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Abstract

We show how to generalize list comprehensions to work on abstract data types. First, we
make comprehension notation automatically available for any data type that is specified as a
constructor/destructor-pair (bialgebra). Second, we extend comprehensions to enable the use of dif-
ferent types in one comprehension and to allow to map between different types. Third, we refine the
translation of comprehensions to give a reasonable behavior even for types that do not obey the monad
laws, which significantly extends the scope of comprehensions.
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1 Introduction

Set comprehensions are a well-known and appreciated notation from mathematics: an expression such
as {E(x) | x € S, P(x)} denotes the set of values given by repeatedly evaluating the expression E for all x
taken from the set S for which P(x) yields true. This notation has found its way into functional languages as
list comprehensions [3, 17, 18]. Assuming that s denotes a list of numbers, the following Haskell expression
computes squares of the odd numbers in s.

[x*x|x s, odd x |

The main difference to the mathematical set comprehensions is the use of lists in the generator and as
a result. In general, a comprehension consists of an expression defining the result values and of a list of
qudlifiers, which are either generators for supplying variable bindings or filters restricting these.

Phil Wadler has shown that the comprehension syntax can be used not only for lists and sets, but more
generally for arbitrary monads [19]. Beyond their use in programming languages, comprehensions have
also become quite popular as query languages for databases [16, 9, 11, 15]. One reason for this might be
that comprehensions provide an intuitive notation for (possibly nested) iterations combined with selection
conditions.

The meaning of comprehensions is defined by translation into two basic monad operations return and
bind. Thus, to use the comprehension notation for a particular data type T it is sufficient to define these
two operations for T. In order for comprehensions to be well defined, the operations must satisfy three
laws; we will describe the operations and their laws in Section 2.
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[t is not always obvious to find definitions for return and bind, and the first contribution of this paper
is a higher-level interface to the definition of monadic structures: whenever a data type is defined as a
particular kind of ADT (as defined in [6]), the monad operations and thus also the comprehension syntax
is obtained for free. Defining an ADT is fairly simple, it essentially means to write down its constructors
and destructors in a predefined shape. We will explain this in Section 3.

In Section 4 we then show how to define monad operations based on ADTs, which provides an al-
ternative way to define monads, namely through ADTs. This also offers an alternative to defining com-
prehension syntax for data types. In addition, the definition of ADT monad operations will also reveal
opportunities for making comprehensions even more expressible.

We will define a generalization of the comprehension syntax and a corresponding translation into ADT
monad operations in Section 5. In particular, it will then be possible to query different monads and to map
into monads that are different from the generators. Finally, conclusions follow in Section 6.

Let us give a few examples. For instance, we can define an ADT nat which constructs and destructs
natural numbers by computing successors and predecessors, respectively. (The definition of nat will be
shown and explained in Section 3.) Basing comprehensions on ADT con/destructors, we can use, for
example, a natural number as a generator.

countdownn = [i]i+«n :nat] : list

The specification “::: nat” says that the number value n is to be decomposed as specified by the ADT nat;
in this case, it yields a decreasing sequence of numbers. In contrast, the outer specification “::: list” tells
to process the values i with the constructor of the ADT list, which means here to simply collect them in a

list. By adding a condition, we get a function for computing all of a number’s divisors.
divisorsn = [i]i«< n::nat, n‘mod i == 0] ::: list

In the definition of countdown we could, instead of list, as well use an ADT like prod, which constructs num-
bers by multiplication, so that we obtain a comprehension defining the factorial function. If we omit the
outer ADT specification, list is assumed by default, and if we omit ADT specifications from the generators,
the outer ADT specification is taken as a default value. Thus, without any ADT specification, we arrive
at plain list comprehensions. Now if we assume that prod has the same destructor as nat, we can express
the factorial function concisely by the following comprehension.

facn = [i]|i<n]::prod

The generalized comprehension syntax gets really interesting when we work with more complex data types.
Assume we have an ADT graph whose constructor inserts a single node together with incoming and out-
going edges and whose destructor removes a single node with all incident edges (see Section 3.5 and [4]).
Then we can, for example, define the graph reverse operation simply by the following comprehension.

grevg = [(s,v,0) | (p,v,5) —g] ::: graph

This means that nodes are successively taken from the graph together with the list of their successors (s)
and predecessors (p), and the nodes are reinserted with exchanged roles of the successor/predecessor lists.

With a final examples we demonstrate the huge potential of ADT comprehensions. Assume we have
an ADT rootGraph (for acyclic graphs) whose destructor is defined to always return and remove a root
node (that is, a node having no predecessors). This ADT allows us to define a function for topological
sorting simply by systematic graph decomposition within a comprehension.

topsortg = [v | (_,v, ) < g ::: rootGraph |



All the presented examples have in common the general approach of defining ADTs “in the righ way” so
that the iteration schema provided by the comprehension syntax delivers the intended results.

2 Monads and Comprehensions

The comprehension syntax can be defined not only for lists, but more generally for any data types that is
a monad. The notion of monad originated in category theory [12]. Eugenio Moggi [13, 14] used monads
to structure semantics definitions, which paved the way for using monads in functional languages [20]. A
good survey is given by Phil Wadler in [21]. For this paper it is sufficient to regard a monad as a unary type
constructor with two associated functions. In Haskell, this is expressed by a type class (more precisely, as
a constructor class) Monad.!

class Monad m where
return ;1 a — ma
bind ::ma — (@ — mb) — mb

This definition says that any type constructor m can be made into a monad by providing the two operations
shown. In addition, the monadic structure requires return to be a left and right unit of bind and bind to be
associative in a certain sense. This is captured by the following laws.

(return x) ‘bind‘ f = fx (LU)
m ‘bind* return =m (RU)
(m ‘bind‘ f) ‘bind* g = m ‘bind* (\x — f x *bind" g) (A)

These laws are not enforced by Haskell. It is the programmer’s responsibility to use only appropriate monad
types.

One of the most prominent monad examples is the type of lists. The type constructor | ] is made an
instance of the monad class by the following definitions.

instance Monad [ | where
Teturn x = [x]
bind [1f =[]
bind (x:xs) f = fx+bind xs f
This means that return just injects an element into a singleton list and that bind applies f to each element

of a list producing a list of singleton lists that are concatenated by +-
For each monad the comprehension syntax (without conditions) is defined by the following translation.

T([el|]) = return e
T([e|lx—g g]) = gbind (\x—T([e]gs]))

In some cases monads have a richer structure and offer also a zero element. This is reflected by the extended
class MonadZero.

class Monad m = MonadZero m where
zero i ma

In the Haskell 98 standard, an expression m ‘bind* f is written as m >>= f. We use the name bind instead since we later
generalize the bind and return operations by adding an ADT parameter. Since this extension will cause bind to be a ternary
operation, an infix symbol doesn’t work anymore as syntax.



For instances of MonadZero the following laws should hold.

zero ‘bind‘ f = zero (LZ)
m ‘bind‘ \x — zero = zero (RZ)

Whenever a type is an instance of MonadZero, comprehensions can also contain filter predicates in addition
to generators. These are translated as follows.

T([e|p, gs]) = ifpthen 7 ([e|gs]) else zero

The described translation is reasonable because of the above mentioned monad laws. In contrast, the use
of comprehension syntax for structures not satisfying these laws can lead to unexpected results. One can
well consider the use of comprehensions for such non-monadic types an error—this tacitly presumes the
described translation to be fixed. On the other hand, one can also try to make the comprehension notation
meaningful to a larger class of types, which, in fact, calls for a different translation. We will investigate this
issue in detail in Section 5.

Example calculations showing the translation of list comprehensions in detail can be found, for exam-
ple, in [18].

3 ADTs and Catamorphisms

In this section we sketch an approach to define fold operations for abstract data types. For a more com-
prehensive introduction, see [6]; the formal categorical background is developed in [5, 7].

Note that the purpose of this section is not to lobby for the general use of this specific ADT concept.
We rather take this approach here as a basis for translating comprehensions, because it perfectly seems
to fit the requirements. Therefore, most of the discussion of related work regarding catamorphisms is not
repeated, cf. [5, 6]. We just mention that other work on catamorphisms has almost exclusively focussed
on algebraic data types (see [2] and the contained references), one exception is Fokkinga’s work [10].
The present framework covers and extends previous approaches at the cost of weakening some universal
properties.

We deliberately have chosen a presentation based on Haskell syntax (in favor of the more general
categorical notation) since (i) this facilitates the comparison with the traditional monad approach and (ii)
all examples can be directly tested with any Haskell implementation.

3.1 Representation of Algebraic Data Types

The definition of a data type T introduces a set of constructors c1, ..., ¢, which can be viewed as functions
of types Ty — T, ..., T, — T. The common result type T is also called the carrier of the data type. For
instance, the list data type (T = [a]) is defined by the two constructors [ ] :: [a] (with empty argument type)
and (:) ::a — [a] — [a]. In order to define generic operations (such as fold) for arbitrary data types we
need a way of encoding data types in Haskell itself. This can be achieved by combining all constructors into
one constructor mapping from the separated sum of argument types to the carrier. The union of argument
types can be represented by specific type constructors. For example, the argument type structure for the
list data type is captured by the following type constructor.

data Binary ab = Unitg | Two a b

The type Binary a [a] is the proper argument type for the combined list constructor, which can then be
defined as follows.



cList :: Binary a [a] — [d]
cList Unitg =[]
cList (Two x xs) = x:xs

As another example consider a data type for natural numbers comprised of a zero constant and a successor
function. To combine both into one constructor we need a slightly different type constructor to represent
the argument type structure.

data Unary a = Unity | One a
With Unary we can define the constructor using built-in integer numbers as the carrier.

cNat :: Unary Int — Int
c¢Nat Unity = 0
cNat (Onen) = succn

Thus, in general, an algebraic data type can be regarded simply as a function c :: ft — t where f is the
type constructor representing the argument type union of the constructor(s) c.

3.2 'Type Constructors as Functors

As far as constructors and algebraic data types are concerned we can use arbitrary type constructors to
describe the argument type structure. However, the definition of ADT fold to be given below requires that
destructors (the dual of constructors) be defined with result types that are expressed by type constructors
that offer a map function. In Haskell there is a predefined constructor class Functor for these types.

class Functor f where

fmap =2 (t — u) — (ft — fu)
Binary and Unary are both examples of functors. The corresponding instance declarations are as follows.

instance Functor (Binary a) where
fmap f Unitg = Unitg
fmap f (Two x y) = Two x (f7)

instance Functor Unary where
fmap f Unitcy = Unity
fmap f (One x) = One (f x)

These functors are also called pattern functors [1].

The definitions for cList and cNat have a uniform shape, and in fact, most of the constructor and
destructor definitions are of a specific form that can be captured by standardized functions to map from
and to functor type constructors. For example, a canonical way of mapping from and to Binary types is
provided by the following functions.

fromg 2t — (a — b — t) — Binaryab — t
fromg u f Unitg = u
frompuf(Twoxy) = fxy

tog = (t — Bool) — (t - a) — (t = b) — t — Binaryab
top p f g x = if p x then Unitp else Two (f x) (g x)



These functions allow us to define the list constructor much more succinctly as follows.
cList = frompg [] (:)
Similarly, we can define fromy; and toy.

fromy it — (@ — t) — Unarya — ¢
fromyufUnity = u
fromy uf (Onex) = fx

toy :: (t — Bool) — (t — a) — (¢ — Unarya)
toy p fx = if p x then Unity else One (f x)

We can then also give the following definition for cNat.
cNat = fromy 0 succ

Applications of tog and toy follow below.

3.3 Destructors and ADTs

A data type destructor is the dual of a constructor, that is, a functiond :: t — gt mapping the carrier to, for
example, a union of possible result types. For each algebraic data type ¢T :: ft — t we can easily define
its canonical destructor dT ::t — ft by simply flipping both sides of the definition. For example, the
canonical list destructor is defined as follows.

dList :: [a] — Binary a [q]
dList [ ] = Unitp
dList (x : xs) = Two x xs

Again, we can give a shorter version by using tog, the dual of fromp.
dList = tog null head tail

The definition of the canonical destructor for cNat is similar.
dNat = toy (== 0) pred

We can also define binary nat destructors, for example, a destructor dRng that returns the number to be
decomposed in addition to the decremented value.

dRng = tog (== 0) id pred

An abstract data type can can be defined as a pair consisting of a constructor and a destructor with a
common carrier type (formally, an ADT is defined as a bialgebra [10, 5]). We need no restriction on the
argument type of the constructor (and we therefore represent it by a simple variable instead of a type
expression), but we require the result type of the destructor to be given as an application of a functor
to the carrier type. This is necessary since the definition of fold uses the function fmap to fold recursive
occurrences of t-values.

data Functorg = ADTsgt = ADT (s — t) (t — g¢t)

The con/destructor of an ADT can be extracted with the following functions.



con (ADTc ) = ¢
des (ADT _d) = d

Occasionally, we will use the following type abbreviations for ADTs that are symmetrical in their construc-
tor/destructor type structure.

type SYmADT gt = ADT (gt) gt
type BinADT at = SymADT (Binary a) t

With these definitions we can define a list or a count ADT simply as follows.

list  :: BinADT a [q]
list = ADT cList dList

count :: SymADT Unary Int
count = ADT cNat dNat

We are, of course, not constrained to symmetric ADTs. We can define many ADT variants by exchanging
either the constructor or the destructor. Concerning natural numbers, instead of the unary definition
for count given above, we can alternatively use multiplication as a binary constructor or dRng as a binary
destructor. We can even take a completely binary view as shown below by nat and prod (which we actually
used in the examples of the Introduction).

mg :: ADT (Unary Int) (Binary Int) Int
mg = ADT cNat dRng

nat :: BinADT Int Int
nat = ADT (fromp 0 (\_n—n+ 1)) dRng

prod :: BmADT Int Int
prod = ADT (fromp 1 (%)) dRng

Many more examples can be found in [6].

3.4 ADT Folds and Transformers

Fold operations on algebraic data types are typically defined with the help of pattern matching: applied to
a value v, fold determines the outermost constructor and applies an appropriate parameter function (that
conforms to the type of the disclosed constructor). Formally, fold is defined as a homomorphism from the
argument type to some result type, and this definition works only if the result type is a quotient of the
argument type (because otherwise the homomorphism would not be uniquely defined). In other words,
fold cannot map to less constrained structures. This is the reason that, for example, counting the elements
of a set cannot be expressed as a fold operation. This restriction can be lifted if fold is not based on pattern
matching, but on explicitly defined data type destructors.

Folding an ADT value of type t with a parameter function f then works as follows: first, the ADT
destructor is applied, yielding a value x of type g t. Intuitively, one part of x contains values that are taken
from (or split off) the ADT, and the other part represents the recursive occurrence(s) of t-values. The
recursive part is then folded, followed by an application of f to the result and the non-recursive part of x.
The recursive folding step is realized by using the function fmap that is defined for the functor g, which
explains the requirement that the type of the ADT destructors is expressed by a functor.



fold :: Functorg = (gu — u) — ADTsgt -t — u
foldfa = f.fmap (fold fa) . des a

We observe that fold’s parameter function must map from the pattern functor of the ADT to the result
type. For example, a function that multiplies all numbers in a list can be written as a fold:

mult :: Numa = [a] — a

mult = fold (fromp 1 (x)) list

In this example it is striking that the parameter function of fold is nothing but a constructor of an ADT,
namely the ADT prod. This special case occurs very often and is important enough to warrant a separate
definition. We call this kind of fold an ADT transformer. In order to be able to transform an ADT with a
result type functor g into an ADT whose argument type does not match g (that is, whose argument type
cannot be expressed by an application of g) we include a parameter function (a natural transformation) that
can be used to adjust the two type structures.

trans :: (Functor g, Functor h) = (gu — r) — ADTsgt — ADTrhu — (t — u)
trans fab = conb .f.fmap (trans fab) . desa

In an expression trans f a b we call a the source ADT and b the target ADT; f is called the map of the trans-
former. The definition relates trans and fold in an obvious way.

transfab = fold (conb .f) a (TransFold)

When the type structures of the source and the target ADT agree, we have f = id. For this case we
introduce the following abbreviation.

transit = trans id
We can thus rewrite the above mult example as follows.
mult = transit list prod

To understand the need for the additional parameter of trans, consider the task of determining the length
of a list. We could express this function as a simple transformer from list to nat. However, the results
delivered by dList do not have the proper shape for applying cNat, and we must provide a map p, from
Binary to Unary:

length = trans p, list count
where p, Unitg = Unity
py (Two _y) = Oney

By composing two or more transformers we can build streams of ADTs which can be used like filters. The
most common case is to compose two transformers:

via :: (Functor g, Functor h, Functor i) =
ADTsgt — ADT (gu) hu — ADT (hv)iv — t — v
viaabc = transitb c . transit a b

With via we can give, for example, a nice implementation of heapsort:

heapsort = wia list heap list



3.5 A Graph ADT

We close this section with an advanced ADT example that at the same time provides examples for more
sophisticated ADT comprehensions. To define a graph ADT we can use the inductive definition of graphs
introduced in [4, 8]: a graph is either empty, or it is constructed by adding a node together with edges
from/to its predecessors/successors. Let Node be the type of node values, and let Graph be the type of di-
rected, unlabeled graphs. A node context is a node together with a list of successors (third tuple component)
and a list of predecessors (first component).

type Context = ([Node|, Node, [Node])

Then we can define the following two graph constructors:

empty :: Graph
embed :: Context — Graph — Graph

Note that embed yields a runtime error if either the node to be inserted is already present in the graph or if
any of the predecessor or successor nodes does not exist in the graph. Both constructors can be combined
as follows.

cGraph :: Binary Context Graph — Graph
cGraph = fromg empty embed

A graph can be decomposed by successively extracting node contexts, that is, nodes together with their
incident edges. We assume having a destructor matchAny that selects and removes an arbitrary node, that
is, it returns the node context and the remaining part of the graph after removing the node and its incident
edges. If the graph is empty, matchAny yields Unitg.

matchAny :: Graph — Binary Context Graph
Now we can easily define an ADT for unlabeled graphs.

graph :: BinADT Context Graph
graph = ADT cGraph matchAny

As an example for a transformer into graphs, consider the following function that builds a graph from a
list of contexts.

build :: [Context] — Graph
build = transit list graph

With transformers out of graphs we can compute, for example, a list of a graph’s nodes.

nodes :: Graph — [Node]
nodes = trans getNode graph list
where getNode Unitg = Unitg
getNode (Two (_,v, )g) = Twowvg

These two functions can be written nicely as ADT comprehensions as follows.

build cs = [c|c « cs i list] i graph
nodesg = [v|(,v, )« g:: graph]



4 ADTs and Monads

ADTs are a simple, yet very powerful abstraction—simple enough to allow data types to be easily defined
as ADTs and having at the same time sufficient structure to define monad operations.

To make the comprehension syntax automatically available for ADTs, the class ADT had to be defined
as a superclass of Monad, and the monad operations had to be implemented in terms of ADT operations.
However, this does not work well for at least three reasons: first, the Monad class is already built into
Haskell whereas the class ADT is not, so to make ADT a superclass of Monad we had to change the
standard prelude of Haskell, which might not be desirable. Second, even if it were possible to make Monad
a subclass of ADT, this would mean that all monads had to be defined as ADTs, which would be too strong a
requirement. Third, the current comprehension syntax is not rich enough to support “non-endomorphic”
comprehensions,? so that we need an own notation for ADT comprehensions anyhow.

Hence, we shall define an extension of the comprehension syntax and give a translation into Haskell.
But before we get to this extension, it is instructive to consider how to define the monad operations for
ADTs and how current comprehension “technology” works for ADTs because the limitations we encounter
suggest a generalization of the comprehension syntax and semantics. In the following we focus on ADTs
having the pattern functor Binary. As a running example we use the ADT list for illustrating the following
definitions.

The definition for return just injects a single value into the ADT carrier.

return :: BmADT at — a — ¢
return (ADT ¢ ) x = ¢ (Two x (c Unitg))

Note that the definition is parameterized by an ADT from which the constructor is taken. For lists we
have cList Unitg = [ ], and cList (Two x []) = [x]. Thus, return list x = [x]. The definition of zero is similar,
it just applies the ADT’s constructor to Unitg.

zero :: BnADT at — t
zero (ADT ¢ ) = c¢ Unitg

For lists, this means: zero list = []. Monads are often described as encapsulating computations. But this
is only one possible point of view; in what follows, it is instructive to think of a monad m a as a collection
of values of type a. A well-known example for this view is actually the list monad.

To give a definition for bind we have to explain how the elements of m can be extracted since we have
to apply the function f to all of them. Since m is an ADT, all we can do is to apply its destructor, and we
obtain (i) a single element (of type a) and (ii) the “remaining part” of m. By repeating the destruction we
eventually extract all elements, say, x1, . .., x,. Then fis applied to each x;, and we obtain a collection,
say, ¥1, - - - , ¥, of m b-values which have to be combined into one m b-value. To accomplish this we can
employ an operation join to combine two ADTs (that is, two m b-values) and then use join to fold the values
Vs e Yy

Such an operation can be defined as an ADT transformer as follows: decompose the first argument
and immediately rebuild it while replacing the eventually resulting Unitg by the second argument. In the
case of lists we have: combining two lists into one means their concatenation, and this can be defined by
decomposing the first list into all of its elements which are then consed to the second list. First, we need
an operation that redefines an ADT’s constructor on Unitg:

?This means comprehensions that map between different types.
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withUnit :: BmADT at — t — BinADT at
(ADT c d) ‘withUnit' u = ADT ¢’ d where ¢’ Unitg = u
c x = cx
This operation can now be used to define the join of two ADT values. Since we do not (want to) have an
intermediate data structure storing the values y;, we integrate the application of f into this join operation
that is actually to be applied to each decomposed x;-value.

join :: BhnADT bt — (a — t) — Binaryat — ¢t
join a f Unitg = (con a) Unitg
join a f (Prodg xy) = transit a (a ‘withUnit* y) (f x)

The function join works as follows: it takes an element x, applies f to it, and then applies an ADT trans-
former to f x. This transformer has source ADT a and target ADT a ‘withUnit* y which essentially means
that f x is decomposed and immediately rebuilt using y as a unit value. For lists this means to take an
element of type a, apply f to obtain a list of type [b], and to concatenate this list with the list y.

Next we try the to define bind by folding the ADT monad with join.

bind :: BnADT a (ma) — ma — (a — mb) — mb
bindamf = fold (jomaf)am ——wrong!

Unfortunately, this definition does not work since the parameter ADT a is used at two different type in-
stances: first, as a parameter of fold with carrier m a, and second, as a parameter of join with type m b, which
is, in general, different fromm a. We can remedy the situation by spending a further ADT parameter which
will actually receive the same argument ADT as the first parameter, but which can be instantiated in the
definition to a different type.

bind :: (BmADT bt, BnADTau) — u — (a — t) — t
bind (ay,a2) mf = fold (join ai f) ag m

Now we can use comprehensions for arbitrary ADTs. The operations result, bind, zero are parameterized by
ADTs; they are thus essentially operations to generate monad operations from ADTs. If an ADT a satisfies
the monad laws (that is, the operations result a, bind (a, a), and zero a), the comprehensions work exactly
like with the corresponding traditional monad operations. The possible problems that may arise if the laws
do not hold are addressed in the next section.

5 Generalized Comprehensions

The fact that we were forced in the definition of bind to use two ADT parameters is not as unpleasant as it
may seem at first; it actually shows an opportunity for generalization: it is intriguing to see what happens
if we insert two different ADTs as a parameter. To better understand what is really going on it is helpful
to understand the roles of the two ADTs. The first ADT (aq) is used to decompose and join the y, values,
while the second ADT (ag) is just used to decompose m. This scheme of computation is illustrated in
Figure 1.

In particular, we can observe that a; and as need not be identical.> Thus, we can use, for example, as
= graph to decompose a graph and a; = list to simply collect node values (recall that “::: list” is the default

3Figure 1 reveals a further way of generalization: since the destructor of a; does not depend on the constructor, the decompo-
sition of the y, values is in no way tied to a;. Thus, we could use a further ADT, say as, to independently specify the destructor for
the y; values. However, there seem to be only few applications that do not justify the added complexity of such a generalization.

11
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Figure 1: Computation of r = bind (a1, az) f m.

outer ADT specification):
nodesg = [v]|(_,v, ) « g::: graph]

Although this example works well, other comprehensions behave in unexpected ways. The reason is
that the monad laws do not hold in general for arbitrary ADTs, which means that comprehensions are
not guaranteed to be well-defined, at least under the traditional translation scheme that was shown in
Section 2. We illustrate the problems with two examples. First, consider the translation of the factorial
comprehension:

foon = bind (prod, prod) n (\i — return prod i)

One would expect that with this definition n is destructed using prod’s destructor yielding numbers that are
multiplied by prod’s constructor. However, the definition of bind involves the combination of intermediate
results (yielded by return) with join, and join is just defined to decompose and rebuild each number using
prod. Thus, each number is decomposed and multiplied on its own, and so foo actually computes the
product of the first n factorial numbers, which was not intended.

Another example is the comprehension defining graph reversal. Here the problem is even worse be-
cause the naively translated version will result, in general, in run time errors.

bar g = bind (graph, graph) g (\(p, v, s) — return graph (s, v, p))

This happens because the function return graph tries to construct intermediate graphs from isolated context
values, and this fails whenever the successor or predecessor list is not empty since this context value is tried
to be inserted into the empty graph.

A solution is suggested by the following observation: ADT values are built by return expressions only
to be decomposed later. Moreover, the actual choice of ADT is not important in the sense that in almost
all interesting cases the construction is simply undone (except for rather strange and unwanted situation
like in foo above). In contrast, what really matters is the ADT into which the final values are inserted.
Hence, we can try to use a very simple dummy ADT to store intermediate values of return expressions and
translate the last generator and/or filter expression into calls to a specialized bind operation that is aware
of this dummy ADT.

Below we use the ADT singleton, which offers nothing more than to insert and retrieve a value com-
pletely unchanged into/from an ADT containing just this element. It is also capable of dealing with zero
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values (which will be needed for the translations of filter expressions).

singleton :: BmADT a (Maybe a)

singleton = ADT inj get where inj Unitp = Nothing
nj (Two (x _)) = Just x
get Nothing = Unitg
get (Just x) = Two x Nothing

Now we need specialized definitions for join and bind.

joing a f Unitg = (con a) Unitg
joing a f (Two xy) = transit singleton (a ‘withUnit* y) (f x)

binds (a1, az) mf = fold (joins aj f) agm

The differences between these and the more general definitions from above are as follows. First, join
expects f x to yield a value of ADT singleton and selects the stored element to put it into the target ADT
a. Second, bind; just calls joing instead of join; it will be used as the innermost bind call in the translation of
comprehensions.

Note that bind, is essentially an ADT transformer. This fact is expressed in the following theorem. We
need a function mapFst which is defined as follows.*

mapFst :: (a — b) — Binaryat — Binarybt
mapFst f Unitg = Unitg
mapFst f (Two xy) = Two (fx)y

Then we have the following relationship.

Theorem 1 bind; (a1, az) m (Just . f) = trans (mapFst f) az ag m

The proof is given the Appendix. With f = id we obtain as a direct corollary the following.
Corollary 1 bind; (a1, az) m Just = transit ag a3 m

The translations for the above two examples will yield the following definitions.

facn = binds (prod, prod) n (\i — Just i)
grevg = bind; (graph, graph) g (\(p, v, s) — Just (s, v, p))

These work as expected.

Next we describe how to translate ADT comprehensions. First, we define a straightforward extension
of the traditional comprehension syntax. Essentially, we allow to add ADT “tags” to generators and to the
result. By making these tags optional and using appropriate defaults we achieve that the new notation is
a conservative extension of well-known list comprehension syntax. The syntax is shown in Figure 2.

We define the translation in two phases: in a first step, omitted tags are filled with default values, and in
a second step, a fully annotated comprehension expression is translated into monad operations. Below we
use the notation a{b} (read: “a or else b”) to denote b if a = € and a otherwise. Likewise, q{b} denotes
p < ebifq = p « e e and q otherwise. With this notational help we can define tag completion as follows.

*More generally, Binary is a bifunctor with a map function for mapping along both argument types; mapFst is an instance of
this map function mapping only along the first argument type. In a sense, mapFst is the analogue to fmap, see [6].
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compr  —  [expr | quals | tag
quals —  qual, quals | €

qual —  pat < expr tag | expr
tag —  urexpr|e

Figure 2: Comprehension Syntax.

Clelar,- - a.]a) = [efai{b}, ..., q.{b} | b
where b = a{::: list}

This means, if there is no result tag given, list is used, and for each generator that does not have a tag, the
outermost tag used, which, if not present is taken to be list by default.

After tag completion, the comprehension translation shown in Figure 3 can assume that all tags are
present (note that zero;, = zero singleton).

T([e|p—ed]a) = bind; (a,d’) T(e' d') (\p — Just e)

T([e|p«—éd, e ]a) = bind (a,d) T(e'd’) (\p — if ¢" then Just e else zero,)
T([e|p—ed, g]a) = bind (a,d) T('a') \p—T([e]|gs]a))
T([e|e]a) = if ¢’ then Just e else zero;

T([e]e, gs]a) = ife' then 7([e | gs ] a) else zero a

T(ea) =e

Figure 3: Translation of Comprehensions.

As an example consider the translation of the comprehension for divisors. Had we omitted the outer List
ADT, tag completion would have added “::: list” to the result. In contrast, the generator is not affected
since it already contains the tag “::: nat”. After that, the second and the last equation of 7 are applied.

T([i]i—n:inat, n‘mod i == 0] :: list) =
bind, (list, nat) T (n ::: nat) (\i — if n ‘mod‘ i == 0 then Just i else zero;) =
bind, (list, nat) n (\i = if n ‘mod‘ i == 0 then Just i else zero;)

Another illustration of the translation is contained in the proof of the following theorem that relates nested
comprehensions to ADT filters.

Theorem 2 [x|x — [y|y«eura]::b]ic = viaabce
The proof is given in the Appendix. Thus, we can write, for example, heapsort as a comprehension:
heapsort | = [x | x « [y «= Lz list ] =2 heap ]

We finally have to ask whether the described translation scheme is correct or at least “reasonable” in some
sense. In the case of monad comprehensions, there are intuitive laws that hold for the comprehension
syntax and that can be proved by using elementary monad laws. For example, the following equation
follows from the right unit (RU) monad law.
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[x[x—e] =e (%)

In fact, the same law holds for comprehensions on ADTs that satisfy (RU). However, the law does not
hold in general for ADT comprehensions. This should be not too surprising since ADT constructors and
destructors are, in general, not inverses of each other. But this is exactly what equation (*) demands: taking
the elements of e by way of its ADT destructor (say, a) apart and reassembling them with a’s constructor
should yield e. The fact that such a (strong) relationship does not hold, contributes to the additional power
of ADT comprehensions, for example, the factorial comprehensions [i | i < n | ::: prod essentially exploits
the fact that the constructor is not the inverse of the destructor.

Are there other invariants—weaker than the monad laws—that characterize a reasonable comprehen-
sion behavior? One result is that the comprehension syntax reflects the operations of the underlying ADT
domain, that is, ADT transformers. A relationship that corresponds to (x) is expressed in the following
theorem.

Theorem 3 [x |x«e::ta]::b = transitabe

Proof. The one-step translation of the comprehension yields bind; (b, a) e Just. By Corollary 1 this is equal
transit a b e. O

In particular, this result justifies the use of bind, in the translation of comprehensions.

6 Conclusions

We have shown how comprehension syntax can work for ADTs that are defined using a standardized inter-
face for constructors and destructors. This constructor/destructor-based ADT approach enables us, first,
to automatically supply definitions for monadic operators and, second, derive the traditional comprehen-
sion syntax. Moreover, through a modest generalization of the comprehension syntax and an adaptation of
the translation we have obtained a versatile language feature that can be used to express many algorithms
in a clear and concise way.

Since ADTs are not restricted to “linearly recursive” data types, that is, ADTs with pattern functor
Binary, we could, principally, define comprehensions also for differently shaped data types, such as trees.
This is a topic of future research.
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Appendix

Proof of Theorem 1. W first apply the definition of bind, to the left hand side and the equation (TransFold)
to the right hand side. This yields:

fold (joins ay (Just . f)) aam = fold (con ay . mapFst f) ag m

Thus, it remains to be shown: joing ay (Just . f) = con aj . mapFst f. We consider the two possible cases of
Binary. The case for Unitg is simple:

joing ay (Just . f) Unitg = (con ay) Unitg = (con ay . mapFst f) Unitg
In the case for Two x y we use a] to denote a; ‘withUnit‘ y and we abbreviate transit singleton by transit;:

joing ay (Just . f) (Two x y)

= transit; @) (Just (f x))

= (con ay1 . fmap (transit; a3) . get) (Just (f x))

= (con a1 fmap (transits @) (Two (f x) Nothing)
1) (Two

Two

= (

=( (f x) ((taransitS ay) Nothing))

= ( 1) ( (f x) ((con a1 fmap (transit; a)) . get) Nothing))
= (con a1 (Two (f x) ((con @) . fmap (transits a3)) Unitp))

( 1) (Two (f x) ((con @) Unitg))

(con @) (Two (fx) )

E )5)

= (con ay . mapFst f) (Two x y) O

Proof of Theorem 2.

T([x|x—[y«—ema]:b]c)=

bind; (c, b) ’T([y —e:malb) (\x—Justx) =
binds (c, b) (binds (b,a) T (e ::: a) (\y — Justy)) Just =
binds (c, b) (binds (b, a) e Just) ]ust

Applying Corollary 1 twice and folding the definition of via yields then:

transit b ¢ (transit a b e) = (transit b ¢ . transit a b) e = viaabce O
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