
A DSL for Explaining Probabilistic Reasoning

Martin Erwig and Eric Walkingshaw

School of EECS
Oregon State University

Abstract. We propose a new focus in language design where languages
provide constructs that not only describe the computation of results, but
also produce explanations of how and why those results were obtained.
We posit that if users are to understand computations produced by a
language, that language should provide explanations to the user.

As an example of such an explanation-oriented language we present a
domain-specific language for explaining probabilistic reasoning, a do-
main that is not well understood by non-experts. We show the design of
the DSL in several steps. Based on a story-telling metaphor of explana-
tions, we identify generic constructs for building stories out of events, and
obtaining explanations by applying stories to specific examples. These
generic constructs are then adapted to the particular explanation do-
main of probabilistic reasoning. Finally, we develop a visual notation for
explaining probabilistic reasoning.

1 Introduction

In this paper we introduce a domain-specific language for creating explanations
of probabilistic reasoning together with a visual notation for the explanations.
This DSL is an example of an explanation-oriented language, that is, a language
whose primary goal is not to describe the computation of values, but rather the
construction of explanations of how and why values are obtained.

In this introduction we will first introduce the idea of explanation-oriented
programming in Section 1.1 and then motivate the application domain of proba-
bilistic reasoning in Section 1.2. The specific components required for an expla-
nation DSL for probabilistic reasoning will be outlined in Section 1.3.

1.1 Toward Explanation-Oriented Programming

A program is a description of a computation, and a computation can be broadly
viewed as a transformation of some input to some output. The produced output
typically is a result sought for some problem. In this sense, programming is about
producing results. This view is appropriate as long as the produced results are
obviously correct or can be trusted for other reasons, which is not always the
case.

There are many instances in which programs produce unexpected results.
These results are not necessarily incorrect, but a user might not understand how

the result was produced and/or cannot judge whether or not the result is correct.
In situations like these an explanation of how the result was obtained or why it
is correct would be very helpful. Unfortunately, however, those explanations are
not easy to come by. In many cases, one has to go through a long and exhausting
debugging process to understand how a particular result was produced.

One reason for this situation is that explanations are not the objects of
concern of programming languages. Therefore, explanation tools, such as debug-
gers, have to be designed as an add-on to programming languages, mostly as an
afterthought. Since an explanation concept is missing in the design of program-
ming languages, explanation tools are difficult to integrate, and this mismatch
forces debuggers to reflect the notion of computation realized in the design of the
programming language, which in many cases leads to “explanations” that are
difficult to produce and have low explanatory value. In particular, traces gener-
ated through debugging are difficult to reuse and often impossible to combine
to produce other explanations.

The idea of explanation-oriented programming is to shift the focus toward
explanations of the described computations, so that in devising abstractions and
constructs, language design does not only center on producing final values, but
also on explanations of how those values are obtained and why they are correct.

This idea has a huge potential to innovate language design. In particular,
with a large and growing group of end-user programmers (creating, reusing, and
modifying spreadsheets, web macros, email filters, etc.) [29] there is a growing
need to provide explanations in addition to effective computations. Besides the
obvious application of supplementing or replacing current debugging approaches,
there is also a huge potential to define domain-specific languages that can be em-
ployed to create explanations in specific application areas that can be customized
and explored by users, ranging from the explanation of mechanical devices to
medical procedures, or defining explanations for all kinds of scientific phenomena
(in natural and social sciences).

One such application area is probabilistic reasoning, which is generally not
well understood and can thus benefit greatly from a language to create corre-
sponding explanations. A domain-specific language for creating explanations of
probabilistic reasoning is thus one example of an explanation-oriented language.

1.2 Understanding Probabilistic Reasoning

Probabilistic reasoning is often difficult to understand for people that have little
or no corresponding educational background. Even rather simple questions about
conditional probabilities can sometimes cause confusion among lay people, and
disbelief about answers to probability questions in many cases remains despite
elaborate justifications.

Consider, for example, the following question: “Given that a family with two
children has a boy, what is the probability that the other child is a girl?” Many
people respond that the probability is 50%, whereas it is, in fact, 67%.

Given the importance of probabilistic and statistical reasoning in all areas of
science and in many practical questions concerning modern societies (insurances,

effectiveness of medical procedures, etc.), the question is what can be done to
help this situation. In addition to trying to improve education in general and the
teaching of basic probability theory in schools in particular, a more immediate
approach is to provide concrete help with specific probability problems.

Currently, somebody who wants to understand the answer to the above ques-
tion has several options: First, they could ask somebody for an explanation. Sec-
ond, they could try to find explanatory material on their own, for example, by
searching the web or maybe even by looking into a textbook. Third, they could
give up and not understand the problem, which is likely to happen if no one
is around who could take the time to provide a personal explanation, or if the
explanation found on a web site (or in a textbook) does not provide the right
amount of information on the right level.

In general, a personal explanation can be expected to be the best option
in most cases since it allows the explainer to rephrase explanations, to answer
potential questions, make clear the underlying assumptions, and also to use
different examples to provide further illustration. Unfortunately, personal ex-
planations are a comparatively scarce resource. Not only are they not always
available, but they also have a very low degree of shareability and reusability. In
contrast, an explanation provided on a web site, say, can be accessed almost at
any time, by almost anyone from anywhere, and as often as needed, that is, it
has very high availability, sharability, and reusability. On the other hand, expla-
nations on web sites tend to be rather static and lack the adaptive features that
a personal explanation provides. In many cases, one has to read a whole text,
which might for a particular reader be too elaborate in some parts, which can
potentially cause exhaustion, and too short in other aspects, which can cause
frustration.

The goal of our DSL is to combine the positive access aspects of electronically
available explanations with the flexibility that personal explanations can offer
and to provide a language to create widely accessible and flexible explanations.
Our goal is not, however, to replace personal or web-based explanations, but
to complement them. For example, a teacher or a web page can provide an
explanation and then provide an explanation object as an additional resource.
Another combined use is that different views of an explanation object can be
employed as illustrations as part of a personal or written explanation.

1.3 This Paper

The design of a successful explanation DSL ultimately requires several different
components.

– Language constructs to build explanations
– A visual representation of probability distributions and transitions
– Interaction concepts to support the dynamic exploration of explanations
– A visual explanation programming language to allow domain experts who

are not programmers to develop explanations

In this paper we will focus on the first two aspects. First, we investigate the
notion of an explanation in Section 2 and try to identify an explanation concept
that is most suitable for our task of defining explanation DSLs. Based on those
insights we then design in Section 3 a domain-specific embedded language in
Haskell [14] for building explanations. This DSL can be employed to create
explanations in a variety of domains. We then specialize some parts of the DSL
to the domain of probabilistic reasoning in Section 4. The visual representation
of those explanations is introduced in Section 5. After the discussion of related
work in Section 6 we present some conclusions and goals for future work in
Section 7.

The contributions of this paper are these.

– A DSL for building (generic) explanations
– A DSL for building explanations of probabilistic reasonings
– A prototypical implementation of both DSLs as an embedding into Haskell
– A visual notation for probabilistic reasoning explanations

2 Theories of Explanation

The question of what an explanation is has been discussed by philosophers of
all times [27], dating back to Aristotle. Despite all these effort, the concept
of explanations remains elusive, and an all-encompassing theory that could be
agreed upon does not yet exist.

One of the most influential approaches in the 20th century was the so-called
“deductive nomological” theory of explanation by Carl Hempel [12]. According
to that theory an explanation is essentially an inference rule that has laws and
facts as premises and the explanandum1 as a conclusion. This view is very at-
tractive and has initiated renewed interest and research in the subject. However,
Hempel’s theory has been criticized, in particular, for being too permissive and
thus failing to characterize the essential aspects of explanations.

One problem is the overdetermination of inference rules, that is, by adding
irrelevant facts or laws to an inference rule, the inference rule is still considered
to be an explanation even though the added facts and laws are not explanatory
and, in fact, weaken the explanation (regardless of their truth). For example,
a law that says that men taking birth control pills do not get pregnant does
not explain the fact that a specific man did not become pregnant as well as the
simpler, more general law that men do not become pregnant. The other problem
with Hempel’s theory is that it fails to capture asymmetry in explanations. For
example, an inference rule that can explain the length of a shadow by the height
of a flagpole and the position of the sun can also be used to “explain” the height
of the flagpole from the length of the shadow even though this would not be
accepted as an explanation.

In search for a unifying theory of explanation, the problem has been ap-
proached not only from philosophy, but also from other related areas, including
cognitive science [13] and linguistics [2].
1 The thing that is to be explained.

2.1 Criteria for an Explanation Model

An initial survey of the literature quickly reveals that a comprehensive overview
over the field is well beyond the scope of this paper. Therefore, in order to have an
effective approach to finding an appropriate explanation theory, we have devised
some criteria that an explanation theory should fulfill. Traditionally, the search
for an explanation model has been driven by the goal to achieve generality.
However, an explanation model that is adequate in many cases, but maybe not
all, is sufficient for our purpose, in particular, if it supports the definition of a
DSL for building explanations. The main criteria for selecting a working model
of explanation are the following. An explanation model should be:

– Simple and intuitive. The model should be understandable by ordinary peo-
ple, not just philosophers and scientists, because explanations expressed in
this model are to be consumed by ordinary people.

– Constructive. The model should identify the components of an explanation
and how they are connected or assembled to support the definition of a DSL.

The need for simplicity rules out some advanced statistical models [26,22], models
based on physical laws [28] or process theory [4]. Unificationist models (see,
for example, [18]) do not provide a constructive approach, and they are quite
complicated too.

2.2 Causal Explanations

We believe the most promising explanation theory is based on the notion of
causation, that is, to explain a phenomenon A means to identify what caused
A. The idea that explanations reveal causes for why things have happened goes
back to Plato [25].

The theory put forward by Woodward [31] ties the notion of a cause, in
particular, to the concept of manipulability, which, simply said, allows one to
ask the question “What would happen to the explanandum if things had been
different?”. In this way, manipulating a cause shows effects on the explanandum
and thereby places it into a context of alternative outcomes.

Similar emphasis on the importance of an explanations to reveal opportuni-
ties to intervene to change the outcome can be found in the work of Humphreys
and von Wright [15,30].

An argument for the importance of the manipulability aspect of explanations
is that the motivation to understanding something comes from the promise of
using the knowledge to manipulate nature for one’s own advantage. This has been
nicely demonstrated by Dummett’s “intelligent tree” thought experiment [5]:
Suppose we humans were intelligent trees, capable of only passive observations.
Would we have developed the concepts of causation and explanation as we have
them now?

In Woodwards model, an explanation is represented by a directed graph
with variables as nodes and directed edges between nodes X and Y if X has

a direct effect on Y . A similar representation is used by Pearl [22]. Essentially,
each variable in such a graph corresponds to a type of possible values (typically
boolean), and a directed edge from X to Y corresponds to a function of type
X → Y . Therefore, an explanation graph represents a set of interconnected
functional relationships. This is essentially the same view as strutural equation
modeling, which dates back almost 90 years [32].

Health

No Water Poison

Poke Hole Poisoning

Fig. 1. Causal graph for the
desert traveler problem.

As an example, consider the desert traveler
problem, in which a traveler takes a bottle of wa-
ter on a trip through the desert. Two people try
to kill the traveler: One pokes a hole in the bot-
tle, the other one poisons the water. When the
travler later gets thirsty, he will find the bottle
empty and dies of dehydration. A graph repre-
sentation of this story is shown in Figure 1 on
the right. This example is used to test theories
about causation and whether they can properly
attribute the blame for the traveler’s death.

3 The Story-Telling Model of Explanations

It seems that we could use the graph representation suggested by Woodward and
Pearl [31,22] directly as a representation for explanations. However, a potential
problem with the graph representation is that it puts an additional navigational
burden of the user. In particular, the user has to decide which nodes, edges, or
paths to look at in which order, which can be a frustrating experience.

Therefore, we have aimed for a more linear representation. The idea is that
an explanation consists of a sequence of steps that guide the user from some
initial state to the explanandum using a series of well-understood operations
to transform the explanation state. Of course, the linearity requirement might
mean more work for the explanation programmer who has to define the state
in a way that is general enough to include all aspects of a potentially heavily
branched graph representation. On the other hand, if done well, this effort pays
off since it makes the life for the explanation consumer much easier.

This task of creating an explanation is similar to writing a story in which
events happen that transform the state of the story to a final outcome, the ex-
planandum.2 There is empirical evidence that presenting facts and explanations
in the form of a story makes them more convincing and understandable [23]. We
will therefore employ the story-telling metaphor for explanations in the design
of our explanation DSL.

Each event denotes a change and is represented by a function that is anno-
tated by a textual comment to be used in printing explanations. So a simplified
view of an event is given by the following Haskell type definition.

type Event a = Annotate (Chg a) -- preliminary definition

2 Friedman explicitly calls explanations “little stories” [9].

The type constructors Annotate and AnnotateP are used to attach a Note to a
single or a pair of values, respectively.

type Note = String
type Annotate a = (Note,a)
type AnnotateP a = (Note,a,a)

The type constructor Chg simply represents a function type. It is one of several
type constructors to be used (and explained) in the following.

data Id a = I a
data Chg a = C (a -> a)
data Agg a = A ([a] -> a)
data Sum a = S [a] a

The definition of Event can be generalized in two ways. First, in addition to a
linear sequence of events we also consider stories that can branch into separate
substories and add two constructors for branching and joining story lines. Sec-
ond, a story or explanation can be viewed on two different, but closely related
levels. On the one hand, we can talk about the sequence of events. On the other
hand, we can look at the sequence of results that are produced by the events
when they happen to a particular (initial) state. Therefore, we define a general
type Step, of which the types for events and states are instances.

These requirements are captured by the following type definition. The pa-
rameter type s, which is a type constructor, defines what is represented in each
step of a story, and j defines how results from multiple stories can be combined.
In an Event we store a function in each step and an aggregation function for
joins. In contrast, in a state we just store a value for each step and a summary
of the values of the branches and the computed aggregate value for joins.

data Step s j a = Linear (Annotate (s a))
| Branch (AnnotateP [Step s j a])
| Join (Annotate (j a))

type Event a = Step Chg Agg a
type State a = Step Id Sum a

A story is a list of events, and an explanation is given by a list of states. The
construction of an explanation happens by first building a story and then in-
stantiating it to an explanation.

type Story a = [Event a]
type States a = [State a]

newtype Explanation a = E (States a)

We can illustrate the operations for building stories with the desert traveler
example. We represent two aspects of the traveler, his health and his water
bottle.

type Traveler = (Health,Bottle)

This definition shows how a fan-out graph explanation can be linearized by
defining a richer story state. The traveler’s health is given by two states, dead
or alive, where we are interested in the case of death, how he died. The water
bottle can be empty, full, or leaking, and we have to indicate in the non-empty
cases whether the bottle contains water or poison.

data Health = Alive | Dead Note
data Fluid = Water | Poison
data Bottle = Full Fluid | Leak Fluid | Empty

To define a story that explains the traveler’s death, we have to define four events:
poisoning the water, poking a hole in the bottle, traveling through the desert,
and (attempted) drinking.

In many cases, an aggregated state definition, such as Traveler, requires
operations that allow the application of events to parts of the state. In the
example, poking a hole or poisoning are events that actually apply to a bottle,
but that will need to be defined to transform the whole traveler state. This state
access is provided by the following function.

inBottle :: (Bottle -> Bottle) -> Traveler -> Traveler
inBottle f (h,b) = (h,f b)

Now we can define the poisoning event as a function putPoison that has an
effect on a bottle, but that is lifted to transform a traveler state.

poison :: Event Traveler
poison = "Poison the water" ## inBottle putPoison

where putPoison (Leak _) = Leak Poison
putPoison _ = Full Poison

The annotation of the lifted function is performed with the smart constructor
##, which is defined as follows.

(##) :: Note -> (a -> a) -> Event a
n ## f = Linear (n,C f)

The events of poking a hole in the bottle and the potential draining of the bottle’s
content during the travel are defined in a completely analogous ways.

poke :: Event Traveler
poke = "Poke hole in bottle" ## inBottle pokeHole

where pokeHole (Full f) = Leak f
pokeHole b = b

travel :: Event Traveler
travel = "Travel through desert" ## inBottle drain

where drain (Leak _) = Empty
drain b = b

The final event of the story is when the traveler gets thirsty and wants to drink.

quench :: Event Traveler
quench = "Traveler gets thirsty and tries to drink" ## drink

where drink (h,Full Water) = (h,Empty)
drink (h,Leak Water) = (h,Empty)
drink (h,Empty) = (Dead "thirst",Empty)
drink (h,_) = (Dead "poison",Empty)

A story about the desert traveler is given by a list of events. For the original
story as told in Section 2.2 we have:

story :: Story Traveler
story = [poison,poke,travel,quench]

We can generate an explanation from the story by successively applying the
story events to an initial state value.

desertTravel :: Explanation Traveler
desertTravel = explain story ‘with‘ (Alive,Full Water)

The function explain is actually just a synonym for the identity function and
is used only as syntactic sugar. The function with threads a state value through
a list of events and builds a corresponding trace of resulting state values that
constitute the explanation.

with :: Story a -> a -> Explanation a

If we evaluate desertTravel, we obtain a description of the events and how
they lead to the death of the traveler.

--{Start}-->
(Alive,Full Water)
--{Poison the water}-->
(Alive,Full Poison)
--{Poke hole in bottle}-->
(Alive,Leak Poison)
--{Travel through desert}-->
(Alive,Empty)
--{Traveler gets thirsty and tries to drink}-->
(Died of thirst,Empty)

This result is obtained by simply pretty printing the states and interjecting the
notes associated with the events.

Arguably, the trace “explains” how the traveler died, but it is not necessarily
obvious that it is the poking event that is responsible for the death. To strengthen
the explanation in this regard we could add a branch to the story that shows that
the poisoning has no effect on the outcome. Adding a version of the story to the
explanation that omits the poisoning event achieves this because the outcome
stays the same.

poisonEffect :: Explanation Traveler
poisonEffect =

explain [Branch ("Effect of poisoning",story,tail story)]
‘with‘ (Alive,Full Water)

The evaluation of this explanation will produce a pair of traces that both end
with the same result (Died of thirst,Empty), which thus illustrates that poi-
soning has no causal effect on the death. We will present an output that includes
an explanation with a Branch constructor later in Section 4.3.

The Branch construct has much the same purpose as the do operation pre-
sented in [22], which permits the representation of interventions in causal net-
works. The difference is that the do operation changes a probability network,
whereas Branch combines two explanations representing both situations before
and after the intervention, similar to twin network representation, also described
in [22].

4 Explanations of Probabilistic Reasoning

Explanations for probabilistic reasoning are built using, in principle, the same
operations as introduced in Section 3. However, the domain of probability distri-
butions presents specific challenges, and opportunities, to adapt the story-telling
model to this particular domain. By specializing the generic explanation DSL
with respect to another domain, probabilistic reasoning, we obtain a “domain-
specific domain-specific language”.

This section introduces the components of our DSL in several steps. In Sec-
tion 4.1 we review an approach to computing with probabilistic values that forms
the basis for the representation of probability distributions. In Section 4.2 we
adapt the explanation DSL to the specific domain of probabilistic values, and
we show example explanations in Section 4.3.

4.1 Computing with Probabilistic Values

In previous work we have presented an approach to represent probabilistic values
explicitly as probability distributions [7]. Any such probability distribution is
basically a list of values paired with associated probabilities.

Probability distributions can be constructed using a variety of functions. For
example, the function uniform takes a list of values and produces a distribution
of the values with equal probabilities.

uniform :: [a] -> Dist a

Coin flips or die rolls can be conveniently expressed using uniform. Or, to use
the example we started in Section 1.2, we can represent the birth of a child as a
probability distribution.

data Child = Boy | Girl

birth :: Dist Child
birth = uniform [Boy,Girl]

The evaluation of a probabilistic value will show the elements of the distributions
together with their probabilities.

> birth
Boy 50%
Girl 50%

It turns out that the Dist type constructor is actually a monad [10,24]. The
return function behaves as if defined as follows.

return x = uniform [x]

More interesting is the bind operation that takes a probability distribution d of
type Dist a and function f of type a -> Dist b and applies f to all elements
of d. The list of distributions obtained in this way will be combined into one dis-
tribution, and the probabilities of the elements will be adjusted accordingly. The
meaning of the bind operation >>= can probably be best explained by showing an
example. To compute the probability distribution of families with two children
we can use bind to extend the distribution birth by another birth. However, we
have to represent the second birth as a function that transforms each child value
from the first distribution into a pair of children in the produced distribution.

secondChild :: Child -> Dist (Child,Child)
secondChild c = uniform [(c,Boy),(c,Girl)]

twoKids : Dist (Child,Child)
twoKids = birth >>= secondChild

Evaluation of twoKids results in the following distribution.

(Boy,Boy) 25%
(Boy,Girl) 25%
(Girl,Boy) 25%
(Girl,Girl) 25%

Another operation on probability distributions that will be employed in ex-
planations of probabilistic reasoning is the filter operation ||| that restricts a
probability distribution by a predicate.

(|||) :: Dist a -> (a -> Bool) -> Dist a

The definition of ||| selects all the elements that pass the filter predicate and
then scales the probabilities of these elements equally so that they sum up to
100%. The Haskell definition requires several helper function and is not so im-
portant; it can be found in the distribution of the PFP library.3 The operation
||| computes a distribution of all conditional probabilities with respect to the
filter predicate.

For example, the riddle from Section 1.2 asks us to consider only families with
boys. This constraint can be expressed by filtering twoKids with the predicate
that one kid must be a boy.

oneIsA :: Child -> (Child,Child) -> Bool
oneIsA c (c1,c2) = c1==c || c2==c

The filtered distribution of conditional probabilities looks then as follows.

> twoKids ||| oneIsA Boy
(Boy,Boy) 33%
(Boy,Girl) 33%
(Girl,Boy) 33%

This distribution almost tells the answer to the riddle. Formally, the result can
be obtained by using a function to compute the total probability of an event
that is given by a predicate.

(??) :: (a -> Bool) -> Dist a -> Float

The probability that in a family that has one boy the other child is a girl is thus
obtain as follows.

> oneIsA Girl ?? twoKids ||| oneIsA Boy
67%

We will present a generalization of ?? in the next subsection.

4.2 Adapting Explanations to Probabilistic Values

The explanation of the riddle that was provided in Section 4.1 by a sequence of
function definitions intertwined with textual comments is, so we hope, effective
and has high explanatory value. The reason may be that it follows to some degree
the story-telling schema propagated earlier. In any case, it is, however, not rep-
resented in a formal language and thus is not well suited for reuse, manipulation,
or exploration.

When we try to express the boy/girl riddle as a story we encounter the
difficulty that the types of events, stories, and explanations have only one type
parameter, which means, for example, that we cannot directly reuse the function

3 See eecs.oregonstate.edu/~erwig/pfp/.

secondChild to represent an event because it changes the type of the distribu-
tion.

There are two ways to deal with this problem. One approach is to generalize
the explanation types to two type parameters to allow for type changes in ex-
planations. The alternative is to define a union type, say Family, that accounts
for all possible types encountered during the course of the explanation.

We have chosen the latter approach for two reasons. First, the two-parameter
approach leads to a considerably more complicated definition of the explanation
DSL. In particular, it requires the use of existential types, which would make
our approach to grouping probability distributions (to be described below) im-
possible. Second, although the two-parameter solution offers more flexibility, it
also allows the definition of an explanation to be less committed. It is actually
the need to define one explanandum type that guides the explanation program-
mer in the design of explanations; the explanandum type acts as a high-level
summary of the explanation and offers an “explanation typing” in the sense of
constraining the possible values along an explanation.

For the riddle example the definition of such a union type is rather obvious.

data Family = NoKids | One Child | Two Child Child

Now before we go on to define family events, we extend the representation of
probability distributions by an optional function to group values in a distribution
into different categories. We call the new type VDist since the grouping is an
example of a view on the distribution.

data VDist a = Group (Dist a) (Maybe (a -> Int))

At this point we only consider grouping views, but there are other kinds of views
that we might want to add in the future to the type definition.

We also specialize the event, story, and explanation types to VDist distribu-
tions by reusing the definitions given in Section 3 (assuming they are defined in
a module with name E).

type Event a = E.Event (VDist a)
type Story a = E.Story (VDist a)
type Explanation a = E.Explanation (VDist a)

We also define the following type synonyms for events that emphasize special
functions of probabilistic events.

type Generate a = Event a
type Filter a = Event a
type Group a = Event a

The presence of a grouping function does not change the distribution of values,
it just provides a particular presentation of the distribution, which is reflected
in the fact that the effect of the grouping is noticeable when distributions are
printed.

instance Show a => Show (VDist a) where
show (Group d Nothing) = show d
show (Group d (Just f)) = show (partition f d)

Without a grouping function, distributions are shown as normal. However, when
a grouping function is present, values of the distribution are grouped into lists
by the following function.4

partition :: (a -> Int) -> Dist a -> Dist [a]

Since the distributions in explanations are all wrapped by a Group constructor,
we need auxiliary functions to lift functions defined on distributions to work on
the new type and to embed distributions in the new type.

vmap :: (Dist a -> Dist a) -> VDist a -> VDist a
vmap f (Group d g) = Group (f d) g

toV :: Dist a -> VDist a
toV d = Group d Nothing

With the help of vmap we can easily adapt the annotation function ## introduced
in Section 3. Since we have different kinds of transitions between probability dis-
tributions, we introduce several new versions of annotations. In particular, we
have distribution generator events that are defined using the monadic bind op-
eration and distribution filter events that are directly based on the probabilistic
filter operation.

(##>) :: Note -> (a -> Dist a) -> Generate a
n ##> f = n ## vmap (>>= f)

(##|) :: Note -> (a -> Bool) -> Filter a
n ##| p = n ## vmap (||| p)

We also specialize the with function that instantiates stories with examples.

with :: Story a -> Dist a -> Explanation a
s ‘with‘ d = s ‘E.with‘ (toV d)

4.3 Example Explanations

The explanation for the boy/girl riddle is now straightforward. First, we define
the individual events, then we combine the events into a story, and finally we
instantiate the story with an example to obtain an explanation.

The two generators are variations of the birth distribution, rewritten as
argument functions for the bind operation.
4 The actual argument type of the result distribution is not [a] but a specialized list

type ZoomList a that allows a more flexible and condensed printing of large lists,
which occur frequently in probability distributions.

firstChild :: Generate Family
firstChild = "First child" ##> _->uniform [One Boy,One Girl]

secondChild :: Generate Family
secondChild = "Second Child" ##>

\(One c)->uniform [Two c Boy,Two c Girl]

With these two events we can define a story and explanation of a two-children
family. Note that certainly is simply a synonym for return.

twoKids :: Story Family
twoKids = [firstChild,secondChild]

family :: Explanation Family
family = explain twoKids ‘with‘ certainly NoKids

The other two elements of the riddle are the restriction to families that have
a boy and the focus on the families that also have a girl. These two events
represent, respectively, a filter and a grouping operation on distributions.

hasA :: Child -> Family -> Bool
hasA c (Two c1 c2) = c==c1 || c==c2

oneIsBoy :: Filter Family
oneIsBoy = "Only families that have a Boy" ##| hasA Boy

otherIsGirl :: Group Family
otherIsGirl = "Other child is a girl" ##@ hasA Girl

The special annotation function ##@ defines the grouping function for a distribu-
tion. In contrast to filtering, the argument function (which is here a predicate)
does not change the probability distribution, but rather creates groups of values
together with their accumulated probabilities.

(##@) :: Grouper b => Note -> (a -> b) -> Group a
n ##@ f = n ## groupBy f

groupBy :: Grouper b => (a -> b) -> VDist a -> VDist a
groupBy f (Group d _) = Group d (Just (toInt . f))

The type class Grouper ensures the availability of the function toInt, which
turns the grouping function into one of type a -> Int, the type expected by
partition. Finally, we can express the whole riddle story by the events defining
the twoKids family followed by the boy filtering and then by focusing on the
group containing family with girls. The solution to the riddle can be found in
the resulting distribution of the explanation, which is obtained as an instance
using the with function.

riddle :: Story Family
riddle = twoKids ++ [oneIsBoy,otherIsGirl]

solution :: Explanation Family
solution = explain riddle ‘with‘ certainly NoKids

The explanation, shown in Figure 2, illustrates how the result is obtained from
an initial state through the successive application of simple events.

> solution
--{Start}-->

No children 100%
--{First child}-->
Boy 50%

Girl 50%
--{Second Child}-->
Boy Boy 25%
Boy Girl 25%
Girl Boy 25%

Girl Girl 25%
--{Only families with a boy}-->
Boy Boy 33%

Boy Girl 33%
Girl Boy 33%
--{Other child is a girl}-->

[Boy Girl,Girl Boy] 67%
[Boy Boy] 33%

Fig. 2. Textual explanation of the boys
and girls riddle

Once the structure of the expla-
nation has been identified, it is easy
to write transformations that change
the examples, that change generators
(for example, replace children with coin
flips), or that provide more or less
detailed sequences of steps. Such a
collection of explanations constitutes
an explorable explanation object that,
made accessible through a correspond-
ing user interface, provides a flexible,
yet structured explanation of the par-
ticular problem at hand.

As another example we consider an
explanation of the so-called “Monty
Hall problem” in which a game show
contestant is presented with three
doors, one of which hides a prize. The
player chooses one of the doors. Af-
ter that the host opens another door
that does not have the prize behind it.
The player then has the option of stay-
ing with the door they have chosen or
switching to the other closed door. This problem is also discussed in [7,11,21].
Most people believe that switching doors makes no difference. However, switch-
ing doors does make a difference—it doubles the chances of winning from 331/3%
to 662/3%.

To build an explanation we first define a data type to represent the different
states of the story. Each door means a potential win or loss for the candidate
unless it is opened, in which case it is out of the game.

data Door = Win | Loss | Open
type Doors = [Door]

Since the opening of doors is captured by the Door type, the game needs to
distinguish only two states, the initial situation of the prize being hidden, and
then the selection of a door through the contestant.

data Game = Hide Doors | Select Int Doors

The story starts with a situation that can be represented by three different door
lists with Win in one place. Then the first event, selecting the door is represented
by a generator that creates for each door list three possible selections, repre-
sented by an integer between 0 and 2. (Starting with 0 accomodates standard
list indexing convention.)

hiddenPrize :: Dist Game
hiddenPrize = uniform $ map Hide

[[Win,Loss,Loss],[Loss,Win,Loss],[Loss,Loss,Win]]

selectDoor :: Generate Game
selectDoor = "Candidate selects closed door" ##>

\(Hide ds)->uniform [Select n ds | n<-doors]

doors :: [Int]
doors = [0..2]

When opening a door, the game master has to avoid the door hiding the prize
and the door selected by the contestant (represented by the first parameter to
openBut). The function avoid generates all possible doors for the game master.

openDoor :: Generate Game
openDoor = "Game master opens a randomly chosen no-win door" ##>

\(Select n ds)->uniform $ map (Select n) (openBut n ds)

openBut :: Int -> Doors -> [Doors]
openBut n ds = [upd i Open ds | i<-avoid Win n ds]

avoid :: Door -> Int -> Doors -> [Int]
avoid d n ds = [i | i<-doors, i/=n, ds!!i/=d]

The grouping of situations into wins and losses can be expressed by a simple
predicate on door lists.

winning:: Group Game
winning = "Group outcomes by winning and losing" ##@

\(Select n ds)->ds!!n == Win

Finally, we define two events for switching and non-switching and place them in
a branching event.

Not switching is an annotated identity function, whereas switching means
to select the door that has not been opened. This event is implemented by a
function that simply transforms one game into another and does not generate
multiple possibilities. This means that when we reuse the avoid function, we
have to extract an element from the produced list. Since we know that the list
can have only one element in this case, we can obtain it using the function the.
Moreover, we need a new annotation function that lifts into the Event type, for
which we also use the synonym Map.

stay :: Map Game
stay = "Don’t switch door" ##* id

switch :: Map Game
switch = "Switch door" ##*

\(Select n ds)->Select (the (avoid Open n ds)) ds
where the [x] = x

(##*) :: Note -> (a -> a) -> Map a
n ##* f = n ## vmap (fmap f)

The definition of ##* exploits the fact that probability distributions are also
defined as functor instances.

The contemplation of both alternative story lines can be expressed itself as
a branching event as follows.

contemplate :: Event Game
contemplate = Branch ("Consider switching doors",[stay],[switch])

We can now create an explanation from all these events. However, we can observe
(either by inspecting the produced explanation or by simply thinking about the
story) that it does not really matter which door hides the prize. We might want
to exploit this knowledge and integrate it into the explanation since it helps to
reduce the number of possibilities to be inspected. This idea can be realized very
easily by a function that picks a particular element of a probability distribution
and sets its probability to 100%.

forExample :: Int -> Event a

It is up to the explanation programmer to ensure that the explanation for the
picked example is isomorphic to the other elements in the distribution. In future
work we plan to extend the function forExample by requiring evidence that can
be effectively checked against the other elements of the probability distribution.

Finally, the explanation for the Monty Hall problem can be put together as
follows.

montyHall :: Explanation Game
montyHall = explain [forExample 1,selectDoor,openDoor,

winning,contemplate] ‘with‘ hiddenPrize

The explanation that is produced is shown in Figure 3. In the textual representa-
tion $ means win, x means loss, and a blank denotes an open door. Underlining
indicates the door selected by the contestant.

Even though the textual representation is quite frugal, it still illustrates
the progression of the probability distribution along the story. In particular,
the grouping step shows that before the question of switching, the candidate’s
chances of losing are 67%, and, of course, this probability doesn’t change if the

> montyHall

--Start-->

$xx 33%

x$x 33%

xx$ 33%

--Select 1st value as representative-->

$xx 100%

--Candidate selects closed door-->

$xx 33%

$xx 33%

$xx 33%

--Game master opens non-chosen no-win door-->

$ x 17%

$x 17%

$x 33%

$ x 33%

--Group outcomes by winning and losing-->

[$ x,$x] 33%

[$x ,$ x] 67%

BRANCH Consider switching doors

<<<<

--Don’t switch door-->

[$ x,$x] 33%

[$x ,$ x] 67%

====

--Switch door-->

[$ x,$x] 33%

[$x ,$ x] 67%

>>>>

Fig. 3. Textual explanation of the Monty Hall problem

candidate doesn’t switch. In contrast, the switching event in the second branch
illustrates that switching will always move from winning to losing and from los-
ing to winning, that is, the 67% losing probability turns into a 67% winning
probability. The representation also shows why this is the case, namely, because
the underscore has only one other case to switch to.

Laws that relate different stories with respect to their produced results can
be employed to turn one explanation into several explanations to be explored by
te user. We briefly illustrate this aspect with one example.

For example, given a function result :: Explanation a -> [a] that
yields the result(s) of an explanation5, we can observe the following invariant. If
f is a total function on T and s :: Story T is well formed (that is, any event
directly following a branch event is a join), then for any story decomposition s1
++ s2 == s we have:

result (s ‘with‘ x) == result ((s1++["" ##@ f]++s2) ‘with‘ x)
5 The list type is needed to aggregate results from branches.

In other words, we can insert a grouping anywhere into an explanation without
changing the resulting probability distribution.

For explanations this means that we can move groupings around to im-
prove the explanatory value of explanations. (But we have to be careful to move
grouings into the branches of a Branch constructor.)

In the Monty Hall example this result means that we can safely move the
grouping before the door opening or into the branch after the switching/staying,
which yields alternative perspectives for the explanation that could be offered
for exploration by the user.

5 Visual Explanations of Probabilistic Reasoning

The visual notation for explanations of probabilistic reasoning was not simply de-
signed as a replacement for the clunky textual representation. In fact, we started
the design of the DSL with the visual notation. The two major motivations were
the following. (The first aspect is part of future work and will therefore not be
discussed in this paper.)

– Providing a basis for interactive explanation exploration.
– Adding explanatory power by employing the two metaphors of spatial par-

titions and story graphs.

The explanatory value of spatial partitions and story graphs can be best ex-
plained by an example. Figure 4 shows on the left the visual representation of
the explanation for the boy/girl riddle from Section 4.3.

A probability distribution is represented as a partition of a horizontal area
in which the area of each block is proportional to the probability of the repre-
sented value. In this way spatial partitions capture the notion that a probability
distribution is, in fact, a partitioning of the “space” of all posibilities. It treats
the probability space as a resource that is split by generators and merged by
groupings. Moreover, it illustrates indirectly how space that is filtered out is
redistributed to the remaining blocks of the partition.

Each partition of an explanation is linked to its successor by basically two
kinds of directed edges. First, filter and group edges link blocks of two partitions
that either have identical values (in the case of filter) or that are considered
equivalent (by the grouping function in the case of grouping). Second, generator
edges are, from a graph-theoretic point of view, sets of edges that lead from one
block to a set of blocks that are created from the value in the source block by a
generator. They are represented visually with one shared tail and as many heads
as there are generated values/blocks. Similarly, “for example” edges are sets of
edges that map a set of blocks that are equivalent with respect to the continued
probabilistic reasoning to one block chosen as an example. The chosen example
is indicated by a fat tail (see Figure 5 for an example).

Since generators are more complicated events than filters or groupings, gener-
ator edges are necessarily more abstract and less informative about what exactly

B
50%

G
50%

B B
25%

B G
25%

G B
25%

G G
25%

B B
33%

B G
33%

G B
33%

B B
33%

B G G B

Second child is added
to the family

Consider only families
that have a boy

Group by whether or
not a girl is in the family

GENERATE

FILTER

GROUP

67%

100%

GENERATE
First child is added
to the family

P%

B B
50% of P

B G
50% of P

Fig. 4. Visual explanation of the boys and girls riddle

happens in that generating step. We have therefore also a notation that shows
the effect of a generator operation in more detail. One example is shown in Figure
4 shows on the right. Showing this expanded notation everywhere would make
the visual notation too noisy, so we envision it as part of the interaction capa-
bilities of these explanations to expand individual operations into such a more
detailed representation. We have employed a very similar strategy successfully
in another visual language [8]. The notation can also be the basis for a visual
explanation programming language in which explanations can be assembled on
the fly using distributions and generators and then modified further through
filters and groupings.

The chosen graph representation for linking the spatial partitions provides
another opportunity for explanations. A user could mark a particular value any-
where in an explanation, and the system can trace the evolution of that value
forward and backward, also possibly producing animations of how such values
flow through the graph, changing the probabilities on their way.

In Figure 5 we show the story graph representation of the explanation for the
Monty Hall problem. In anticipation of a visual user interface, we assume that
only one branch is “active” or “selected” at a time so that there is only one set
of edges that connect blocks into one branch to avoid confusion. We have added
another Map event at the end, to illustrate the switch of winning and losing more
clearly.

In future work, we will define the formal syntax and semantics of story graphs
[6] and explore more of their potential usages, in particular, possible interactions
for story graphs that support explanation exploration. We will also extend story

MAP

$ 0 0
33%

0 $ 0
33%

0 0 $
33%

33%
$ 0 0 $ 0 0

Game master opens
non-chosen no-win door

Group by winning or
losingGROUP

67%

$ 0 0
100%

EXAMPLE
Select first value as a
representative

$ 0 0
33%

$ 0 0
33%

$ 0 0
33%

GENERATE
Candidate selects
closed door

GENERATE

$ 0 0
33%

$ 0 0
33%17% 17%

$ 0 0 $ 0 0

$ 0 0 $ 0 0

$ 0 0 $ 0 0
67%33%

$ 0 0 $ 0 0
33%

$ 0 0 $ 0 0
67%

$ 0 0 $ 0 0

Switch door

Win
33%

Lose
67%

Win
67%

Lose
33%

MAP

MAP

BRANCH

Fig. 5. Visual explanation of the Monty Hall problem

graphs to a visual programming language for explanations. Moreover, we plan a
detailed comparison with Bayesian networks. In particular, we will devise meth-
ods for translating Bayesian networks into story graphs.

6 Related Work

In Section 2 we have already discussed work in the philosophy of science regard-
ing theories of explanation. One important idea that has emanated from that
work is the importance of causality for explanations [5,30,15,28,4,22,31]. Some
notational support for expressing explanations and reasoning about causality has
developed in the form of causal graphs [22,31]. Pearl provides a precise definition
of causal graphs, and he demonstrates how they support the reasoning about
intervention [22]. Our explanation language is based on a story-telling model
that is a deliberate restriction of causal graphs to a mostly linear form. Since
our language is embedded into Haskell it encourages the use of types to struc-
ture the domain of the explanandum. The existence of laws for the explanation
operators (briefly pointed out in Section 4.3) allows the systematic generation of

alternative explanations and thus provides support for explanation exploration.
It is not clear whether similar results hold in less constrained general graph
models. Another difference between causal graphs and our explanation model
is that intervention is represented in causal graphs by an operation (do) that
transforms one causal graph into another, that is, there is no explicit represen-
tation of intervention in the graph representation itself. In contrast, we employ
a Branch construct that allows the integration of different story lines into one
explanation, which means that intervention can be represented explicitly.6 This
difference might be important when we consider exploration operations for ex-
planations since the explicit representation supports the exploration of interven-
tion, which could be a huge advantage given the importance that interventions
in causal graphs have for explanations.

When we look for explanation support for specific domains, we find in the area
of algorithm animation [17] many ideas and approaches to illustrate the working
of algorithms dynamically through custom-made or (semi-)automatically gen-
erated animations [16]. The story-telling metaphor has been employed in that
area as well [3], but only in the sense of adding textual explanations and not as
a structural guide as in our case.

Related to algorithm animation is the more general idea of obtaining expla-
nations of programs or program behavior, which, as discussed in Section 1.1,
is not well supported by existing tools. Most debuggers operate on a very low
level and often require much time and effort by the user to deliver meaningful
information. The approach taken by the WHYLINE system [19,20] improves
this situation by inverting the direction of debugging. This system allows users
to ask “Why...?” and “Why didn’t...?’ questions about particular program be-
haviors, and the system responds by pointing to parts of the code responsible
for the outcomes in question. Even though this system improves the debugging
process significantly, it can only points to places in a program, which limits its
explanatory value. In the domain of spreadsheets we have extended this idea so
that users can express expectations about outcomes of cells, and the system then
generates change suggestions for cells in the spreadsheet that would produce the
desired results [1]. From the point of view of causal explanations, the produced
change suggestions play the role of counterfactuals.

In the context of probabilistic reasoning, although there are languages that
support the computation with probabilities, such as IBAL [24] or PFP [7], there
is, as far as we know, no language support for generating explanations of prob-
abilistic computations.

Finally, the idea of elevating explainability as a design criterion for languages
was first proposed in [8] where we have presented a visual language for expressing
game strategies. A major guiding principle for the design of the visual notation
was the traceabilty of game results, that is, how well the strategies could be ex-
plained by relating them to actual game traces. In this sense that visual language
is an example of an explanation-oriented language.

6 Pearl [22] briefly describes the concept of twin networks that is similar in this respect.

7 Conclusions and Future Work

We have created a DSL for explanations of probabilistic reasoning by combin-
ing a functional view of explanations with a functional view of probababilistic
computation.

First, based on a metaphor of story telling, we have defined an embedded
DSL in Haskell to construct explanations as a linear sequence of values that
describe the evolution from some start situation to the value describing the
situation to be explained. Such an explanation trace is obtained by threading a
value through a list of function applications. Second, we have applied this model
to the value domain of probability distributions, which has led to the view that
an explanation of probabilistic reasoning amounts to a sequence of probability
distributions over some type. We have defined a visual notation for explanations
that combines the concepts of spatial partitions and story graphs, which suggests
the view of an explanation as a set of values that flow along edges and that show
changes in their probabilities as growing or shrinking areas.

In future work we will investigate laws that allow semantics-preserving trans-
formations of explanation to automatically generate a collection of related ex-
planations that can be navigated by the user. We will also investigate the user
interface aspect of explanation navigation and identify operations (and potential
extensions of the representation, such as new kinds of views on probability dis-
tributions) that can help formally capture and support exploration navigation.
Finally, we will formalize the story graph visualization. All these steps directly
support the implementation of an end-user tool for exploring probability expla-
nations.

More generally, we will also continue to explore opportunities for explanation-
oriented languages in other domains.

References

1. R. Abraham and M. Erwig. GoalDebug: A Spreadsheet Debugger for End Users.
In 29th IEEE Int. Conf. on Software Engineering, pages 251–260, 2007.

2. P. Achinstein. The Nature of Explanation. Oxford University Press, New York,
NY, 1983.

3. M. Blumenkrants, H. Starovisky, and A. Shamir. Narrative Algorithm Visualiza-
tion. In ACM Symp. on Software visualization, pages 17–26, 2006.

4. P. Dowe. Physical Causation. Cambridge University Press, Cambridge, UK, 2000.
5. M. Dummett. Bringing About the Past. Philosophical Review, 73:338–359, 1964.
6. M. Erwig. Abstract Syntax and Semantics of Visual Languages. Journal of Visual

Languages and Computing, 9(5):461–483, 1998.
7. M. Erwig and S. Kollmansberger. Probabilistic Functional Programming in

Haskell. Journal of Functional Programming, 16(1):21–34, 2006.
8. M. Erwig and E. Walkingshaw. A Visual Language for Representing and Explaining

Strategies in Game Theory. In IEEE Int. Symp. on Visual Languages and Human-
Centric Computing, pages 101–108, 2008.

9. M. Friedman. Explanation and Scientific Understanding. The Journal of Philoso-
phy, 71(1):5–19, 1974.

10. Giry, M. A Categorical Approach to Probability Theory. In Banaschewski, Bern-
hard, editor, Categorical Aspects of Topology and Analysis, pages 68–85, 1981.

11. Eric C. R. Hehner. Probabilistic Predicative Programming. In 7th Int. Conf. on
Mathematics of Program Construction, pages 169–185, 2004.

12. C. Hempel. Aspects of Scientific Explanation and Other Essays in the Philosophy
of Science. Free Press, New York, NY, 1965.

13. J. Holland, K. Holyoak, R. Nisbett, and P. Thagard. Induction: Processes of In-
ference, Learning and Discovery. MIT Press, Cambridge, MA, 1986.

14. Paul Hudak. Building domain-specific embedded languages. ACM Computing
Surveys, 28(4es):196–196, 1996.

15. P. Humphreys. The Chances of Explanation. Princeton University Press, Princeton,
NJ, 1989.

16. V. Karavirta, A. Korhonen, and L. Malmi. Taxonomy of Algorithm Animation
Languages. In ACM Symp. on Software visualization, pages 77–85, 2006.

17. J.T. Kerren, A. Stasko. Algorithm Animation – Introduction. In S. Diehl, editor,
Revised Lectures on Software Visualization, LNCS 2269, pages 1–15. 2001.

18. P. Kitcher. Explanatory Unification and the Causal Structure of the World. In
P. Kitcher and W. Salmon, editors, Scientific Explanation, pages 410–505. Univer-
sity of Minnesota Press, Minneapolis, MN, 1989.

19. A. J. Ko and B. A. Myers. Designing the Whyline: A Debugging Interface for
Asking Questions about Program Behavior. In Conference on Human Factors in
Computing Systems, pages 151–158, 2004.

20. A. J. Ko and B. A. Myers. Debugging Reinvented: Asking and Answering Why and
Why Not Questions About Program Behavior. In IEEE Int. Conf. on Software
Engineering, pages 301–310, 2008.

21. Morgan, C. and McIver, A. and Seidel, K. Probabilistic Predicate Transformers.
ACM Transactions on Programming Languages and Systems, 18(3):325–353, 1996.

22. J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press,
Cambridge, UK, 2000.

23. N. Pennington and R. Hastie. Reasoning in Explanation-Based Decision Making.
Cognition, 49:123–163, 1993.

24. Ramsey, N. and Pfeffer, A. Stochastic Lambda Calculus and Monads of Probability
Distributions. In 29nd Symp. on Principles of Programming Languages, pages 154–
165, January 2002.

25. D. Ruben. Explaining Explanation. Routledge, London, UK, 1990.
26. W. Salmon. Scientific Explanation and the Causal Structure of the World. Prince-

ton University Press, Princeton, NJ, 1984.
27. W. Salmon. Four Decades of Scientific Explanation. University of Minnesota Press,

Minneapolis, MN, 1989.
28. W. Salmon. Causality without Counterfactuals. Philosophy of Science, 61:297–312,

1994.
29. C. Scaffidi, M. Shaw, and B. Myers. Estimating the Numbers of End Users and

End User Programmers. In IEEE Symp. on Visual Languages and Human-Centric
Computing, pages 207–214, 2005.

30. G. von Wright. Explanation and Understanding. Cornell University Press, Ithaca,
NY, 1971.

31. J. Woodward. Making Things Happen. Oxford University Press, New York, NY,
2003.

32. S. Wright. Correlation and Causation. Journal of Agricultural Research, 20:557–
585, 1921.

	A DSL for Explaining Probabilistic Reasoning
	Martin Erwig and Eric Walkingshaw

