Representing a DSL in Haskell

Semantic Language

\[S \oplus \mathbb{[\cdot]} : S \rightarrow D \]

(General-Purpose) PL

Turing-complete computation

Other computation

Non-computation

function

type or data type

data type

data type
The Meaning of Programs

What is the meaning of a program? It depends on the language!

<table>
<thead>
<tr>
<th>Language</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean expressions</td>
<td>Boolean value</td>
</tr>
<tr>
<td>Arithmetic expressions</td>
<td>Integer</td>
</tr>
<tr>
<td>Imperative Language</td>
<td>State transformation</td>
</tr>
<tr>
<td>Logo</td>
<td>Picture</td>
</tr>
</tbody>
</table>

Semantics of a language: Transformation of representation (abstract syntax → semantic domain)
Steps for Defining Language Semantics

(1) Define the *abstract syntax* \((S)\) of the language

(2) Define the *semantic domain* \((D)\), i.e. the representation of semantic values

(3) Define the *semantic function / valuation* that maps sentences into semantic values \((\llbracket \cdot \rrbracket : S \to D)\)

Example
‘arithmetic expressions’:

\[
\begin{align*}
S: & \quad \text{Expr} \\
D: & \quad \text{Int} \\
\llbracket \cdot \rrbracket: & \quad \text{sem} :: \text{Expr} \to \text{Int}
\end{align*}
\]
Example: Shape Language

A language for constructing bitmap images: an image is either a pixel or a vertical or horizontal composition of images.

Operation \(\text{TD } s_1 \ s_2 \) puts \(s_1 \) on top of \(s_2 \)

Operation \(\text{LR } s_1 \ s_2 \) puts \(s_1 \) left next to \(s_2 \)
Abstract Syntax

```
data Shape = X
  | TD Shape Shape
  | LR Shape Shape
```

Example:

\[\text{LR (TD X X) X} \]
\[\text{TD X (LR X X)} \]

LR aligns at bottom
TD aligns at left

... part of semantics
Denotational Semantics in Haskell

Semantic Domain

```haskell
data Shape = X 
  | TD Shape Shape 
  | LR Shape Shape 
```

How to represent a bitmap image?

```haskell
type Image = Array (Int,Int) Bool

type Pixel = (Int,Int)
type Image = [Pixel]
```

Drawback: size is fixed, operations require complicated bit shifting

```
LR (TD X X) X  [ (1,1), (1,2), (2,1) ]
```
Semantic Function (1)

Approach: Translate individual shapes separately into bitmaps and then compose bitmaps

```
data Shape = X | ...
type Pixel = (Int,Int)
type Image = [Pixel]
```

Base case: Individual pixel:

```
sem :: Shape -> Image
sem X = [(1,1)]
```
Semantic Function (2)

How can we compose (horizontally and vertically) two bitmap images without overlapping?

\[
\text{sem} \ (TD \ s1 \ s2) = \text{adjustY} \ ht \ p1 \ ++ \ p2
\]

\[
\text{where} \quad p1 = \text{sem} \ s1 \\
p2 = \text{sem} \ s2 \\
ht = \text{maxY} \ p2
\]

Take bounding boxes and adjust y-coordinates of top shape by height of bottom shape.
Semantic Function (3)

\[
\text{sem (TD } s_1 \ s_2) = \text{adjustY } ht \ p_1 ++ p_2
\]

\[
\text{where } p_1 = \text{sem } s_1
\]
\[
p_2 = \text{sem } s_2
\]
\[
ht = \text{maxY } p_2
\]

\[
\text{maxY :: [(Int,Int)] } \rightarrow \text{ Int}
\]
\[
\text{maxY } p = \text{maximum } (\text{map } \text{snd } p)
\]

\[
\text{adjustY :: Int } \rightarrow \text{ [(Int,Int)] } \rightarrow \text{ [(Int,Int)]}
\]
\[
\text{adjustY } ht \ p = [(x,y+ht) \mid (x,y) \leftarrow p]
\]
Exercise

(1) Define the functions:

\[
\begin{align*}
\text{sem (LR } s1 \ s2) &= \text{maxX} \ p1 + p2 \\
\text{where } &\ p1 = \text{sem } s1 \\
&\ p2 = \text{sem } s2 \\
&\ \text{ht} = \text{maxY} \ p2 \\
\text{maxX} &\ : \ [(\text{Int},\text{Int})] \rightarrow \text{Int} \\
&\ \text{maxY} \ p = \text{maximum} \ (\text{map} \ \text{snd} \ p) \\
\text{adjustX} &\ : \ \text{Int} \rightarrow [((\text{Int},\text{Int})] \rightarrow [((\text{Int},\text{Int})] \\
&\ \text{adjustX} \ ht \ p = [(x,y+ht) \mid (x,y) \leftarrow p]
\end{align*}
\]
Example: Move Language

A language describing vector-based movements in the 2D plane.
A *step* is an n-unit horizontal or vertical move, a *move* is a sequence of steps.

Go Up 3;
Go Right 4;
Go Down 1
Abstract Syntax

Data

\[
data \text{ Dir } = \text{ Lft } | \text{ Rgt } | \text{ Up } | \text{ Dwn}
\]

\[
data \text{ Step } = \text{ Go Dir Int}
\]

Type

\[
type \text{ Move } = [\text{Step}]
\]

Example:

\[
[\text{Go Up 3, Go Rgt 4, Go Dwn 1}]
\]
Exercises

(1) Give a type definition for the data type \texttt{Step}

(2) Define the data type \texttt{Move} without using built-in lists

(3) Write the move \([\text{Go Up 3, Go Rgt 4, Go Dwn 1}]\) using the representation from (1) and (2)

```haskell
data Step = Go Dir Int
```
Semantic Domain

What is the meaning of a move?

The distance traveled, the final position, or both.

```
data Dir = Lft | Rgt | Up | Dwn

data Step = Go Dir Int

type Move = [Step]
```

```
type Pos = (Int,Int)
```

```
[Go Up 3, Go Rgt 4, Go Dwn 1] \rightarrow (4,2)
```
Semantic Function

\[
\text{sem} :: \text{Move} \to \text{Pos} \\
\text{sem} [] = (0,0) \\
\text{sem} (\text{Go} \ d \ i:ms) = (dx*i+x,dy*i+y) \\
\quad \text{where} \ (dx,dy) = \text{vector} \ d \\
\quad (x,y) = \text{sem} \ ms
\]

\[
\text{vector} :: \text{Dir} \to (\text{Int},\text{Int}) \\
\text{vector} \ \text{Lft} = (-1,0) \\
\text{vector} \ \text{Rgt} = (1,0) \\
\text{vector} \ \text{Up} = (0,1) \\
\text{vector} \ \text{Dwn} = (0,-1)
\]
(1) Define the semantic function for the move language for the semantic domain
 \textbf{type} \textit{Dist} = \text{Int}

(2) Define the semantic function for the move language for the semantic domain
 \textbf{type} \textit{Trip} = (\text{Dist},\text{Pos})
Advanced Semantic Domains

The story so far: semantic domains were mostly simple types (such as \texttt{Int} or \texttt{[(Int,Int)\]}).

How can we deal with language features, such as errors, union types, or state?

1. Errors: Use the \texttt{Maybe} data type
2. Union types: Use corresponding data types
3. State: Use function types
Error Domains

If T is the type representing ‘regular’ values, define the semantic domain as $\text{Maybe } T$

```
data Maybe a = Just a | Nothing
```

regular value error value type of regular values
Union Domains

If $T_1 \ldots T_k$ are types representing different semantic values for different nonterminals, define the semantic domain as a data type with k constructors.

```haskell
data T = C1 T1 | ... | Ck Tk
```

semantic domain

different types of result values
Function Domains

If a language operates on a state that can be represented by a type T, define the semantic domain as a function type $T \rightarrow T$

\[
\text{type } D = T \rightarrow T
\]

\[
\text{sem} :: S \rightarrow D
\]

\[
= \quad \text{sem} :: S \rightarrow (T \rightarrow T)
\]

\[
= \quad \text{sem} :: S \rightarrow T \rightarrow T
\]

Semantic function takes state as an additional argument
Translating Haskell into Denotational Semantics

(1) Replace type definitions by sets (should actually be CPOs)
(2) Replace constructor expressions by grammar productions
(3) Replace function names by semantic brackets that enclose only syntactic objects

\[
\begin{align*}
\text{sem} & : \text{Exp} \rightarrow \mathbb{Int}^* \\
\text{sem}(\text{N } i) & = i \\
\text{sem}(\text{Plus} e e') & = \text{sem } e + \text{sem } e' \\
\text{sem}(\text{Neg } e) & = -(\text{sem } e)
\end{align*}
\]

\[
\begin{align*}
\text{⟦} \cdot \text{⟧} & : \text{exp} \rightarrow \mathbb{Z}^* \\
\text{⟦}[i]⟧ & = i \\
\text{⟦}e + e'\text{⟧} & = \text{⟦}e\text{⟧} + \text{⟦}e'\text{⟧} \\
\text{⟦}-e\text{⟧} & = -\text{⟦}e\text{⟧}
\end{align*}
\]

\[
\begin{align*}
\text{exp} & ::= \text{num} | \text{exp} + \text{exp} | -\text{exp}
\end{align*}
\]
Haskell as a Mathematical Metalanguage

Math World

Haskell World

= Math World + executable