Towards Safer Spreadsheets”

Robin Abraham
School of Electrical Engineering and Computer Science
Oregon State University
Corvallis, Oregon 97331, USA.

1 Introduction

Professional programmers are well aware that de-
bugging, testing, code inspection, etc. are part and
parcel of software development. Requiring end users to
carry out the same activities to reduce spreadsheet er-
rors might be asking too much. For one thing, they lack
the expertise and for another, they might not be willing
to invest the time and effort required by these activi-
ties. For example, testing is a standard and effective
technique for detecting faults in programs. The down-
side is that testing requires reasonable domain knowl-
edge (to come up with effective test cases at the very
least) and understanding of the program. End users
might be deficient in one or both areas. Another prob-
lem arises from the lack of tool support for running
test suites in currently available commercial spread-
sheet systems. This forces users to run one test at a
time, thereby taking up more time.

2 Program Generator for Spreadsheets

We have developed a system that allows the user to
create specifications that describe the structure of the
initial spreadsheet [2]. The system (named Gencel)
translates the specification into the initial spreadsheet
instance and also generates customized update opera-
tions (insert/delete operations for rows and columns)
for the given specification. This approach guarantees
that a spreadsheet instance generated by application
of any sequence of the update operations to the initial
spreadsheet instance conforms to the user-defined spec-
ification. Moreover, given that the initial specification
is type-correct, any spreadsheet instance generated by
the application of the customized update operations is
guaranteed to be free from omission, reference, or type
erTors.

*This work is supported by the National Science Foundation
under the grant ITR-0325273 and by the EUSES Consortium
(http://eecs.oregonstate.edu/EUSES/).

One concern that might arise about this approach
is that it could detract from the flexibility offered by
spreadsheet systems because of the constraints imposed
on the update operations. We believe that the advan-
tages will outweigh the intial investment (in training
and creation of the initial specifications) because of the
huge savings in debugging and testing effort—the user
only needs to audit the initial specification and the data
values entered in the generated instances.

To support the wide-spread adoption of the Gencel
system, we need tools that allow the user to extract the
specifications from arbitrary spreadsheets. We plan to
use some of the spatial analyses techniques developed
in [1] to help with this task.

3 Conclusion

Most of the current approaches are aimed at help-
ing end users detect errors in spreadsheets they have
already created. Programming language environments
used in commercial software development employ sim-
ple (syntax highlighting, auto completion) to sophisti-
cated (type checkers, program generators) techniques
to prevent the incidence of errors in programs. This
makes a strong case in favor of systems that help the
users create correct spreadsheets. In this context, we
believe that the Gencel approach is a big step towards
the prevention of errors in spreadsheets.

References

[1] R. Abraham and M. Erwig. Header and Unit Inference
for Spreadsheets Through Spatial Analyses. In IEEE
Symp. on Visual Languages and Human-Centric Com-
puting, 2004.

[2] M. Erwig, R. Abraham, I. Cooperstein, and S. Koll-
mansberger. Gencel — A Program Generator for
Correct Spreadsheets. Technical Report TR04-60-11,
School of EECS, Oregon State University, 2004.



The Spreadsheet as a User Interface
Alan Blackwell

The first spreadsheet was a success because it provided a new user experience, not because of any
contemporary theories in human computer interaction (or in computing, despite a prior patent of
which Bricklin and Frankston were unaware — Mattessich 1964). It is useful to consider how and
why VisiCalc was different to the research agenda in HCI at the time, how its success was
subsequently rationalised, and what advances have been made in the usability of spreadsheets
since then.

Most HCI research in the late 1970s was still continuing directions originally motivated by
military research through Licklider, Sutherland and Taylor’s directorships of the ARPA
Information Processing Techniques Office. New interaction paradigms were clearly derived
either from SAGE command and control scenarios, or from CAD for aerospace modelling and
machine tooling. Engelbart adopted the more humanistic vision of Bush’s Memex, but developed
it in the military research atmosphere of ARPANET. In contrast, Kay’s radical pursuit of an
educational agenda from Papert emphasised creative exploration rather than conventional literacy
and numeracy. None of these strands of research gave close consideration to business computing
needs, beyond the anodyne commercialisation of NLS WYSIWYG documentation facilities into
word processors.

VisiCalc was developed in isolation from this research environment in which the concepts of
“direct manipulation” and “metaphor” were gaining currency. Bricklin’s original concept was
prototyped in BASIC (restricted to five columns by 20 rows), with the vision of creating an
“electronic blackboard”. It was targeted at the platform that was closest to a “commodity” PC —
the Apple II — on the advice of a founding editor from Byte magazine, and Franskston optimised
it to run fast in only 20K of memory.

Later developers did little to change this basic paradigm, but adopted more features that had
become familiar from work at PARC and Apple. Lotus 1-2-3 added presentation features such as
charts and plots, as well as database capabilities, after Kapor had previously developed similar
extensions for VisiCalc. Excel was written by Microsoft for the 512K Macintosh in 1984. It
provided pull-down menus and mouse pointing (and was the flagship application for Windows
3.0).

HCI rhetoric of the 1980’s claimed that spreadsheets were “natural” because of the adoption of a
well-chosen metaphor, as with other “desktop” features. In fact, the metaphor was minimal. More
mundane features were the fact that few other applications organised data properly into columns,
and most calculators kept no record of previous calculations — both features that are essential in
book-keeping. Subsequent spreadsheets were successful to the extent that they preserved these
essential features. My talk will consider how innovations in the spreadsheet paradigm can be
designed and assessed in the light of these critical attributes.

Levy, S. (1994). Insanely great: The life and times of Macintosh, the Computer that changed everything.
London: Penguin

Mattessich, R. (1964). Simulation of the firm through a budget computer program. Irwin.

Power, D. J., "A Brief History of Spreadsheets", DSSResources.COM, World Wide Web,
http://dssresources.com/history/sshistory.html, version 3.6, 08/30/2004.

Rheingold, H. (2000). Tools for thought: The history and future of mind-expanding technology (2nd ed).
Cambridge, MA: MIT Press

Smith, D.K. and Alexander, R.C. (1988). Fumbling the future: How Xerox invented, then ignored, the first
personal computer. New York: William Morrow



A Spreadsheet-Based View of the
End-User Software Engineering Concept’

Margaret Burnett, Curtis Cook and Gregg Rothermel
School of Electrical Engineering and Computer Science
Oregon State University
Corvallis, OR 97331 USA
{burnett, cook, grother}@eecs.orst.edu

End-user programming is arguably the most common form of programming in use today, but there has been little
investigation into the dependability of the programs end users create. Instead, most environments for end-user programming
support only programming. Giving end-user programmers ways to easily create their own programs is important, but it is not
enough. Like their counterparts in the world of professional software development, end-user programmers need support for
other aspects of the software lifecycle.

We have been investigating ways to address this problem by developing a software engineering paradigm viable for end-user
programming, an approach we call end-user software engineering. Because end users are different from professional
programmers in background, motivation and interest, the end user community cannot be served by simply repackaging
techniques and tools developed for professional software engineers. For this reason, end-user software engineering does not
mimic the traditional approaches of segregated support for each element of the software engineering life cycle, nor does it ask
the user to think in those terms. Instead, it employs a feedback loop supported by highly incremental testing, fault
localization heuristics, and deductive reasoning, which collaborate to help monitor dependability as the end user’s program
evolves. This approach helps guard against the introduction of faults in the user’s program and, if faults have already been
introduced, helps the user detect and locate them.

We have prototyped our approach in the spreadsheet paradigm. Our prototypes employ the following end-user software
engineering devices:

e Interactive, incremental systematic testing facilities.

¢ Interactive, incremental fault localization facilities.

e Interactive, collaborative assertion generation and propagation facilities.

* Motivational devices that gently attempt to interest end users in appropriate software engineering behaviors at
suitable moments.

We have conducted more than a dozen empirical studies related to this research, and the results have been very encouraging.
(More details about the studies are at http://www.engr.oregonstate.edu/~burnett/ITR2000/empirical.html.) Directly supporting
these users in software development activities beyond the programming stage — while at the same time taking their differences
in background, motivation, and interests into account—is the essence of the end-user software engineering vision.

For further reference:

M. Burnett, C. Cook, and G. Rothermel, “End-User Software Engineering,” Communications of the ACM, September 2004.

! This work has been supported in part by NSF under ITR-0082265 and in part by the EUSES Consortium via NSF’s ITR-
0325273.



IEEE FOS (Foundations of Spreadsheets) Workshop
Rome September 30 2004

Position Statement
Pat Cleary

Researchers need a shift in perspective. End User Development (EUD), and in
particular the use of spreadsheets, is essentially an organisational issue, not a technical
one. We must understand organisations and how they behave. Organisations consist
of people interacting within some sort of structure. People are complex, far more
complex than we as technologists understand, and people in organisations are even
more complex. As such, the solutions to EUD problems are organisational not
technical. We need to understand the context in which EUD takes place. Why do
users choose to model a business process using a spreadsheet rather than some
alternative vehicle? If a decision-maker is forced through organisational policy to
adopt an alternative, is there likely to be a loss of motivation? The answers are likely
to lie in the domain of psychology rather than computing. Ray Panko (Panko 2003)
has been encouraging us to look outside our own disciplines to seek understanding
and knowledge to help our research. At UWIC, we are embarking on a programme of
research aimed at understanding spreadsheet use and then attempting to provide a
framework for risk reduction:

- Categorise spreadsheet use within an organisation according to some agreed
criteria e.g. an estimate of financial risk; complexity; number of potential
users; motivation of the modeller;

- For each category, formulate a strategy for risk reduction; this may vary from
do nothing (continue as before) to do not use spreadsheets for this category.
Between these two extremes of the continuum, a variety of strategies may use
the variety of tools and techniques already available or may demand new tools
to be developed.

- Implement the strategies and monitor the effect.

A number of issues need to be understood and resolved at this initial stage, e.g. how
do you measure spreadsheet use? In particular, how do you measure motivation/de-
motivation? Clearly, without a suitable metric(s), it is not going to be possible to
recognise success and failure.

Reference:

Panko, R. R., ‘Reducing Overconfidence in Spreadsheet Development’, Proceedings
of EuSpRIG Conference, Dublin, 2003



Foundations of Spreadsheets
Rome 2004

Position Statement by Grenville Croll

Background

By way of introduction, I should mention that as a young software engineer, I was responsible for
re-engineering Lotus 1-2-3 for the European marketplace, way back in 1984. I had the good
fortune to meet and work with Mitch Kapor, Jonathan Sachs and the software engineers who took
Lotus 1-2-3 through its early versions. Subsequently, for an unbroken period of nearly fifteen
years I ran a couple of small UK companies (4-5-6 World and Eastern Software Publishing),
developing and marketing Lotus and Excel add-ins and related training. The products provided
anything from basic functionality — graphics, function libraries and printer drivers — through to
more advanced technologies including Monte Carlo Simulation, Neural Networks and Linear
Programming. My present employer, Frontline Systems, was founded and is managed by Dan H.
Fylstra who previously founded Personal Computer Software, later renamed VisiCorp, publishers
of VisiCalc, the first mass market spreadsheet. Frontline Systems presently supply a diverse
range of optimisation software products for Microsoft Excel. For the last five years I have been
closely involved with the European Spreadsheet Risks Interest Group (EuSpRIG). At the
Amsterdam conference in 2001, I gave a presentation on the work of Mattesich, the originator of
the first electronic spreadsheet.

Frame Questions

HCI perspective. Given the 25 year history of spreadsheets, we can look forward with
considerable certainty to at least another 25 years of their business use in essentially their present
form. With this in mind, what set of five and ten year objectives might it be reasonable to aspire
to in order to positively influence the work and leisure lives of over 100 million spreadsheet users
over a period of this length?

Business Perspectives. We know almost nothing about how spreadsheets are used in business,
beyond our own experience — what are the uses of spreadsheets? We assume that we make better
business decisions using spreadsheets, but to what extent is this actually true? Can we identify
areas where spreadsheets should not be used and create or recommend a replacement? Are there
new areas where spreadsheets could be effectively deployed?

Programming perspective. An enduring theme through the life of spreadsheets has been the
desire to create and manipulate them programmatically, to compile them having been written
manually, then to decompile them automatically to assist in debugging. Can we conceive of and
implement a simple to use, integrated architecture that can achieve all this?

Quality Perspective. How can we continue to improve the educational process relating to
spreadsheets - from their active use in primary education through their role in the teaching of
quantum chemistry.



FOS’04 Workshop — Position Statement

Martin Erwig, Oregon State University

We believe the two most promising ways to improve reliability of spreadsheets are the development of:

e Automatic tools for error detection
e Tools for automatically generating correct spreadsheets from specifications

The focus should be on automatic tools, because anything that has to be done “manually” in addition to
creating a spreadsheet takes time, which end users are reluctant to spend.

One promising approach to automatic error-detection tools is to define type systems that exploit the
labels and spatial structure of spreadsheets [6, 4, 2, 3, 1].

However, an even greater potential lies in the development of new programming approaches for spread-
sheets. Existing spreadsheet systems work with a simple programming model of a flat collection of cells that
do not contain any structure other than their arrangement on a grid. In particular, cells are identified by
global row and column numbers (letters) so that references have to be expressed using these global addresses.
This lack of structure puts current spreadsheet systems into the category of assembly languages when com-
pared to the state of the art in other programming languages. This situation is peculiar because spreadsheet
systems are equipped with very sophisticated user interfaces offering many fancy features, which can distract
from their intrinsic language limitations. The rigid, global addressing scheme makes computations vulnerable
to changes in the structure of the spreadsheet—much like in the old days of assembly language programming
where the introduction of a new item into the memory could cause some references to become invalid.

Instead of revealing this low-level memory structure to the user, we believe that spreadsheets should be
built using higher-level abstractions, such as, tables, headers, and repeating blocks. Correspondingly, instead
of creating spreadsheets through arbitrary, uncontrolled cell manipulations, spreadsheets should be allowed to
evolve only according to specification that describes the principal structure of the initial spreadsheet and all of
its future versions. Such a specification defines a schema or template for a spreadsheet that allows only those
update operations that keep changed spreadsheets within the schema. A program generator can create from
the specification an initial spreadsheet together with customized update operations for changing cells and
inserting/deleting rows and columus for this particular specification [5]. These customized operations ensure
that the spreadsheet can be changed only into new versions that always adhere to the table specification. A
type system for specifications can guarantee that all spreadsheets that evolve through the customized update
operations from a type-correct specification will never contain any reference, omission, or type errors.

References

[1] R. Abraham and M. Erwig. Header and Unit Inference for Spreadsheets Through Spatial Analyses. IEFE
Symp. on Visual Languages and Human-Centric Computing, 2004.

[2] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi. A Type System for Statically Detecting
Spreadsheet Errors. 18th IEEE Int. Conf. on Automated Software Engineering, pp. 174-183, 2003.

[3] T. Antoniu, P. A. Steckler, S. Krishnamurthi, Neuwirth, and M. Felleisen. Validating the Unit Correctness
of Spreadsheet Programs. Int. Conf. on Software Engineering, 2004.

[4] M. M. Burnett and M. Erwig. Visually Customizing Inference Rules About Apples and Oranges. 2nd
IEEE Int. Symp. on Human Centric Computing Languages and Environments, pp. 140-148, 2002.

[5] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger. Gencel — A Program Generator for
Correct Spreadsheets. Technical Report TR04-60-11, School of EECS, Oregon State University, 2004.

[6]) M. Erwig and M. M. Burnett. Adding Apples and Oranges. 4th Int. Symp. on Practical Aspects of
Declarative Languages, LNCS 2257, pp. 173-191, 2002.



Hodnigg Karin, Roland Mittermeir,
Computational Models of Spreadsheet-Development

POSITION STATEMENT

Amongst multiple causes for high error rates in spreadsheets, lack of proper training and
of deep understanding of the model behind spreadsheet computation and development is
not the least among them. The fact that developing spreadsheets is programming and thus
needs proper training somehow contradicts the intuitiveness of developing simple
spreadsheets. Immediate feedback representation of values only, the possibility to shift
complexity by splitting formulas over different cells, and the tabular layout hide intricacy.
This is useful, when writing a spreadsheet program, disturbing, when trying to understand
or maintain a spreadsheet.

Auditing tools help to reduce error rates. But, powerful as they are, they are expert tools.
Spreadsheets, though, are quite often written by people with minimal formal spreadsheet
training. To provide training to this community in acceptably small doses, it is important
that it can rest on a simple but nevertheless solid conceptual model. The three layers of a
spreadsheet program — the value, the formula and the data flow layer are a challenge.
Thus, a spreadsheet programmer has (more or less) the notion of a data flow graph in
mind which requires to memorize the coherence of a spreadsheet program with no
explicit representation.

Considering spreadsheet system implementations, both, data flow and graph reduction
models almost fit to the semantics of spreadsheets. But none of them fulfils all
requirements of a correct conceptual spreadsheet model. E.g., neither loops nor circular
references are part of the main spreadsheet paradigm. Moreover, the interactive
evaluation process corresponds neither to graph reduction nor data flow programs. Thus,
a conceptual model consistent with the spreadsheet paradigm is required. Differences in
implementations aggravate the situation. Common operations (like copy-and-paste or
drag-and-drop) are implemented differently on different systems. One main and profound
problem is the approach of treating circular references into the spreadsheet paradigm. On
one hand, circular references are likely to happen by accident (and thus are errors), on the
other hand, the loop concept is used (in some implementations) to support scientific
computations. Nevertheless, these approaches differ in their depth and implementation.

To establish a common and consistent conceptual model, these differences have to be
taken into account. Users familiar with the tabular grid have to understand, that there is
still some scoping among the different cells. This has been conceptualised in a projector-
screen model. Corresponding to the spreadsheet peculiarities, it relies rather on visibility
than on data flow, since the reference points to a cell — irrespective to its content. Moving
operations influence the address of a cell, not the content. However, the concept of
visibility is native to spreadsheets if one considers a cell seeing all the cells it is
referencing. It does not “see”, however, cells that are referencing this cell itself. Cells
containing range formulas observe cells in a geometrical pattern. According to common
approaches in spreadsheet programs, some typical patterns of references could be
identified. Examples are: many-handed figures (one cell referencing a set of other cells
just like a squid), the queue on a staircase (a sequence of cells referencing exactly its
(geometrical) predecessor), flying carpets (range references over a geometrical pattern of
cells) and recursive images (to explain circular references) may be useful patterns to
provide an in-depth understanding of spreadsheet programming. This approach is
discussed in-depth in “Computational Models of Spreadsheet Development — Basis for
educational approaches”, Hodnigg, Clermont, Mittermeir, EuSpRiG 2004.



FOS 2004

Position Statement

David Wakeling !

Bioinformatics Group, University of Ezeter, Fxeter, United Kingdom

Cell biologists often create mathematical models of cellular processes in
an attempt to understand them. Usually, the model is converted to a form
suitable for computer simulation, evaluated by comparing the simulated and
observed behaviour, and repeatedly revised until the two agree. Unfortunately,
though, the design, implementation and documentation of many cell simula-
tors can make this so wearing that all but the most determined cell biologists
soon give up.

In this context, we argue that spreadsheets are useful:

o from an HCI perspective, because they provide a familiar setting in which
to revise a model by asking “what if” questions;

e from a programming language perspective, because their natural purely func-
tional style avoids the (often troublesome) use of macros;

e from a quality perspective, because a type system could be added to prevent
the confusion of types, dimensions and units leading to nonsensical results.

! Email: D.Wakeling@exeter.ac.uk



