a 15 percent return on invested assets.
Managers who cannot predict market share can often determine whether a
particular breakeven share is likely to occur. This is why breakeven analysis
is so powerful.

Even if we have no idea of the market share for the new product, we
should be able to build a model that calculates profit given some assumption

about market share. Once market share takes the role of a parameter in our
model, we can use the Data Sensitivity tool to construct a graph of profit as
a function of market share. Then, from the graph, we can find the breakeven

9



Stephen G. Powell

market share quite accurately.
New capital investments are usually evaluated in terms of their net present

value, but the appropriate discount rate to use is not always obvious. Rather
than attempting to determine the appropriate discount rate precisely, we can
take the breakeven approach and ask how high would the discount rate have
to be in order for this project to have an NPV of zero? (The answer to this
question is generally known as the internal rate of return.) If the answer is
28 percent, we can be confident that the project is a good investment. On
the other hand, if breakeven occurs at 9 percent, we may want to do further
research to establish whether the appropriate discount rate is clearly below
this level.

Breakeven values for parameters can be determined manually, by repeat-
edly changing input values until the output reaches the desired target. This
can often be done fairly quickly by an intelligent trial-and-error search in Ex-
cel. In the Advertising Budget example, suppose we want to find the breakeven
cost to the nearest penny. Recall our example earlier, where we noted that
profit goes to zero between a unit cost of $29 and a unit cost of $30. By
repeating the search between these two costs in steps of $0.10, we can find
the breakeven cost to the nearest dime. If we repeat the search once more, in
steps of $0.01, we will obtain the value at the precision we seek.

However, Excel also provides a specialized tool called Goal Seek (in the
Tools menu) for performing this type of search. The tool locates the desired
unit cost as $29.36, and the corresponding calculations will be displayed on
the spreadsheet.

Note that the Goal Seek tool searches for a prescribed level in the relation
between a single output and a single input. Thus, it requires the parameter
or decision being varied to reside in a single location, reinforcing one of our
design principles.

3.4 Optimization analysis

Another fundamental type of managerial question takes the form of finding
a set of decision variables that achieves the best possible value of an output.
In fact, we might claim that the fundamental management task is to make
choices that result in optimal outputs. Solver is an important tool for this
purpose. Solver is an add-in for Excel that makes it possible to optimize
models with multiple decision variables and possibly constraints on the choice
of decision variables. Optimization is a complex subject, and we can only
provide a glimpse of its power here by demonstrating a simple application in
the Advertising Budget example.

Suppose we wish to maximize total profits with an advertising budget of
$40, 000. We already know that, with equal expenditures in every quarter,
annual profits come to $69, 662. The question now is whether we can achieve
a higher level of annual profits. The answer is that a higher level is, in fact,
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attainable. An optimal reallocation of the budget produces annual profits
of $71, 447. The chart in Figure 6 compares the allocation of the budget
in the base case with the optimal allocation. As we can see, the optimal
allocation calls for greater expenditures in quarters Q2 and Q4 and for smaller
expenditures in Q1 and Q3.

This is just one illustration of Solver’s power. Among the many questions
we could answer with Solver in the Advertising Budget example are these:

• What would be the impact of a requirement to spend at least $8, 000 each
quarter?

• What would be the marginal impact of increasing the budget?

• What is the optimal budget size?

One way to answer this last question would be to run Solver with increasing
budgets and trace out the impact on profit. We could do this manually, one
run at a time, but it would be more convenient to be able to accomplish
this task in one step. The Sensitivity Toolkit contains a tool called Solver

Sensitivity that does just this: it runs Solver in a loop while varying one
(or two) input parameters. Figure 7 shows the results of running Solver for
advertising budgets from $40, 000 to $100, 000 in increments of $5, 000. The
table shows that profit increases at a decreasing rate as the budget increases,
and beyond about $90, 000 there is no discernible impact from additional
budget. It also shows how the four decision variables (Q1–Q4 advertising)
change as the budget changes.

3.5 Simulation and risk analysis

Uncertainty often plays an important role in analyzing a decision, because with
uncertainty comes risk. Until now, we have been exploring the relationship
between the inputs and outputs of a spreadsheet model as if uncertainty were
not an issue. However, risk is an inherent feature of all managerial decisions,
so it is frequently an important aspect of spreadsheet models. In particular,
we might want to recognize that some of the inputs are subject to uncertainty.
In other words, we might want to associate probability models with some of
the parameters. When we take that step, it makes sense to look at outputs
the same way — with probability models. The use of probability models in
this context is known as risk analysis.

One tool for risk analysis in spreadsheets is Crystal Ball, an add-in for
Monte Carlo simulation (another is @Risk [5]). This tool allows us to gen-
erate a probability distribution for any output cell in a spreadsheet, given
probability assumptions about some of the input cells. Simulation and risk
analysis are complex subjects. Here, we simply illustrate how Crystal Ball can
help us answer an important question about risk.

In the Advertising Budget example, we return to the base case, with equal
expenditures of $10, 000 on advertising each quarter. Our base-case analysis,
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which assumed that all parameters are known exactly, showed an annual profit
of $69, 662. However, we might wonder about the distribution of profits if
there is uncertainty about the unit price and the unit cost. Future prices
depend on the number of competitors in our market, and future costs depend
on the availability of raw materials. Since both level of competition and raw
material supply are uncertain, so, too, are the parameters for our price and
cost. Suppose we assume that price is normally distributed with a mean of
$40 and a standard deviation of $10, and that unit cost is equally likely to
fall anywhere between $20 and $30. Given these assumptions, what is the
probability distribution of annual profits? And how likely is it that profits
will be negative?

Figure 8 shows the probability distribution for profits in the form of a
histogram, derived from the assumptions we made about price and cost. The
graph shows us that the estimated average profit is $69, 721 under our as-
sumptions. It also shows that the probability is about 30 percent that we will
lose money. This exposure may cause us to reevaluate the desirability of the
base-case plan.

Once again, we often wish to know how sensitive our simulation results are
to one or more input parameters. This suggests running Crystal Ball in a loop
while we vary the inputs, and to do so we have included the appropriate tool,
called CB Sensitivity, in the Sensitivity Toolkit. Figure 9 shows the results
of running Crystal Ball while we vary the budget from $40, 000 to $100, 000 in
increments of $5, 000, keepting advertising spending equal across the quarters.
We plot here not only the mean profit, but the maximum and minimum values
from each of the simulations, to give an idea of the range of outcomes likely
at each step.

4 Research Issues

In contrast to software engineering, which has seen decades of development,
spreadsheet engineering is in its infancy. Most of the ideas in this paper
have been adapted from software engineering and tested informally in various
instructional settings. However, there is little laboratory or field research
to support claims that one or another spreadsheet engineering principle is
effective in actual practice.

Spreadsheet engineers are fundamentally different from software engineers.
Most of them would not describe themselves as programmers and most are not
aware that they are under-trained for the spreadsheet design and analysis tasks
they perform. Few recognize the risks they and their companies run when they
use chaotic development processes or fail to use the powerful analytic tools
described here.

The research needs are clear, although how best to carry out this kind of re-
search is not. We need to know much more than we do about how spreadsheets
are designed and used in industry. We also need to test various interventions,
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including training programs and software add-ins, to see which really improve
practice and which do not. We also need to study how corporate standards
for training and use of spreadsheets influence the culture and performance of
end-users. While spreadsheet programming has little cache in the computer
science profession, it is likely that more computer programs are written by
the millions of spreadsheet end-users than all professional programmers com-
bined. The positive impacts of improving this aspect of programming practice
are correspondingly high.
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Fig. 1. The advertising budget spreadsheet.
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Fig. 2. A graph based on the Data Sensitivity.
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Fig. 3. Two-way Data Sensitivity: profit as a function of Q1 and Q2 advertising.
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Fig. 4. Tornado Chart using the Constant Percentage option.
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Fig. 5. Tornado Chart using the Variable Percentage option.
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Fig. 6. Comparison of base-case and optimal allocations.
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Fig. 7. Results of Solver Sensitivity.
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Fig. 8. Distribution of profits from the Advertising Budget example.
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Fig. 9. Results of CB Sensitivity.
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Abstract

This paper presents techniques for the design, implementation and animation of spreadsheet-

like tools in the attribute grammar formalism. A real spreadsheet is formally specified and

attribute grammar components that define user interfaces, querying languages and anima-

tions are plugged into the specification through higher-order attributes. From such a spec-

ification an incremental implementation is automatically derived and experimental results

are presented.
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1 Introduction

Attribute grammars (AG) [17] have proven to be a suitable formalism to the design

and implementation of both domain specific and general purpose languages. In

fact, powerful systems based on the attribute grammar formalism [23,13,2,9,20,18]

have been constructed. These systems automatically produce very efficient/opti-

mised implementations for languages specified via attribute grammars. While, in

the beginning, AG-based systems were used mainly to specify and derive efficient

(batch) compilers for formal languages, nowadays, AG-based systems are power-

ful tools that not only specify compilers, but also structured-based editors [23],

programming environments [18], visual languages [15], complex pretty printing

algorithms [28], program animations [20,25], etc. Furthermore, attribute grammars

are also a suitable setting to express (circular) lazy programs [12,19,24,5], aspect

oriented compilers [6], incremental algorithms [27], the XML technology [3], etc.

The purpose of this paper is three fold: first, to show that spreadsheet-like

tools can be formally and concisely specified in the higher-order attribute gram-

mar (HAG) formalism [30], and that well-known attribute grammar techniques can

be used to reason about such formal specifications. For example, the AG circu-



larity test can be used to statically detect circularities in the specification which

may induce the non-termination of the spreadsheet. In this paper we present the

specification in the attribute grammar formalism of a student spreadsheet, its in-

teractive interface, and the specification of querying language to query the student

database. Second, to show that efficient incremental implementations can be au-

tomatically derived from an attribute grammar. Spreadsheets heavily rely on a in-

cremental computation model since they have to provide immediate feedback after

user interaction. To derive incremental implementations from AG (usually called

attribute evaluators) we use the Lrc system: a purely functional attribute grammar-

based system [18]. In Lrc efficient incremental evaluation is obtained via function

memoisation. And, finally, to show that the visualisation and animation of the (in-

cremental) execution of the spreadsheet can be obtained from the AG specification.

Such animations provide a visual debugger which allows the user, for example, to

easily understand how the incremental evaluation is performed.

This paper is organised as follows: Section 2 briefly describes higher-order at-

tribute grammars and the Lrc system. Section 3 models a spreadsheet within the

AG formalism. AG components for defining an interactive interface, a query lan-

guage and a visualisation and animation are presented. Section 4 discusses the

incremental implementations derived by the Lrc system from attribute grammar

sprecifications and presents the results of the incremental behaviour of the spread-

sheet. Section 5 presents the conclusions.

2 The Lrc Attribute Grammar based System

The techniques presented in this paper are based on the higher-order attribute

grammar formalism [29]. Higher-order attribute grammars are an important exten-

sion to the attribute grammar formalism. Conventional attribute grammars are aug-

mented with higher-order attributes, the so-called attributable attributes. Higher-

order attributes are attributes whose value is a tree. We may associate, once again,

attributes with such a tree. Attributes of these so-called higher-order trees, may be

higher-order attributes again.

The Lrc system accepts as input a higher-order attribute grammar and generates

purely functional implementations, the so-called attribute evaluators. Lrc generates

both strict, multiple traversal attribute evaluators ( , , and OCaml based

attribute evaluators) and lazy attribute evaluators (expressed as circular lazy pro-

grams in ). Efficient incremental attribute evaluation is obtained via func-

tion memoization. The Lrc system not only produces batch tools (e.g., compilers),

but also programming environments. Such environments have a modern graphical

user interface.

The higher-oder attribute grammar formalism and the Lrc system will be ex-

plained in detail in the next section where we present the HAG to specify a spread-

sheet-like tool.
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3 The Students Spreadsheet Attribute Grammar

Suppose that we have a (textual) database of students registered in one course.

Each student (i.e., register) has several attributes such as: identification number,

name, and a list of marks (pairs containing the mark identification, and the value

the student got). A possible (concrete) instance of the database is presented below.

1,"Ana",tm=16,p1=15,p2=17
2,"Eduardo",tm=12,p1=13,p2=15
3,"David",tm=16,p1=15,p2=17

The first register expresses that the student with number 1, named Ana got the

mark as theoretical mark (tm), in the first project (p1) and in the second

one (p2). This database/language is defined by the following context-free grammar.

A production is denoted as = , where the name of the production,

i.e., , also indicates the term constructor function . The type of the constructor

function is and we say that function takes as argu-

ments values of type and returns a value of type . Roughly speaking,

non-terminal symbols correspond to tree type constructors, and productions corre-

spond to value constructors. We focus on the abstract structure of the language and

we ignore its syntactic sugar, e.g., punctuation symbols, etc.

Students Stud Students

Stud Int String [Mark]

Mark String Real

Fragment 1: The abstract grammar for the students database.

We represent lists of non-terminals by using both the usual functional notation

and explicit constructors.

Having a database with the information about the students marks, the natural

operations we would like to perform on that database are the mapping of a given

formula through all the students in order to calculate, for example, their final clas-

sification. That is to say that we wish to construct a spreadsheet-like tool. To

express a formula we consider a domain specific language (DSL) very much like

the desk calculator language presented in [22]. A concrete example of a formula is

as follows:

FinalMark = (tm + pm)/2
where pm = (p1 + p2)/2

To define the formula that is applied to each student we have two possibilities:

We may use a straightforward AG approach where the formula is defined as a

semantic function, written in the declarative language used to express semantic

functions in the AG formalism. As a result, this semantic function will not be

analysed (to infer termination properties) nor optimised by AG techniques. In
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this approach, the semantic function is part of the AG specification of the tool.

As a result, the formula is processed statically and not dynamically. Thus, if

we wish to use a different formula, the AG has to be modified, analysed and

compiled in order to produced the desired tool.

Or, we may use a key characteristic of higher-order attribute grammars: within

higher-order attribute grammars (HAG) every inductive computation can be mod-

eled through attribution rules. More specifically, inductive semantic functions

can be replaced by higher-order attributes. Thus, we can model the formula,

or, more precisely, that language of formulas as a higher-order attribute of our

spreadsheet. That is, we extend our context-free grammar with new symbols and

productions to define the language of formulas. Then, we associate inerited and

synthesised attributes to its symbols to move context information to the formula

sub-expressions and to synthesise the result of the formula.

In the context of the specification of the student spreadsheet, this is done as

follows: first we define a grammar describing the (abstract) structure of the lan-

guage of formulas and we extend it with attributes and equations. We introduce

an inherited attribute to pass the list of marks as the “argument” of the formula,

and a synthesised attribute to deliver the result of “applying” the formula to its

inherited/argument. After that we have to “apply” such “function” in the context

of every student. To do this, we just introduce a higher-order attribute to repre-

sent the abstract formula, we instantiate its inherited attribute (with the marks of

a particular student) and we use its synthesised result. So, we define a DSL for

formulas as a sub-language of our spreadsheet. Note that in this case the formula

is processed dynamically since it is part of the input sentence. As a result, if the

spreadsheet user wishes to change the formula, he just changes the part of the

input sentence where the formula is defined.

Next we discuss in detail how this latter approach can be implemented in the Lrc

system. The structure of the spreadsheet is defined through the following grammar,

where non-terminal Students is defined in Fragment 1, and non-terminal Formula

represents the (abstract structure) of the formula under consideration.

SpreadSheet Formula Students

Formula Exp Decls

Fragment 2: The abstract grammar for the Spreadsheet-like language.

Let us assume that we have an off-the-shelf AG component whose root non-

terminal is Formula. This non-terminal has one inherited attribute (representing a

finite function mapping variable names to values) and it synthesises one attribute

with the value expressed by the formula. Synthesised (inherited) attributes are pre-

fixed with the up (down) arrow ( ).

Formula

We omit here the attribute declaration and equations of the (trivial) definition
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of this component. We shall consider that this AG component is included in our

specification in order to create a monolithic AG, which is then analysed and the

respective implementation derived.

In order to map the formula through the database of students, we have to move

the (abstract) formula to the context of every student. Thus, we use one charac-

teristic of the HAG, the so-called syntactic references, meaning that the abstract

tree can be used directly as a value within a semantic equation. In our example the

“syntactic” symbol Formula is used within an equation as follows:

Formula Students

Students form Formula

Fragment 3: Passing the formula to the students.

Instead of defining attributes and equations to move the (abstract) formula down-

wards in the tree (i.e., the student list) via trivial copy rules, we use a special no-

tation to access a remote attribute (up in the tree). The expression Students form

refers to the local attribute form at the non-terminal Students [23,10] .

Now that we are able to access the formula in the desired context, i.e., in pro-

duction , we use a higher-order attribute to model the semantic function

that “applies” the formula to the list of marks of a student. Note that the inherited

attribute form is a higher-order attribute: it is a (higher-order) tree that has attributes

as well. In order to access those attributes we have to use the higher-order exten-

sion to the AG formalism. This is done as follows: first, we declare a higher-order

attribute, i.e., attributable attribute (ata) named form of type Formula, to represent

the formula. Then, we instantiate this attribute with the inherited global formula.

After that, we instantiate the inherited attribute env of that atawith the list of marks

of the student (and we use a syntactic reference once again). And finally, we ac-

cess the synthesised value of the formula. We use a local attribute (finalMark) to

store the computed value. In the higher-order attribute grammar notation this is

expressed as follows:

Int Name [Mark]

ata Formula -- Declaration of the ata

local Real -- Declaration of a local attr.

Students form -- Instantiation of the ata

form env [Mark]-- Instantiation of the inherited attr.

finalMark form res -- Use of the synthesised attr.

Fragment 4: The formula as a higher-order attribute.

Before we proceed, let us compare this higher-order style of defining such com-

putations with the classical attribute grammar one. In the classical style we could

See [16,28] for a survey of special notation for common attribute propagation patterns.
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express this inductive computation by defining a semantic function that accepts as

arguments the abstract representation of the formula and the list of marks of the

students. It delivers the result of applying the formula to the list of marks. We can

write it as follows:

Int Name [Mark]

finalMark evalFormula Students form [Mark]

Fragment 5: The formula as a semantic function.

where evalFormula is the inductive function. This function has to be defined and in-

cluded in the AG specification. If this semantic function is semantically equivalent

to the formula AG component, then, the previous two AG fragment are semantically

equivalent as well. Furthermore, this approach also supports the dynamic update

of the formula, since its representation is an argument of the semantic function.

But, there are two important differences between these two approaches: while in

the higher-order one, the AG techniques analyse the attribute dependencies, check

for termination properties and, if no circularities are induced, finally, produce an

optimised implementation. In the classical attribute grammar approach, the func-

tion is simply translated to the output without any analysis nor optimisation. Thus,

it can cause the non-termination of the attribute evaluator, and consequently the

non-termination of the spreadsheet!

Spreadsheets are usually displayed in a table-like representation. In [28] we

have presented a generic, off-the-shelf pretty-printing AG component that can be

plugged into our students spreadsheet so as to obtain the desired representation .

This AG component is based on a processor for HTML style tables. It computes

a pretty-printed textual table from a HTML (table) text. More recently we have

extended our original AG in order to synthesise a LATEX, a XML, a VRML, and

HTML table representation. Thus, we have a representation for our abstract tables

in all these concrete languages. Figure 1 displays the ascii representation of a pretty

printed table.

3.1 The Specification of the Spreadsheet Programming Environment

As it was previously stated, types can be defined within the attribute grammar for-

malism via non-terminal symbols. So, we may use this approach to introduce a type

that defines an abstract representation of the interface of spreadsheet-like tools (or

more generally, language-based tools). In other words, we use an abstract context-

free grammar to define an abstract interface. The productions (or constructors) of

such a grammar represent “standard” graphical user interface objects, like menus,

buttons, list boxes, pull donw menus, etc. Next, we present the so-called Lrc ab-

stract interface grammar.

Actually, attribute grammar systems provide a special domain specific language (or, in other

words, a fixed number of combinators) to pretty-print the syntax tree (usually called unparsing

rules).
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Visuals Toplevel

Toplevel Frame String String

Frame String

Entrylist

String MenuList

String

Ptr

[Frame]

[Frame]

Fragment 6: The Lrc abstract interface grammar.

The non-terminal Visual defines the type of the abstract interface of the tool:

it is a list of objects, that may be displayed in different windows. A

construct displays a frame in a window. It has three arguments: the

frame, a name (for future references) and the window title. The productions applied

to non-terminal Frame define concrete visual objects. For example, production

represents a push-button, represents a list box, etc.

The production represents a visual object that provides structured text

editing [23]. It displays a pretty-printed version of its (tree) argument and allows the

user to interact with it. Such beautified textual representation of the abstract syntax

tree is produced according to the unparse rules specified in the grammar. It also al-

lows the user to point to the textual representation to edit it (via the keyboard), or to

transform it using user defined transformations. The productions and

define combinators: they vertically and horizontally (respectively) combine visual

objects into more complicated ones. These non-terminals and productions can be

directly used in the attribute grammar to define the interface of the environments.

Thus, the interface of the spreadsheets is specified through attribution, i.e., within

the AG formalism.

To define a concrete interface, we need, as we have said above, to define the

mapping from the abstract interface representation into a concrete one. Instead

of defining a concrete interface from scratch, we synthesise a concrete interface

for a existing GUI toolkit, e.g., the TCL/TK GUI toolkit [21]. Indeed, this GUI

component synthesises TCL/TK code defining the interface in the attribute named

tk.

Next, we present an attribute grammar fragment that glues the spreadsheet HAG

with this graphical user interface attribute grammar component. It defines an in-

teractive interface consisting of two visual objects that are vertically combined,

namely: a push-button and the unparsing of the input under consideration. The

root symbol Spreadsheet synthesises the TCL/TK concrete code in the attribute oc-

currence concreteInterface.
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concreteInterface

Formula Students

ata absInterface Visuals

absInterface let "XML"

[ , ]

in [ "edit" "Students Editor" ]

concreteInterface absInterface tk

Fragment 7: The Spreadsheet graphical user interface.

Figure 1 displays a snapshot of the students spreadsheet produced by Lrc from

a AG specified using the techniques presented in this paper. In the background,

a frame contains a syntax-editor to edit the pretty-printed formula (actually, we

use a list of formulas) and the student database. In this syntax-editor, the user

can point to a formula and dynamically change it. The user can also point to a

particular student and select it through a mouse button. Then, the information of

the student is displayed in a new window, where it can be easily updated. All of

these actions are modelled as (abstract syntax) tree transformations, since the Lrc

system maintains an abstract syntax tree to represent the input under consideration.

Indeed, the (pretty printed) text displayed in the environments, corresponds to the

textual view of such a tree. The Lrc system uses incremental attribute evaluation,

in order to provide immediate real-time feedback, after a user action. This will be

discussed in Section 4.

3.2 Querying the Spreadsheet Through Attribute Grammars

Having specified the students database, the formula to compute their final marks

and how such formula is applied to each of the students, we may wish to compute

which students got good or bad results. Or, we may wish to compute the students

that have a final mark greater than a given number. In other words, we would like

to have some mechanism to be able to query our database.

Rather than defining a particular query language for our student database, we

want to define a generic query language that can not only be used for querying this

particular example, but also to query any other textual database defined within the

AG formalism. That is to say that we want to define a domain specific language

that can be easily embedded in any AG specification. In order to not introduce

yet-another querying language, we will consider the XQuery language: a typed,

functional language for querying Xml, currently being designed by the Xml Query

Working Group of the World-WideWeb Consortium [7,31]. We choose XQuery for

two reasons: first, because attribute grammars and Xml technology are closely re-

lated [4] (both extend the context-free grammar formalism), thus XQuery is indeed
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Fig. 1. The spreadsheet programming environment produced by the Lrc system from the

students spreadsheet higher-order attribute grammar.

a suitable declarative language to express queries on AG-based language specifi-

cations. Second, an Xml combinator library to map abstract grammars (or trees)

into Xml documents (or Xml trees) is already defined (via attribute grammars) in

Lrc. Thus, we may re-use such a library, firstly to map the abstract grammar of

the language under consideration to an Xml document, and then to query that Xml

document.

Before we briefly explain the XQuery language, let us present a fragment of the

abstract grammar defining the structure of an Xml document.

Document Prolog Miscs Element

Element Name [Attribute] [Content]

Content Element

CharData

Fragment 8: The abstract grammar defining Xml documents.

XQuery uses path expressions that is a mechanism very much like the Unix

notation to define paths on its file system. Instead of using the directory names,

however, it uses the tags contained in an Xml document to indicate the path. Such

tags correspond to the production names (or constructors) of the attribute grammar.

To introduce XQuery, let us consider some example queries on our student

database. To list the students registered in the course we have to write the following
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simple XQuery sentence (see non-terminals and productions on fragments 1 and 2):

RootProd/Students

To list the students that got a final mark greater than 13 we can write the fol-
lowing query:

RootProd/Students/OneStud[//OneMark/@FinalMark.>.13]

This query selects the element OneStud (or the subtree constructed with con-
structor OneStud), that contains as descendant (the double slash // means that the
tagged element can be a direct or an indirected descendant) an element OneMark
where the attribute FinalMark is defined and it is greater than 13.

To model XQuery in the HAG formalism we start by defining the (abstract)

structure of this language via the following abstract grammar:

Query AQuery

AQuery TQuery

TQuery

TQuery

TQuery TQuery XQuery

XQuery

Fragment 9: The abstract grammar defining the XQuery language.

We extend this grammar with attributes and equations in order to synthesise

the desired information, that is to say, the answer to the query under consideration.

The result of a query is another Xml document that contains the elements of the

original document that answers the query. Thus, to perform a query is to evaluate

a function, say query, that takes the query and the Xml document as arguments and

returns another Xml document. In our setting, such a function has type:

AQuery Document Document

This is, once again, an inductive function that can be efficiently defined within

the style of higher-order attribute grammar programming. We omit here the defini-

tion of the attributes and respective equations since they are not relevant to under-

stand our technique nor to re-use such a query language AG component.

Now that we have introduced this generic query component, we can embed it

in any attribute grammar specification. For example, we can embed it in a biblio-

graphic database processor (e.g., BibTeX [24]) to list the books written by a given

author. Or, we can embed it in our spreadsheet specification in order to extend the

spreadsheet environment shown in Figure 1 with a powerful querying language.

Figure 2 displays a new window (automatically) included in the spreadsheet that
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Fig. 2. Querying the students spreadsheet: the top frame displays the beautified query that

is performed on the Xml representation of the database (frame on the left). The answer to

the query is displayed as a Xml document on the right frame..

provides the user with a syntax editor to interactively query the student database.

The query being displayed is the example query discussed above. Obviously, the

user can dynamically modify this query and, in this case, the spreadsheet will in-

crementally compute the answer.

3.3 Visualisation and Animation of Spreadsheets

Attribute grammar-base systems statically schedule the computations, and, auto-

matically generate implementations for the AGs - the so-called attribute evaluators

- based on the dependencies induced by the attribution rules. Such evaluators are

usually implemented as tree-walk evaluators: a function that walks over the ab-

stract tree (representing the input under consideration) while computing attribute

values (this task is usually called tree decoration). Thus, attribute grammars can

be visualised by displaying the abstract tree in a graphical representation, and ani-

mated by displaying the tree decoration process in that tree (for example, by mark-

ing in the graphical representation the tree node being visited and by displaying the

attribute values being computed).

Thus, we introduce a generic component for the visualisation and animation of

AGs. We wish to use this AG as a generic visual and animation AG component. We

start by defining an abstract grammar that is sufficiently generic to define all possi-

ble abstract tree structures we may want to visualise and animate. The grammar is

as follows:

11



TreeViz TreeId TreeStmt

TreeStmt NodeStmt

EdgeStmt

AttrStmt

NodeStmt NodeId Attr

EdgeStmt NodeId EdgeRHS Attrs

EdgeRHS EdgeOp NodeId

Attr AttrId AttrVal

The non-terminals TreeId, NodeId, EdgeOp, AttrId, AttrVal define sequences of

characters (strings). In order to make it easier to use this component, we define a set

of functions/macros that, using the productions of this AG component, define usual

occurring node formats in our trees. Next, we present four functions that define the

shape of a node as a record (attrShapeRecord), as a circle (attrShapeCircle), as the

value of a node label (attrLabel), and, finally, as a node that contains a value and

an arrow to a child node. These functions are presented next.

attrShapeRecord = ”shape” ”record”

attrShapeCircle = ”shape” ”circle”

attrLabel label = ”label” label

nodeRecord1 val father child =

[ ( father) [attrShapeRecord , attrLabel (val ++ "|<c>")]

, ( "c") [ "->" child] ]

The label is a string that defines the format of the node record. The non-terminal

EdgeOpis a string defining the direction of the arrow.

The above grammar defines the abstract structure of abstract trees only. To have

a concrete graphical representation of the trees, however, we need to map such

abstract tree representation into a concrete one. Rather than defining a concrete

interface from scratch and implementing a tree/graph visualization system (and

reinventing the wheel!), we can synthesise a concrete interface for existing high

quality graph visualization systems, e.g., the GraphViz system [8]. We omit here

again attributes and attribution rules that we have associated to the visualization

grammar since they are neither relevant to reuse this component nor to understand

our techniques.

This grammar component is context-free (it does not have any inherited at-

tributes) and synthesises two attributes graphviz and xml, both of type string. These

two attributes synthesise a textual representation of trees in the GraphViz input lan-

guage. The first attribute displays trees in the usual graphic tree representation,

while the second one uses a Xml tree-like representation (where the production

names are the element tags).

12



TreeViz

We are now in position to “glue” this component to the spreadsheet AG. Let us

start by defining the attribute and the equations that specify the construction of the

GraphViz representation.

[ ]

viztree nodeEmptyCircle Students

Stud Students

viztree nodeRecord2 treeRef treeRef

treeRef ++ viztree ++ viztree

[ ]

Int String [Mark]

viztree nodeRecord1 ++ int2str Int treeRef [Marks]

Fragment 10: Constructing the Visual Tree.

Where the function treeRef returns a unique identifier of its tree-value argu-

ment (the tree pointer). Next, we declare a higher-order attribute, i.e., attributable

attribute (ata) named visualTree, in the context of the single production applied to

the root non-terminal of the spreadsheet AG. The HAG fragment looks has follows:

Formula Students

ata TreeViz

viztree

++ viztree

visualTree graphviz

Figure 3 shows two different snapshots (displayed by GraphViz) of the tree that

is obtained as the result of running the spreadsheet with the example sentence. As

we can see the tree is displayed as a Direct Acyclic Graphs. This happens because

we are using the incremental model of attribute evaluation of Lrc. We will return to

this subject in the next section.

Besides computing the graphical representation of the tree, the processor gen-

erated by Lrc also produces a sequence of node transitions. This is exactly the

sequence of visits the evaluator performs to decorate the tree under consideration.

Such sequence can be loaded in and animated in GraphViz, either in single step or

in continuous mode, forwards and backwards. Different colors (or different shadow

intensities in a black and white printing) are used to identify the number of times
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Fig. 3. The DAG representing the example sentence after processing the first student (left)

and after attribute evaluation (right).

the nodes have been visited. Thus, light gray means a single visit, gray (or color

blue) meand two visits and drak gray (or color red) means 3 or more visist.

The snapshot on the left shows the attribute evaluator when processing the first

student. The shadowed nodes are the nodes that have already been visited. The

snapshot on the right shows the tree after attribute evaluation. As we can see,

the (shared) list of marks of students number and has been visited only once

(light gray nodes). Its root, however, has been visited twice (gray node). On its

second visit a cache hit occurred: the formula under consideration has already been

“applied” to that argument.

4 Implementation of Attribute Grammar-based Spreadsheets

A spreadsheet-like system has to react and to provide answers in real-time. Con-

sequently, the delay between the user interaction and the system response is an

extremely important aspect in such interactive systems. Thus, one of the key fea-

tures to handle such interactive environments is the ability to perform efficient re-

computations. That is to say that spreadsheets use an efficient incremental com-

putational model. Implementing from scratch an efficient incremental engine is a

complex task.

We use an efficient incremental computational model that efficiently (and ele-

gantly) handles HAGs: the memoization (and posterior reuse) of calls to the func-

tions of the attribute evaluator. Such functions traverse/visit the tree in order to

assign a meaning to input under consideration. To achieve efficient function mem-
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oization we use the following combination of techniques:

Purely functional attribute evaluators: Syntax trees are visited and decorated by

strict, purely functional attribute evaluators. The attribute evaluators are based on

the visit-sequence paradigm [14]: The attribute evaluator consists of a set of visit-

functions, each of which perform the computations scheduled (by the attribute

grammars scheduling algorithm) for a particular traversal of the evaluator. The

attribute instances are not stored in the tree nodes, but, instead, they are the

arguments and the results of pure (side-effect free) functions: the visit-functions.

The different traversal functions are “glued” by intermediate data structures: the

visit-trees. Such redundant intermediate structures can be eliminated by using

our deforestation techniques for AGs [26].

Data constructor memoization: Since attribute instances are not stored in the

syntax tree, multiple instances of the syntax tree can be shared. That is, trees

are collapsed into minimal Direct Acyclic Graphs (DAG) (Figure 3 displays

the DAG constructed for the example input). DAGs are obtained by construct-

ing trees bottom-up and by using constructor function memoization to elimi-

nate replication of common sub-expressions. This technique, also called hash-

consing [11,1], guarantees that two identical objects share the same records on

the heap, and thus are represented by the same pointer.

Data constructor memoization considerably reduces the memory usage, al-

lows for efficient equality tests between all terms because a pointer comparison

suffices and, as we will explain next, makes efficient visit-function memoization

possible.

Visit-function memoization: Due to the pure nature of the visit-functions, incre-

mental evaluation is obtained by memoizing calls to the evaluator’s strict visit-

functions. Memoization is obtained by storing in a function cache calls to visit-

functions. Every call corresponds to a entry, in the function cache, that records

both the arguments and the results of one call to a visit-function.

The essence of the visit-function memoization is as follows: each time a mem-

oized visit-function is applied to a subtree and to a set of remaining arguments

(i.e., values of attribute instances), we search a cache to check whether that func-

tion was previously applied to those arguments, or not. If the cache contains an

entry corresponding to the call, the result in that entry is returned. If no such en-

try exists, the visit-function is applied to the arguments and the call is memoized.

In the animations produced by Lrc the reuse of a function call can be easily

identified since when visiting a node the animation skip the visits to the children

of that node. In our running example this occured in the second visit to the root

of the shared list of marks.

4.1 Benchmarking the Spreadsheet

Next, we present results obtained when executing the spreadsheet with a real stu-

dent database: the database contains the students, and all their marks, who follow

the compiler construction course where this tool was proposed as the course project.
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The number of students attending this course was and to each of them corre-

sponds evaluation elements (i.e., partial evaluation marks) which are used by a

list of formulas to compute different aspects of their evaluation (for example, a

particular exam, the projects mark, the final mark, etc). This database was con-

structed and is maintained by the spreadsheet tool. Actually, we have used this

tool to manage the course, as opposed to the use of a commercial tool. The table

below presents results obtained both with non-incremental evaluation, i.e., without

memoization of the calls to the evaluator functions, and with incremental evalua-

tion, i.e., with memoization of the function calls. It shows the number of functions

evaluated (cache misses), functions reused (cache hits), and time (in seconds on

an 2.4 GHz Intel Pentium processor, running Linux Red-Hat 9). We consider six

different situations: the processing of the database from scratch (i.e., starting with

an empty function cache), the editing of the database (i.e., the reaction after adding

a new formula, editing one, and editing a student mark), and the querying of the

database (i.e., performing a query to select a student and performing the example

query).

Non-Incremental Incremental

cache cache time cache cache time

misses hits secs misses hits secs

Scratch 408568 - 7.8 41730 37052 1.65

Editing:

Add a formula 435212 - 11.3 18356 34317 1.30

Edit a formula 408568 - 10.4 8148 11409 0.45

Edit a stud. mark 408568 - 10.4 3393 3016 0.23

Querying:

Select a student 501208 - 12.5 22158 47412 1.63

Example query 623000 - 13.3 27871 59307 1.73

As the above table shows, our incremental model of attribute evaluation pro-

duces efficient implementations. Even when processing an input from scratch, the

incremental evaluator computes of the functions as compared to when no in-

crementally is used ( functions evaluated against , respectively) and is

almost times faster. The reused functions are, in this case, due to the decoration of

the same tree (representing the formula) with the same inherited attributes (the same

marks). Or, in other words, the reuse of previous evaluations of the formula with

the same “arguments”. As expected, the tool handles very well updates of the input:

adding a new (global) formula requires the re-evaluation of of the functions

computed with non-incremental evaluation and of the functions if we consider

incremental evaluation. Better results are obtained with local changes (e.g., editing
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a student mark). A query in this spreadsheet performs like a global change since

the results of applying formulas are being considered by the query. Nevertheless,

using the incremental model is times faster than the non-incremental one.

5 Conclusions

A spreadsheet was efficiently and elegantly specified within the style of attribute

grammar programming. The Lrc system processed such a specification and derived

a correct and efficient implementation. The results of incremental evaluation show

that spreadsheets are a natural context for incremental evaluation. Actually, these

results are much better than previous results of incremental evaluation (mainly pro-

duced in the context of syntax-based editing).
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Abstract

Cell biologists have access to the “parts list” data for the cells of many organisms,
but limited understanding of how these parts go together to make a cell “come
alive”. A cell simulator could improve this understanding considerably. Our goal
is to make cell simulation as convenient as spreadsheet calculation by making the
simulator resemble a spreadsheet. In this paper, we describe our prototype simulator
and report on our early experience with it.

Key words: cell simulation, spreadsheet

1 Introduction

Cell biologists have access to “parts list” data for the cells of many organisms,
but limited understanding of how these parts go together to make a cell “come
alive”. A cell simulator could improve this understanding considerably, as
Tomita remarks

To say that we understand the overall behaviour of the cell, we must be able
to answer questions such as: ‘How would the cell behave if we change the en-
vironment, for example, by adding or decreasing a certain substance?’ and
‘What is the result if a certain gene gets knocked out or over-expressed?’
Slightly more sophisticated questions include ‘What gene needs to be in-
serted for the cell to behave in such a way?’ and ‘What is the ideal culture
medium in which to maximize the cell’s ability to do such a thing?’ [10].

Our goal is to make cell simulation as convenient as spreadsheet calculation
by making the simulator resemble a spreadsheet. In this paper, we describe
our prototype simulator and report on our early experience with it. The paper
is organised as follows. Section 2 provides a brief reminder of how ordinary
differential equations are solved numerically. Section 3 describes our simulator.
Section 4 gives its evaluation and typing rules. Section 5 presents an example

1 Email: D.Wakeling@exeter.ac.uk
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model. Section 6 shows how this model can be simulated with our simulator.
Section 7 shows how it can be simulated with the E-Cell simulator. Section 8
reports the results of a small an experimental study. Section 9 considers some
closely related and possible future work. Section 10 concludes.

2 Solving ordinary differential equations numerically

An ordinary differential equation takes the form dx/dt = f(t, x), and describes
how the dependent variable, x, representing some value of interest changes with
the independent variable, t, usually representing time. An initial value problem
is one where the value of x = x0 is specified at time t = t0. A simulation must
solve systems of such equations numerically, and one common way to do so is
to use the fourth-order Runge-Kutta method, summarised by the equations

k1 =hf(tn, xn)

k2 =hf(tn +
h

2
, xn +

k1

2
)

k3 =hf(tn +
h

2
, xn +

k2

2
)

k4 =hf(tn + h, xn + k3)

xn+1 =xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
tn+1 = t + h

where the constant h is the time step size.

3 Our prototype simulator

Our prototype simulator incorporates several ideas.

3.1 A new approach to functions

Recently, Peyton Jones et. al. proposed a new approach to functions in
spreadsheets [6]. Functions are entered into a worksheet 2 , with some cells
allocated for the arguments, and another for the result. See figure 1. Here, the
workbook has a worksheet for the function f2c that converts from Fahrenheit
to Celsius. By (our) convention, the first few cells in column A of a worksheet
that defines a function are allocated for the argument values, and the one
below those is allocated for the result formula.

2 Throughout this paper, we use the terminology and features of Microsoft’s popular Excel
spreadsheet for our discussion and examples. Other spreadsheets are similar.
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Fig. 1. A worksheet defining a function.

3.2 A history mechanism

Wray and Fairbairn introduced a history mechanism in their Nas spread-
sheet [13]. Here, the value of a cell may depend on its own “last” value, and
calculation takes place when a Tick button is pressed. Thus, a cell might con-
tain the value and formula 42 = last + 1 which, after pressing Tick, would
change to 43 = last + 1. There must always be a value in a cell with a
formula involving last.

3.3 A built-in function for solving ordinary differential equations

Spreadsheets usually provide a number of built-in functions for common math-
ematical, statistical and scientific operations. In the same way, a built-in func-
tion can be provided for solving ordinary differential equations. To solve an
equation of the form dx/dt = f(t, x) with an initial value x = x0 at t = t0, a
cell might contain the value and formula x0 = ODE(f(t, last), h), where t is
a reference to a cell containing the value and formula t0 = last + h, and h is
a reference to a cell containing the value of the step size. Each ODE application
takes one step towards solving the equation. Again, there must always be a
value in a cell with a formula involving an ODE application, which must always
be outermost.

Most often, a system of ordinary differential equations must be solved, in
which several equations are defined in terms of one another. In a functional
setting, each of these equations must be passed the current values of the others
as additional arguments, a1, . . . , an. A definition of ODE using the Runge-Kutta
method is as follows

ODE(f(t, a1, . . . , an, x), h)
= x + k1/6 + k2/3 + k3/3 + k4/6

where
k1 = hf(t, a1, . . . , an, x)
k2 = hf(t + h/2, a1, . . . , an, x + k1/2)
k3 = hf(t + h/2, a1, . . . , an, x + k2/2)
k4 = hf(t + h, a1, . . . , an, x + k3)

Of course, other definitions are possible using other methods.
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4 Evaluation and typing rules

In programming language research, valuable clarity comes from formalising
rules for evaluation and typing, and we do something similar for our prototype
simulator.

4.1 Terms and types

A workbook maps from names to worksheets, and a worksheet from cell ref-
erences to cells. A cell is a pair of expressions representing a value and a
formula, and an expression is either a label, a number, a cell reference, the
history variable, or the application of a name to an argument. See figure 2.
In reality, of course, it is essential to allow the basic mathematical operators,

w ::= {gi ⇒ si}n
i=1 — workbooks

s ::= 〈ri ⇒ ci〉mi=1 — worksheets

c ::= (e1, e2) — cells

e ::= l | n | r | last | g (e) — expressions

Fig. 2. The syntax of terms.

parentheses for grouping, built-in functions, and application of a worksheet
to more than one argument. These extensions present no difficulty, and are
omitted here only to save space.

A type is either a label, number or function type. See figure 3.

T ::= Label | Number | (Number) → Number

Fig. 3. The syntax of types.

4.2 Evaluation rules

An evaluation judgement takes the form s : t ⇓ s′ : t′, and says that evaluating
a term t in a state s yields a term t′ in a state s′. A state may be made up of a
mapping Γ from names to worksheets, a mapping ∆ from cell references to cells
and a value φ to be used for the history variable. To the left of “⇓”, M [a &→ b]
indicates extension of a mapping, and M [. . . , a &→ b, . . .] reveals some part of
it. To the right of “⇓”, such details are omitted, since any changes can easily
be inferred from elsewhere.

Evaluation judgements can be used to write evaluation rules for terms.
The rule E-Book says that evaluating a workbook involves evaluating only
the visible worksheet (this is the one being “ticked”). See figure 4. The rule
E-Sheet says that evaluating a worksheet involves evaluating all of its cells
(this must be done in natural order). See figure 5. There are two evaluation
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E-Book
Γ[gi &→ si]ni=1 : s√ ⇓ Γ′ : s′√

Γ : {. . . , g√ ⇒ s√, . . .}n
i=1 ⇓ Γ′ : {. . . , g√ ⇒ s′√, . . .}n

i=1

Fig. 4. The evaluation rule for workbooks.

E-Sheet
Γ; ∆[ri &→ ci]mi=1 : ci ⇓ Γ′; ∆′ : c′i
Γ : 〈ri ⇒ ci〉mi=1 ⇓ Γ′ : 〈ri ⇒ c′i〉mi=1

, ri in natural order

Fig. 5. The evaluation rule for worksheets.

rules for cells. See figure 6. The rules E-Cell1 and E-Cell2 say that evaluating

E-Cell1
Γ; ∆ : (v, ?) ⇓ Γ; ∆ : (v, ?)

E-Cell2
Γ; ∆; v : f ⇓ Γ′; ∆′ : e

Γ; ∆ : (v, f) ⇓ Γ′; ∆′ : (e, f)

Fig. 6. The evaluation rules for cells.

a cell is trivial if it has a value, but no formula; otherwise, the formula must
be evaluated to give the value. There are five evaluation rules for expressions.
See figure 7. The rules E-Lab and E-Num say that evaluating constants is

E-Lab
Γ; ∆; φ : l ⇓ Γ; ∆ : l

E-Num
Γ; ∆; φ : n ⇓ Γ; ∆ : n

E-Ref
Γ; ∆[. . . , r &→ (v, f), . . .]; φ : r ⇓ Γ; ∆ : v

E-Hist
Γ; ∆; φ : last ⇓ Γ; ∆ : φ

E-App

Γ; ∆; φ : x ⇓ Γ′; ∆′ : y

Γ′[. . . , g &→ s, . . .]; s[A1 &→ (y, ?)]; φ : A2 ⇓ Γ′′; s′′ : e

Γ; ∆; φ : g(x) ⇓ Γ′′; ∆′′ : e

Fig. 7. The evaluation rules for expressions.

trivial. The rule E-Ref says that a cell reference evaluates to the value of a
cell that must itself already have been evaluated because evaluation is done
in natural order. The rule E-Hist says that last evaluates to the value of
the cell whose formula caused it to be evaluated. The rule E-App says that
evaluating an application amounts to evaluating the result cell of the function
worksheet when its argument cell contains the argument value.
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4.3 Typing rules

A typing judgement takes the form A ' t :: T , and says that under the
assumptions A, a term t has type T . The assumptions are made up of a
mapping Λ from names to types, and a mapping Ξ from cell references to
types.

Typing judgements can be used to write typing rules for terms. The rule T-
Book says that a workbook has (arbitrarily) the type of the visible worksheet.
See figure 8. The rule T-Sheet says that a worksheet has a type formed from

T-Book
Λ[. . . , gi :: Ti, . . .] ' s√ :: T√

Λ ' {. . . , g√ ⇒ s√, . . .}n
i=1 :: T√

Fig. 8. The typing rule for workbooks.

those of the argument and result cells, which must be Numbers. See figure 9.

T-Sheet

Λ; Ξ[A1 :: Number] ' ci :: Ti

Λ; Ξ[A1 :: Number, ri :: Ti] ' c2 :: Number

Λ ' 〈A1 ⇒ c1, A2 ⇒ c2, ri ⇒ ci〉mi=3 :: (Number) → Number

Fig. 9. The typing rule for worksheets.

There are two typing rules for cells. See figure 10. The rules T-Cell1 and T-

T-Cell1
Λ; Ξ ' v :: T

Λ; Ξ ' (v, ?) :: T

T-Cell2
Λ; Ξ ' f :: Number

Λ; Ξ ' (v, f) :: Number

Fig. 10. The typing rules for cells.

Cell2 say that a if a cell has value, but no formula, then its type is that of the
value; otherwise, it is that of the formula, which must be Number. There are
five typing rules for expressions. See figure 11. The rules T-Lab and T-Num

say that constants have the obvious basic types. The rule T-Ref says that a
cell reference has the type given in the assumptions, and the rule T-Hist says
that last must have type Number. The rule T-App says that the application
of a worksheet to an argument of type Number has type Number.

5 An example model

Hodgkin and Huxley modelled the current flow through the surface membrane
of the nerve fibre of a squid as the sum of the capacitative, sodium, potassium
and leakage currents [4].
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T-Lab
Λ; Ξ ' l :: Label

T-Num
Λ; Ξ ' n :: Number

T-Ref
Λ; Ξ[. . . , r :: T, . . .] ' r :: T

T-Hist
Λ; Ξ ' last :: Number

T-App
Λ; Ξ ' x :: Number Λ; Ξ ' g :: (Number) → Number

Λ; Ξ ' g(x) :: Number

Fig. 11. The typing rules for expressions.

5.1 The capacitative current

The capacitative current, Icap, is given by

Icap = Cm ×
dVm

dt

where Cm is the membrane capacitance, and Vm the transmembrane potential.

5.2 The sodium current

The sodium current, INa, is given by

INa = gNa,max × m3 × h × (Vm − ENa)

where gNa,max is the maximum conductance of sodium, and m and h satisfy
the equations

dm

dt
= αm × (1 − m) − βm × m

dh

dt
= αh × (1 − h) − βh × h

The rate coefficients were found by curve-fitting to be

αm =
0.1 × (Vm + 25.0)

exp(0.1 × (Vm + 25.0)) − 1.0

βm =4 × exp(Vm/18.0)

αh =0.07 × exp(Vm/20.0)

βh =
0.1

exp(0.1 × (Vm + 30.0)) + 1.0

7
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5.3 The potassium current

The potassium current, IK, is given by

IK = gK,max × n4 × (Vm − EK)

where gK,max is the maximum conductance of potassium, and n satisfies the
equation

dn

dt
= αn × (1 − n) − βn × n

The rate coefficients were again found by curve-fitting to be

αn =
0.01 × (Vm + 10.0)

exp(0.1 × (Vm + 10.0)) − 1.0

βn = 0.125 × exp(Vm/80.0)

5.4 The leakage current

The leakage current, IL, is given by

IL = gL × (Vm − EL)

where EL is the reversal potential for the leakage current.

5.5 The total current

Combining the equations, the total current across a cell membrane, I, is given
by

I = Cm ×
dVm

dt
+ INa + IK + IL

This can be rearranged to

dVm

dt
=

I − INa − IK − IL

Cm

6 Simulation with our prototype simulator

In our simulator, the ordinary differential equations of the example model are
entered into a workbook. See figure 12. The run worksheet drives the simula-
tion. Cells A4 — A7 deal with calculation of the dependent variables Vm, m, h
and n, and cells A2 and C1 with calculation of the dependent variable, t. The
remaining cells are used for intermediate calculations, constant values and la-
bels. Other worksheets are used in the calculation of the dependent variables.
To save space, we have shown only the calc_m worksheet, as calc_h, calc_n
and calc_vm are very similar. Simulation is performed by pressing a “recal-
culate” button and specifying the number of steps (or “ticks”). Our simulator
is written from scratch in Haskell using the WxHaskell library.
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The run worksheet.

The calc m worksheet.

Fig. 12. Model entry with our prototype simulator.
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7 Simulation with the E-Cell simulator

One of the most advanced cell simulators available is E-Cell, developed by
Tomita and his team since 1996 [9]. In the E-Cell simulator, the ordinary
differential equations of the example model are entered in a text file. See
figure 13. Here, the single stepper object, ODE, is an ODE45Stepper — the

Stepper ODE45Stepper( ODE ) { }

System System( / ) {
StepperID ODE;
Variable Variable( m ) { Value 5.0E-2; }
Variable Variable( h ) { Value 0.6; }
Variable Variable( n ) { Value 0.325; }
Variable Variable( Vm ) { Value -75.0; }

Process ExpressionFluxProcess( proc_m ) {
Expression "( (0.1 * (Vm.Value + 25.0)) /

(exp(0.1 * (Vm.Value + 25.0)) - 1.0) ) *
(1 - m.Value)

- (4 * exp(Vm.Value / 18.0) * m.Value)";

VariableReferenceList [ m Variable:.:m 1 ]
[ Vm Variable:.:Vm 0 ];

}

# ... similar processes to calculate h, n and Vm
}

Fig. 13. Model entry with the E-Cell simulator.

one recommended for solving systems of ordinary differential equations. It
calls process objects and determines the next time step interval. The system
object, System, contains variable and process objects that describe the system
of equations. For each variable object, the Value property is set to the initial
value. For each process object, the Expression property is set to an expres-
sion that changes the value of a variable, and the VariableReferenceList
property is set to indicate those variables that it reads (‘0’), and those that it
reads or writes (‘1’). Notice that we have had to break the Expression string
to fit it on the page. Again to save space, we have shown only the process
proc_m, as proc_h, proc_n and proc_Vm are similar. Simulation is performed
by loading a text file into either a batch or an interactive session monitor.
E-Cell is written in C++ and Python.
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8 An experimental study

It is essential that cell biologists be able to enter their models into a simulator
quickly and accurately. Otherwise, they will either give up on simulation and
continue to use pencil-and-paper, or they will generate meaningless simulation
results whose cause might be difficult to determine. A small experimental
study was therefore conducted into the effectiveness of both our prototype
simulator interface and the E-Cell simulator interface.

8.1 Subjects

Eight volunteer subjects took part in the study, ranging in age from 20 to 37
years old. Four were BSc Computer Science students, two were MSc Bioin-
formatics students, one was a Research Assistant in Bioinformatics, and one
was a Research Assistant in Neural Networks. All had some experience of
spreadsheets and text editors, but none of cell simulators. They were thus
considered to have a representative skill-set.

8.2 Apparatus

A week in advance of the experiment, the subjects were issued with a four-
page manual covering both simulators, and containing an example of how
to use them to simulate a model with two ordinary differential equations.
This manual was deliberately terse and example-based, reflecting the typical
provision of documentation and the availability of examples. The test problem
was to enter the four ordinary differential equations for the model given in [12].

8.3 Procedure

First, each subject was asked to fill out a short questionnaire, answering ques-
tions about themselves and their proficiency with spreadsheets, text editors
and cell simulators. Next, they were given a five minute demonstration of the
simulators. Finally, the procedure for the study was explained and the test
problem was revealed. Afterwards, each subject was invited to comment on
their experience.

8.4 Data collection

The subjects could choose to use either simulator first. Their choice was
recorded, together with their claimed proficiency with spreadsheets and text
editors. For our prototype, “begin” time was recorded when the subject
started the simulator, and “end” time when they had successfully recalcu-
lated their workbook. The number of error dialogue boxes encountered, and
the nature of the errors was also recorded. For E-Cell, “begin” time was
recorded when the subject started the text editor, and “end” time when they
had successfully loaded their file into the session monitor. The number of load
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commands issued, and the nature of any errors was also recorded. Afterwards,
the workbooks and files were examined and the number of mistakes that they
contained was recorded.

8.5 Results

Table 14 and Table 15 show the results for our prototype and for E-Cell.

subject spreadsheet time static dynamic

identifier proficiency taken errors errors

A 5 27 1 0

B 3 31 1 0

C 3 55+ 13 1

D 3 31 3 0

E 4 35+ 6 0

F 3 36 14 1

G 3 30 3 0

H 1 34 3 0

Fig. 14. Results for our prototype simulator.

subject text editor time static dynamic

identifier proficiency taken errors errors

A 4 36 7 0

B 5 28 8 3

C 5 66+ 17 4

D 3 69+ 12 4

E 1 30 4 1

F 4 49 10 0

G 4 27 1 0

H 4 35 12 0

Fig. 15. Results for the E-Cell simulator.

In these tables, proficiency is measured from 0 (low) to 5 (high), and the
time taken is measured in minutes, with a trailing “+” indicating that the
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subject gave up. Static errors are counted as the number of error dialogue
boxes or load commands, and dynamic errors as the number of mistakes.

8.6 Discussion

Regardless of their claimed proficiency with spreadsheets and text editors, all
but one of the subjects chose to use E-Cell first, and their times taken to enter
the test model with both simulators were broadly similar. No clear preference
was expressed for either.

In the case of our simulator, two of the static errors were caused by ac-
cidental cycles between cells, and four by dangling cell references. These
were eventually fixed, although our curt error messages of the form “A1:
cycle exists” and “A1: dangling reference” proved difficult to comprehend.
The remaining static errors were type (in fact, arity) errors. After some
thought, most subjects fixed these, but the two who gave up did so be-
cause they had entirely misunderstood the worksheet argument-passing con-
vention, and found error messages of the form “worksheet does not have type
(Number,Number,Number,Number) -> Number” incomprehensible. Both of the
dynamic errors were mistyped constants.

In the case of E-Cell, the majority of static errors were caused by missing
parentheses, semicolons and the like. These were fixed after a few repeats of
the the edit-load cycle. Of the two subjects who gave up, one did so because
they declared their constants outside of a process rather that inside it, leading
to an incomprehensible error message about unknown property slots, and the
other did so because they used identifiers instead of ExpressionFluxProcess,
leading to an incomprehensible message about loading shared object files. All
of the dynamic errors were caused by misunderstandings about the role of
VariableReferenceList integers.

9 Related and future work

A spreadsheet interface was used in an early version of the E-Cell simula-
tor [9] and is still being used in the JigCell simulator [11]. In both cases,
the spreadsheet describes chemical reactions, with rows used for objects (such
as reactants and reactions) and columns for properties (such as names and
types). The advantage of a constrained spreadsheet like this is that clear rules
can be given about what should go in which cells, and these rules can be
checked. The disadvantage is that these additional rules must be learned, and
so much of the attractive simplicity of a free-form spreadsheet is lost. Actual
experience with the spreadsheet interface has been mixed. On the one hand,
it was abandoned in E-Cell, and so presumably was not a success. On the
other hand, it continues to be used in JigCell, with encouraging results.

During our study, several subjects complained that our prototype was miss-
ing copy-and-paste, which they especially wanted to copy a table of all con-
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stants onto all worksheets. They could also often be seen pointing at the
screen, or heard muttering as they worked out which cell references to use be-
cause, although able to comment on the role of cells by placing labels nearby,
they were unable to refer to them by those labels. Some subjects even engaged
in rapid switching between worksheets to check function arities because only
one worksheet is visible at a time. None of these problems would have arisen
with Excel, which in future we plan to use as the interface to our simulator.

Our typing rules are in the tradition of functional programming, largely
because the author is a former functional programmer. As our study has
shown, though, they are not well suited to spreadsheets. Recently, there
has been a growing interest in checking the consistency of spreadsheets by
reasoning about their units [1,2,3]. In principle, any value declares a unit (for
example, a label “Month” declares a unit Month). In practice, it is those values
serving as column or row headers which provide the declarations that can serve
as the basis for unit inference (for example, a label “October” in a column with
a header label “Month” has the unit Month[ October ]). As Erwig and Burnett
remark, unit inference provides a good way to make use of the “implicitly
explicit” information already present for the purposes of documentation [3].
In future, we plan to build on this work to develop evaluation and typing rules
to ensure that types (such as numbers and labels), dimensions (such as litres
and volts) and units (such as reactants and catalysts) are used consistently.

Of course, other cell simulators exist with textual (for example, Jarnac [7]),
diagrammatic (for example, GEPASI [5]) and graphical (for example, Virtual
Cell [8]) user interfaces. Once we have improved our simulator as outlined, we
plan to repeat our study, including simulators like these too.

10 Conclusions

In this paper, we have described our prototype cell simulator and reported
on our early experience with it. The simulator interface is a spreadsheet that
incorporates a new approach to functions, a history mechanism and a built-
in function for solving ordinary differential equations. A small experimental
study showed that it was not as effective as it might be. In future, we plan to
redesign our prototype, to develop more suitable typing rules, and to undertake
another study.
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