2 Idris

"I think you should be more explicit here in step two."

Joe Programmer

The supervisor Mr. Idris
Paths to Understanding Idris

- Haskell
- Idris
- Constructive Mathematics

- Dependent Types, Termination
- Curry-Howard Isomorphism
Functional Programming in Idris
Idris vs. Haskell: Data Types

Idris

```idris
data Bool : Type where
  True : Bool
  False : Bool

data Nat : Type where
  Z : Nat
  S : Nat → Nat

data List : Type → Type where
  [] : List a
  (::) : a → List a → List a
```

Haskell

```haskell
data Bool = True | False

data Nat = Z | S Nat

data [a] = [] | (:) a [a]
```

- **GADT notation is more general**
- **Type constructor ≈ function on types**
- **Common result type for all constructors**
- **(Complete) type of constructor**
- **Only argument type of constructor**
- **Type Parameter**
- **Same in Idris**
Idris vs. Haskell: Functions

\[
\forall \ a
\]

\(\text{infixr 7 ++}\)

\((++): \{a: \text{Type}\} \rightarrow \text{List } a \rightarrow \text{List } a \rightarrow \text{List } a\)

\([] \quad ++ \text{ ys } = \text{ ys}\)

\((x :: \text{ xs}) \quad ++ \text{ ys } = x :: (\text{ xs } ++ \text{ ys})\)

\(\text{id}: \{\text{a:Type}\} \rightarrow \text{ a } \rightarrow \text{ a}\)

\(\text{id } x = x\)

\(\text{true1 } = \text{id True}\)

\(\text{zero1 } = \text{id } 0\)

\(\text{id}: (\text{a:Type}) \rightarrow \text{ a } \rightarrow \text{ a}\)

\(\text{id } a \ x = x\)

\(\text{true2 } = \text{id Bool True}\)

\(\text{zero2 } = \text{id Nat } 0\)

\(\text{not } :: \text{ Bool } \rightarrow \text{ Bool}\)

\(\text{not True } = \text{ False}\)

\(\text{not False } = \text{ True}\)

Implicit Argument (is optional; will be automatically inferred by type checker)

Explicit Type Argument
1. Define the Idris function `(!!)` for extracting the nth element from a list (use zero for first element).

```
(!!) : {a : Type} -> List a -> Nat -> Maybe a
[]      !! _     = Nothing
(x::_)  !! Z     = Just x
(_::xs) !! (S n) = xs !! n
```

```
(++) : {a : Type} -> List a -> List a -> List a
[]       ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
```

```
data Nat : Type where
  Z : Nat
  S : Nat -> Nat
```
Total Functions

tail : {a : Type} → List a → List a
tail [] = []
tail (_ :: xs) = xs

head : {a : Type} → List a → a
head [] = ???
head (x :: _) = x

%default total

In Haskell

tail :: [a] → [a]
tail (_:xs) = xs

head :: [a] → a
head (x:_:xs) = x

Note: This is actually not how it's done in Idris. We'll get back to this later …

We are not allowed to cheat in Idris!
Piazza Question

Type Constructors
What is a Type Constructor?

In Haskell

\[
[\] :: \ast \to \ast \\
\text{Maybe} :: \ast \to \ast \\
(\to) :: \ast \to \ast \to \ast
\]

Use "kind Maybe" in ghci

In Idris

A function that maps types and values to types

\[
\text{Vect} :: \text{Nat} \to \text{Type} \to \text{Type} \\
\text{Segment} :: \text{Nat} \to \text{Type}
\]

Use "t[ype] Maybe" in Idris

\[
\text{List} :: \text{Type} \to \text{Type} \\
\text{Maybe} :: \text{Type} \to \text{Type} \\
(\to) :: \text{Type} \to \text{Type} \to \text{Type}
\]
Dependent Types

Type constructor

Single : Bool → Type

Single True = Nat
Single False = List Nat

Value argument

mkSingle : (b : Bool) → Nat → Single b

mkSingle True x = x
mkSingle False x = [x]

Result type depends on argument value

*Idris> mkSingle True 4
4 : Nat

*Idris> mkSingle False 4

Producing values of different types

sum : (b : Bool) → Single b → Nat

sum True x = x
sum False [] = 0
sum False (x::xs) = x + sum False xs

Consuming values of different types

*Idris> sum True 4
4 : Nat

*Idris> sum False [4]
Vectors

\[
data \text{ Vect} : \text{ Nat} \to \text{ Type} \to \text{ Type} \text{ where} \\
\text{ Nil} : \text{ Vect} \ Z \ a \\
(\cons) : a \to \text{ Vect} \ n \ a \to \text{ Vect} \ (S \ n) \ a
\]

Vectors of length \(n \)

\[
data \text{ List} : \text{ Type} \to \text{ Type} \text{ where} \\
\text{} : \text{ List} \ a \\
(\cons) : a \to \text{ List} \ a \to \text{ List} \ a
\]

\[
\text{ Vect} 3 \ \text{ Nat} \\
\text{ Vect} 4 \ \text{ Nat} \\
\text{ List} \ \text{ Nat} \\
\text{ xs} = 1 \ \cons \ 2 \ \cons \ 7 \ \cons \ [] \\
\text{ ys} = 9 \ \cons \ \text{ xs}
\]
4. Define the Idris functions `eqNat` and `eqList` for comparing two natural numbers and two lists of values.
5. Define the Idris function `eqVect` for comparing two vectors of values.

```idris
eqVect : Eq a => Vect n a -> Vect n a -> Bool
eqVect []      []      = True
eqVect (x::xs) (y::ys) = x==y && eqVect xs ys
```

```idris
eqList : Eq a => List a -> List a -> Bool
eqList []      []      = True
eqList (x::xs) (y::ys) = x==y && eqList xs ys
eqList _        _      = False
```
Piazza Question

Vector Comparison
Vector Size

size : List a → Nat
size [] = Z
size (_ :: xs) = S (size xs)

size : Vect n a → Nat
size {n} _ = n
Exercises

6. Define the functions **head** and **tail** for vectors.

```idris
data Vect : Nat → Type → Type where
  Nil : Vect Z a
  (::) : a → Vect n a → Vect (S n) a
```
7. Define a type for matrices with \(n \) rows and \(m \) columns using nested vectors.

8. Define the functions `firstRow` and `firstCol` for matrices.
Paths to Understanding Idris

- Dependent Types, Termination
- Curry-Howard Isomorphism
- Haskell
- Idris
- Constructive Mathematics
Proving with Idris
Reversing Vectors

\[
\text{rev} : \text{Vect } n \ a \rightarrow \text{Vect } n \ a \\
\text{rev} [] = [] \\
\text{rev} (x::xs) = \text{rev} \ xs \ +++ \ [x]
\]

Type mismatch between
\(\text{Vect } (k + 1) \ a\) (Type of \(\text{rev} \ xs\) +++ [x])
and
\(\text{Vect } (S \ k) \ a\) (Expected type)

Specifically:
Type mismatch between
plus \ k \ 1
and
\(S \ k\)

Infixr 7 +++

(+++) : Vect n a \rightarrow \text{Vect } m \ a \rightarrow \text{Vect } (n + m) \ a \\
(+++) [] \ ys = ys \\
(+++) (x::xs) \ ys = x :: (xs +++ ys)

Using ++ leads to a different type error message because of overloading

Does not typecheck
Reversing Vectors

\[
\text{rev : Vect } n \ a \to \text{ Vect } n \ a \\
\text{rev } [] = [] \\
\text{rev } (x::xs) = \text{rev } xs \ +++ [x]
\]

\[
\text{rev } xs \ +++ [x] : \text{ Vect } (n + 1) \ a
\]

\[
(\+++) : \text{ Vect } n \ a \to \text{ Vect } m \ a \to \text{ Vect } (n + m) \ a
\]

Type mismatch between \(\text{ Vect } (k + 1) \ a\) (Type of (rev xs) +++ [x]) and \(\text{ Vect } (S \ k) \ a\) (Expected type)

Specifically:
Type mismatch between
\[
\text{ plus } k \ 1
\]
and
\[
S \ k
\]
Convincing the Type Checker ...

\[
\text{rev} : \text{Vect } n \ a \to \text{Vect } n \ a \\
\text{rev } [] = [] \\
\text{rev } (x::xs) = \text{rev } xs +++ [x]
\]

We know (RHS):

\[
\text{rev } xs +++ [x] : \text{Vect } (n + 1) \ a
\]

We need (type declaration):

\[
\text{rev } xs +++ [x] : \text{Vect } (S \ n) \ a
\]

To do:

1. \[n + S \ Z = S \ n\]

Prove (to Idris (!)):

2. \[\text{ Vect } (n + S \ Z) \ a = \text{ Vect } (S \ n) \ a\]

3. \[\text{rev } xs +++ [x] : \text{ Vect } (n + S \ Z) \ a \Rightarrow \text{rev } xs +++ [x] : \text{ Vect } (S \ n) \ a\]
Talking to the Type Checker

What does the type checker do?
Verifying type declaration

Is this true?

How to “convince” the type checker of a fact/proposition \(P \)?
Express \(P \) as a type \(T \), and find an expression \(e \) that has type \(T \).
Talking to the Type Checker

How to “convince” the type checker of a fact/proposition P?

Express P as a type T, and find an expression e that has type T.

Witness for Proposition

expression : Type

Curry-Howard Isomorphism

The values of a type are the proofs for the proposition represented by it.
The Big Picture: Understanding Proofs in Idris

- **Dependent type**: Type that depends on values
- **Indexed type**: Type that is partitioned into non-overlapping subtypes by values (called “indexes”)
- **Singleton type**: Type that contains just one value
- **Equality type**: Type to express the equality between two values

Curry-Howard Isomorphism

1. **Type**: Proposition
2. **Function**: Proof of implication
3. **Function**: Proof transformer
4. **Value**: Proof

Don’t confuse this with instances of the Eq type class!
The Big Picture:
Understanding Proofs in Idris

- **Dependent type**: Type that depends on values

- **Indexed type**: Type that is partitioned into non-overlapping subtypes by values (called “indexes”)

- **Singleton type**: Type that contains just one value

- **Equality type**: Type to express the equality between two values

- **Curry-Howard Isomorphism**
 - Type: Proposition
 - Value: Proof

- **Function**: Proof of implication
- **Function**: Proof transformer

Don’t confuse this with instances of the Eq type class!

Proof by case analysis

Proof by induction

... later
Proposition Types: Basic Propositions

- **Proof of Proposition A**
 - `val : A`
 - **Witness for Proposition**
 - `expression : Type`

- **Witness for Proposition**
 - `true : Bool`
 - **"There are boolean values"**
 - `Z : Nat`
 - **"There are natural numbers"**
The Big Picture: Understanding Proofs in Idris

1. **Type: Proposition**
 - Value: Proof

2. **Function: Proof of implication**
3. **Function: Proof transformer**

Don’t confuse this with instances of the `Eq` type class!

- **Dependent type**: Type that depends on values
- **Indexed type**: Type that is partitioned into non-overlapping subtypes by values (called “indexes”)
- **Singleton type**: Type that contains just one value
- **Equality type**: Type to express the equality between two values

Curry-Howard Isomorphism
Proposition Types: Implication

- **Implication**
 - \(\forall x : a \rightarrow a \)
 - "Any proposition implies itself"

- **Witness for**
 - \(\forall x \rightarrow x \)

- **Nat \(\rightarrow \) Bool**
 - even : Nat \(\rightarrow \) Bool
 - "A boolean can be obtained from a number"

- **Proof of Implication A \(\Rightarrow \) B**
 - fun : A \(\rightarrow \) B
Proposition Types: Conjunction

Proof of Conjunction A \land B

(x, y) : (a, b)

(even, \ x \Rightarrow x)

Witness for

“A boolean can be obtained from a number”
and “Any proposition implies itself”

(even, \ x \Rightarrow x) : (Nat \rightarrow \text{Bool}, a \rightarrow a)
Piazza Question

Proposition types
Piazza Question

Logical connectives
What is a Proof?

Proof steps

Premise → proof step → Conclusion

Logical inference rules

\[
\begin{array}{c}
A & B \\
\hline
A \land B
\end{array}
\]

\[
\begin{array}{c}
A & A \implies B \\
\hline
B
\end{array}
\]

Proposition transformations

\[
\begin{array}{c}
 n = 3 + 1 \\
\hline
 n = 4
\end{array}
\]

\[
\begin{array}{c}
 n = m \\
\hline
 n + n = m + m
\end{array}
\]

calculation

substitution
Proofs as Transformations of Propositions

Known

To be proved

Premise

Premise

Premise

Conclusion

Premise

Premise

Conclusion'

Premise

Proof step

Proof step

Known

To be proved
The Big Picture: Understanding Proofs in Idris

1. **Type: Proposition**
 - Value: Proof

2. **Function: Proof of implication**

3. **Function: Proof transformer**

4. **Indexed type**
 - Type that is partitioned into non-overlapping subtypes by values (called “indexes”)

5. **Singleton type**
 - Type that contains just one value

6. **Equality type**
 - Type to express the equality between two values

Don’t confuse this with instances of the Eq type class!
Proof Transformers

Obtaining a proof for A from a proof of the conjunction $A \land B$

$fst : (a, b) \rightarrow a$

Obtaining a proof for the conclusion of an implication given the premise

$apply : (a \rightarrow b) \rightarrow a \rightarrow b$

And Elimination

$A \land B$

$\begin{array}{c}
A \\
\hline
B
\end{array}$

Implication elimination (Modus Ponens)

$A \Rightarrow B$

$\begin{array}{c}
A \\
\hline
B
\end{array}$
Proof Transformers

Obtaining a proof for the implication $A \Rightarrow B$ given a proof for B assuming A

\[
\forall x : \mathit{e} \rightarrow b
\]

where x of type a may occur free in e

Implication introduction

\[
\begin{align*}
[A] & \\
\vdots & \\
B & \\
\hline
A \Rightarrow B
\end{align*}
\]
Piazza Question

Proof constructors
The Big Picture: Understanding Proofs in Idris

- **Dependent type**: Type that depends on values
- **Indexed type**: Type that is partitioned into non-overlapping subtypes by values (called “indexes”)
- **Singleton type**: Type that contains just one value
- **Equality type**: Type to express the equality between two values

- **Curry-Howard Isomorphism**
 - **Type: Proposition**: Value: Proof
 - **Function: Proof of implication**
 - **Function: Proof transformer**

Don’t confuse this with instances of the Eq type class!
Singleton Type = Indexed Type

- **Nat**

 - 0, 1, 2, 3, ...

Partitioning of type based on index values

- **Indexed type:** type that is being indexed
- **Index type:** type of index value

- **The**

 - **Singleton 0**
 - Index 0
 - Value

- **Singleton 1**
 - Index 1
 - Value

- **Singleton 2**
 - Index 2
 - Value

- **Singleton 3**
 - Index 3
 - Value

- **Data Singleton : Nat → Type where**

 - The : Singleton n

- **mkSingleton : (n : Nat) → Singleton n**

 - mkSingleton n = The

Indexed type: type that is being indexed

Dependent type: type depends on value
Computing with Singleton Types

data Singleton : Nat → Type where
 The : Singleton n

addSingletons : Singleton n → Singleton m → Singleton (n + m)
addSingletons {n} {m} The The = The

Computation happens as part of type checking

The function definition itself is trivial
(Arbitrary) Computation in Types

```idris
data Singleton : Nat → Type where
  The : Singleton n

facSingletons : Singleton n → Singleton (fac n)
addSingletons _ = The

fac : Nat → Nat
fac Z = 1
fac (S n) = (S n) * fac n
```
9. Define an Idris function \texttt{lift} for lifting an arbitrary \texttt{Nat \rightarrow Nat} function to work on singletons.

```
data Singleton : Nat \rightarrow Type where
    The : Singleton n

addSingletons : Singleton n \rightarrow Singleton m \rightarrow Singleton (n + m)
addSingletons The The = The
```
Exercises

10. Draw the type partition defined by the Even data type.

data Even : Bool \to Type where
 E0 : Even True
 E1 : Even False
 ESS : Even b \to Even b
Piazza Question

Indexed types
Vectors Are Indexed Types

data Vect : Nat → Type → Type where
 Nil : Vect Z a
 (::) : a → Vect n a → Vect (S n) a

{Diagram}

Index
Z

Vect Z Bool

[]

Type

Values

Index
S
Z

Vect 1 Bool

True :: []
False :: []

Type

Values

Index
S (S Z)

Vect 2 Bool

False :: True :: []
True :: True :: []
False :: False :: []
True :: False :: []

Type

Values
The Big Picture: Understanding Proofs in Idris

- Dependent type: Type that depends on values
- Indexed type: Type that is partitioned into non-overlapping subtypes by values (called “indexes”)
- Singleton type: Type that contains just one value
- Equality type: Type to express the equality between two values
- Curry-Howard Isomorphism:
 - Type: Proposition
 - Value: Proof
 - Function: Proof of implication
 - Function: Proof transformer

Don’t confuse this with instances of the Eq type class!
Proposition Types: Equality

Equality is a binary type constructor

\[
\text{data } (=) : a \to b \to \text{Type where}
\]
\[
\text{Refl} : x = x
\]

Every element of a type is equal to itself (reflexivity)

Refl is the name of the axiom; \(a\) and \(x\) are implicit arguments of \(\text{Refl}\)

To prove for the reverse function

\[
\text{Vect } (n + S\ Z)\ a = \text{Vect } (S\ n)\ a
\]

Example proposition and proof

\[
\text{two_is_two} : 2 = 2
\]
\[
\text{two_is_two} = \text{Refl}
\]

Name of the “Theorem”

The Proposition

Proof of the proposition
Understanding Propositional Equality

Why does this example work?

The type checker evaluates (normalizes) value expressions and thus simplifies the arithmetic expression.

Why are theorems correct?

The type checker determines the type of the proof and makes sure it agrees with the defined type.

```idris
data (=) : a → b → Type where
  Refl : x = x

two_is_two : 2 = 2
  two_is_two = Refl

idiom : 2 + 2 = 4
  idiom = Refl
```
Understanding Propositional Equality

Why two different types \(a \) and \(b \)?

(1) To be able to express equality between two values of different types and show that this is impossible

\[
\text{no_nonsense : } 2 = "2" \to \text{Void}
\]
\[
\text{no_nonsense} \text{ Refl impossible}
\]

Stay tuned …

(2) To be able to express equality between two values of potentially different types and show their equality

\[
\text{eq_length : } (xs : \text{Vect} \ n \ a) \to (ys : \text{Vect} \ m \ a) \to (xs = ys) \to n = m
\]
\[
\text{eq_length} \ _xs \ _ys \ _xs \ = \ _ys \ \text{Refl} = \text{Refl}
\]

data \((\ = \) : \ a \to b \to \text{Type} \) where

\[
\text{Refl : } x = x
\]
11. Draw instances of indexed types for the type \((=)\).
Proof By Case Analysis

neg_cancel : not (not b) = b
neg_cancel = Refl

Doesn’t work! Idris can’t reduce the LHS, because not is defined by equations for specific cases

not : Bool → Bool
not True = False
not False = True

Revealing implicit argument in type is optional

neg_cancel : {b : Bool} → not (not b) = b

Provide a proof “case-by-case”

Pattern matching on implicit argument

neg_cancel : not (not b) = b
neg_cancel {b=True} = Refl
neg_cancel {b=False} = Refl
Proof By Case Analysis

\[\text{neg_cancel : (b : Bool) \rightarrow not (not b) = b} \]
\[\text{neg_cancel True = Refl} \]
\[\text{neg_cancel False = Refl} \]

Making forall-quantified variable explicit

Pattern matching on explicit argument
Lifting Equality

\((+) : \text{Nat} \rightarrow \text{Nat} \rightarrow \text{Nat} \)

\[
\begin{align*}
Z + m &= m \\
S n + m &= S(n + m)
\end{align*}
\]

\[\text{Z_is_right_unit} : n + Z = n\]
\[\text{Z_is_right_unit} = ???\]

No definition matches \(n + Z \); try different cases for \(n \)

We need some form of induction

We know (function property):

\[
\text{n + Z = n} \quad \Rightarrow \quad f(n + Z) = f(n)
\]

(Plan: Use this with \(f = S \))
Congruence

\[
\begin{align*}
Z_{\text{is_right_unit}} : n + \mathbb{Z} &= n \\
Z_{\text{is_right_unit}} \{n=\mathbb{Z}\} &= \text{Refl} \\
Z_{\text{is_right_unit}} \{n=S \ k\} &= ???
\end{align*}
\]

We know (function property):

\[
\begin{align*}
\text{Function property expressed as an Idris type}
\end{align*}
\]

\[
\begin{align*}
\text{cong} : \{f : t \rightarrow u\} \rightarrow a = b \rightarrow f \ a = f \ b \\
\text{cong Refl} = \text{Refl}
\end{align*}
\]

\[
\begin{align*}
N_{\text{is_right_unit}} : n + \mathbb{Z} &= n \\
N_{\text{is_right_unit}} \{n=\mathbb{Z}\} &= \text{Refl} \\
N_{\text{is_right_unit}} \{n=S \ k\} &= \text{cong} (N_{\text{is_right_unit}} \{n=k\})
\end{align*}
\]
Piazza Question

Congruence
Verifying Proofs

Defined name \(\approx\) Name of the Theorem

Type \(\approx\) The Proposition

Definition \(\approx\) Proof cases

Show for each case (= equation):
Type of RHS matches declared type.

\[
\begin{align*}
Z_{\text{is_right_unit}} : n + Z &= n \\
Z_{\text{is_right_unit}} \{n=Z\} &= \text{Refl} \\
Z_{\text{is_right_unit}} \{n=S~k\} &= \text{cong} \ (Z_{\text{is_right_unit}} \{n=k\})
\end{align*}
\]

Proof Checking \(\approx\) Type Checking
Verifying Proofs

\[Z_{\text{is_right_unit}} : n + Z = n \]
\[Z_{\text{is_right_unit}} \{n=Z\} = \text{Ref}l \]
\[Z_{\text{is_right_unit}} \{n=S \ k\} = \text{cong} (Z_{\text{is_right_unit}} \{n=k\}) \]

\[(+) : \text{Nat} \to \text{Nat} \to \text{Nat} \]
\[Z + m = m \quad \text{(1)} \]
\[S \ n + m = S \ (n + m) \quad \text{(2)} \]

\[\text{Ref}l : x = x \]
\[\text{cong} : x = y \to f \ x = f \ y \]

Computed Type (substitute \(Z \) for \(x \))

Declared Type (substitute \(Z \) for \(n \))

Inductive Hypothesis

Definition of \(\text{cong} \) with \(S \) for \(f \)
Back To Reverse ...

To do:

1. \(n + S Z = S n \)

2. \(\text{Vect} (n + S Z) \ a = \text{Vect} (S n) \ a \)

3. \[\text{rev xs +++ [x]} : \text{Vect} (n + S Z) \ a \Rightarrow \text{rev xs +++ [x]} : \text{Vect} (S n) \ a \]

1. \(\text{lemma : n + (S Z) = S n} \)
2. \(\text{lemma } \{n=Z\} = \text{Refl} \)
3. \(\text{lemma } \{n=S \ k\} = \text{cong lemma } \{n=k\} \)
Exercises

12. Verify the $S \cdot k$ case of the lemma.
Proving the Type of Reverse

To do:

1. \[n + S \, Z = S \, n \]

2. \[Vect \left(n + S \, Z \right) a = Vect \left(S \, n \right) a \]

3. \[\text{rev} \, xs \; +++ \; [x] : Vect \left(n + S \, Z \right) a \Rightarrow \text{rev} \, xs \; +++ \; [x] : Vect \left(S \, n \right) a \]

We know (substitution property):

\[x = y \quad \Rightarrow \quad P(x) \Rightarrow P(y) \]

Plan: Use this with \(P \, x = Vect \, x \, a \) as \(P(\text{lemma}) \)

Substitution property expressed as an Idris type

\[\text{replace} : \{P : a \rightarrow \text{Type}\} \rightarrow x = y \rightarrow P \, x \rightarrow P \, y \]

\[\text{replace} \; \text{Refl} \, p = p \]
Finally: Fixing the Definition of Reverse

\[\text{rev} : \text{Vect } n \ a \rightarrow \text{Vect } n \ a \]
\[\text{rev} \ [\] = [] \]
\[\text{rev} \ (x :: xs) = \text{replace} \ \{P = \text{vector}\} \ \text{lemma} \ (\text{rev} \ xs +++ [x]) \]

where \(\text{vector} : \text{Nat} \rightarrow \text{Type} \)
\(\text{vector } k = \text{Vect } k \ a \)

The property of being a vector of length \(k \)