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Abstract

In this paper we present a system that helps users test
their spreadsheets using automatically generated test cases.
The system generates the test cases by backward propaga-
tion and solution of constraints on cell values. These con-
straints are obtained from the formula of the cell that is
being tested when we try to execute all feasible DU asso-
ciations within the formula. AutoTest generates test cases
that execute all feasible DU pairs. If infeasible DU associ-
ations are present in the spreadsheet, the system is capable
of detecting and reporting all of these to the user. We also
present a comparative evaluation of our approach against
the “Help Me Test” mechanism in Forms/3 and show that
our approach is faster and produces test suites that give bet-
ter DU coverage.

1 Introduction
Studies have shown that there is a high incidence of er-

rors in spreadsheets [10], up to 90% in some cases [20].
These errors oftentimes lead to companies and institutions
losing millions of dollars [23, 24, 14]. A recent study has
also shown that spreadsheets are among the most widely
used programming systems [22]. To carry out testing in
commercially available spreadsheet systems like Microsoft
Excel, users are forced to proceed in an ad hoc manner
because tool support for testing is not available.1 In par-
ticular, the lack of tools leaves users without information
about how much of their spreadsheet has been tested. In
this situation, users come away with a very high level of
confidence about the correctness of their spreadsheets even
when, in reality, their spreadsheets have many non-trivial
errors in them [18]. This situation is highly problematic be-
cause users have spreadsheets with potentially lots of errors
in them, but they are not aware of it.

Given the dilemma that testing does not guarantee the
correctness of a program, how does a practitioner go about
testing a program? Researchers have come up with test ade-
quacy criteria which allow the tester to decide when to stop
testing. Test adequacy criteria have different levels of con-
fidence about absence of faults in the program being tested.

∗This work is partially supported by the National Science Foun-
dation under the grant ITR-0325273 and by the EUSES Consortium
(http://EUSESconsortium.org ).

1The WYSIWYT methodology (to be explained later) has been imple-
mented for the Forms/3 spreadsheet system and is currently being ported
to Excel.

One often employed criterion isDU adequacy, which re-
quires that each possible path from any definition to all its
uses is covered by a test case. The relative effectiveness of
this and other criteria at fault detection have been compared
in [26, 16]. In addition to monitoring the coverage of the
test cases, a user is faced with the problem of inventing new
test cases, which is generally tedious and prone to errors.
In addition, it might not always be immediately clear to the
user whether a new test case really improves the coverage.
This is where an automatic tool for generating test cases
comes into play: The user only has to inspect suggested test
cases and approve or reject them. Generation and monitor-
ing of coverage is reliably and automatically handled by the
system.

Regarding DU coverage, we can observe that in the case
of a single spreadsheet cell, different paths that require dif-
ferent test cases can principally result only fromIF expres-
sions in that cell’s formula. In general, through nestedIF
expressions, each cell gives rise to a tree of subexpressions
that need different test cases to be executed. The method
that underlies our spreadsheet testing tool AutoTest is based
on representing expressions as trees in which internal nodes
carry conditions ofIF expressions, and leaves of the tree
carry arbitrary expressions. The edges of the tree are la-
beledT or F leading to the expressions of the “then” and
“else” branches. From such an expression tree we can gen-
erate in several steps constraints that are solved to yield test
cases to cover all expressions in the tree.

In the next section, we describe related work. In Sec-
tion 3 we describe the scenario of an end user working with
a spreadsheet, faced with the problem of testing it. In Sec-
tion 4, we describe formally what it means to test a spread-
sheet and what constitutes spreadsheet test cases. The no-
tion of DU coverageas a test adequacy criteria is presented
in Section 5, and in Section 6 we describe how AutoTest
generates DU adequate test cases. A comparative evalua-
tion of AutoTest against the “Help Me Test” (HMT) [13]
test case generation system of Forms/3 [7] is described in
Section 7. We present conclusions and plans for future work
in Section 8.

2 Related Work
In earlier work we have developed the systems described

in [11, 12] that allow the end users to create specifica-
tions of their spreadsheets and then use the specifications
to generate spreadsheets that are provably free from refer-



ence, range, and type errors. The system described in [3]
enables users to extract the specifications (also calledtem-
plates) from their spreadsheets so they can adopt and work
within the safety of these specification-based approaches.

The systems described in [5, 6] allow the user to carry
out consistency checking of spreadsheet formulas on the ba-
sis of user annotations, or on the basis of automatically in-
ferred headers [1], and flag the inconsistent formulas as po-
tential faults. Consistency checking can also be carried out
using assertions on the range of values allowed in spread-
sheet cells [8].

Approaches as the ones described usually require addi-
tional effort from the user. For example, in order to be able
to use the specification-based approach to the generation of
safe spreadsheets [12], the user has to learn the specifica-
tion language [4]. Sometimes these systems have only lim-
ited expressiveness. On the other hand, static analysis tech-
niques cannot find all faults. The systems described above
that do consistency checking of the spreadsheets do so with-
out any information about the specifications from which the
spreadsheet was created. As a result of this shortcoming
we could have spreadsheets that would pass the consistency
check and still not be correct with respect to the specifica-
tions.

As an alternative to static analysis and program genera-
tion techniques,testinghas been used as a means for identi-
fying faults in spreadsheets and thus improving the correct-
ness of programs by removing the faults. Much effort in the
area of testing has focused on automating it because of the
high costs involved in testing. Effort invested in automating
testing pays off in the long run when the user needs to test
programs after modifications. This aspect makes a strong
case in favor of systematically building test suites, based on
some coverage criterion, that can be run in as little time as
possible, resulting in thorough testing of the program. The
“What You See Is What You Test” (WYSIWYT) methodol-
ogy for testing spreadsheets [21] allows users to test their
spreadsheets to achieve DU adequacy. WYSIWYT has
been developed for the Forms/3 spreadsheet language [7]
and gives the user feedback of the overall level of tested-
ness of the spreadsheet by means of a progress bar. “Help
Me Test” (HMT) is a component of the Forms/3 engine
that does automatic test case generation to help the users
minimize the cost of testing their spreadsheets [13]. Auto-
matic test case generation has also been studied for general-
purpose programming languages [9, 15]. The WYSIWYT
methodology has been evaluated within the Forms/3 envi-
ronment and found to be quite helpful in detecting faults in
end-user spreadsheets [19].

Detecting faults is only the first step in correcting a
spreadsheet. Fixing incorrect formulas is generally required
to remove faults. The spreadsheet debugger described in [2]
exploits the end users’ understanding of their problem do-
main and expectations on values computed by the spread-
sheet. The system allows the users to mark cells with incor-
rect output and specify their expected output. The system

then generates a list of change suggestions that would result
in the expected output being computed in the marked cell.
The user can simply pick from the list of automatically gen-
erated change suggestions, thereby minimizing the number
of formula edits they have to perform manually.

3 A Scenario

Nancy is the office manager of a small-sized firm and
has developed the spreadsheet shown in Figure 1 to keep
track of the office supplies.2 The amount inB1 (2000 in
this case) is the budget allowed for the purchase of office
supplies. Rows 4, 5, and 6 store information about the dif-
ferent items that need to be purchased.B4 has the number
of pens that need to be ordered,C4 has the cost per pen,
and the formula inD4 computes the product of the numbers
in B4 andC4 to calculate the proposed expenditure on the
purchase of pens. Similarly, rows 5 and 6 keep track of the
proposed expenses for paper clips and paper, respectively.
The formula inB8 checks to ensure that none of the num-
bers inB4, B5, or B6 is less than zero. If one or more of
the numbers are less than 0, the cell output is 1 to flag the
error. Otherwise, the cell output is 0. CellD7 contains the
formula IF(B8=1,-1,D4+D5+D6), which computes the total
cost across the three items if the error flag inB8 is set to 0.
If the error flag inB8 is set to 1 the formula results in -1.
The formula inB9 checks if the total proposed expenditure
is within the maximum allowed budget for office supplies.

Figure 1. Office supplies spreadsheet

After creating the spreadsheet, Nancy goes through the
formula cells, one at a time, to ensure that the formulas look
correct to the best of her knowledge.3 She then uses histor-
ical data from the previous month as input to verify if the
spreadsheet output matches the actual expenses incurred.
Once this verification is done, Nancy is confident about the
correctness of her spreadsheet and starts using it for plan-
ning the office expenses. Overconfidence in the correctness

2The office budget spreadsheet shown in Figure 1 was among the
spreadsheets used in the evaluation described in Section 7.

3Code inspection of spreadsheet formulas done by individuals working
alone has been shown to detect 63% of errors, and group code inspection
has up to 83% success rate at detecting errors [17].



of her spreadsheet might even keep her from doing the cur-
sory “testing” the next time she modifies the spreadsheet.

From a software engineering perspective, the single set
of test inputs Nancy used would not qualify asadequate
testing of the spreadsheet. Even if she uses historical data
from a few more months, she might not necessarily gain
coverage since the inputs might only cause the execution
of the same parts of the spreadsheet program. Given the
nonexistent support for testing in Microsoft Excel, Nancy
would have to come up with the test cases on her own with-
out knowing if the new tests were actually resulting in more
thorough testing of her spreadsheet. Moreover, with no
feedback on meeting any test adequacy criteria, she also
would have no idea of when she can consider her spread-
sheet well tested.

Using the AutoTest system, Nancy can simply right-click
on the cell whose formula she wants to test and pick the op-
tion “Test formula” from the popup menu. Assuming Nancy
asks AutoTest to test the formula in cellB9, the system gen-
erates a set ofcandidate test casesfor the formula in the cell
and presents it to Nancy as shown in Figure 2. A candidate
test case is defined as the set of inputs generated by the sys-
tem, together with the corresponding output computed by
the formula that is to be tested.

Figure 2. Automatically generated test cases
for B9

AutoTest allows the user to do any one of the following
three things to a candidate test case.

1. Users canvalidategenerated test cases, thereby indi-
cating that the computed output matches the expected
output for the formula given the generated input val-
ues. Once a user validates a test case, it is moved to
the test suite, and it is displayed on the interface in
green-colored font.

2. Users canflag generated test cases to indicate that the
computed output value is incorrect given the generated
inputs. This action implies the formula is faulty since
it is computing the wrong result. A flagged test case is
displayed in red-colored font on the interface, and the

cell with the formula that is being tested is also shaded
red. The user can inspect the formula within the cell
and make changes to correct it since testing detected a
failure. Once the formula has been modified, the user
can revisit the corrected test case to ensure the com-
puted output matches the expected output for the cell,
and then validate the test case.

3. They can also ignore generated test cases if they are
unable to decide if the computed output is right or
wrong. The users can come back to them at any later
point during the course of testing.

For every candidate test case that Nancy approves, the
updated progress bar shows how well tested the spread-
sheet program is. Internally, the system uses DU adequacy
(described in Section 5) to compute the level of tested-
ness. AutoTest saves Nancy the effort of coming up with
test cases by automatically generating test cases aimed at
achieving 100% DU adequacy. The automatic generation
of effective test suiteslowers the cost of testing by reduc-
ing and directing the effort invested by the user. Moreover,
the progress bar is an accurate indicator of the testedness of
the spreadsheet and lets the user know when the spreadsheet
has been thoroughly tested.

4 Spreadsheet Programs and Test Cases
A spreadsheet is a partial functionS : A→ F mapping

cell addresses to formulas (and values). An element(a, f )∈
S is called acell. Cell addresses are taken from the setA =
IN × IN, and formulas (f ∈ F) are either plain valuesv ∈
V, references to other cells (given by addressesa ∈ A), or
operations (ψ) applied to one or more argument formulas.

f ∈ F ::= v | a | ψ( f , . . . , f )

Operations include binary operations, aggregations, and, in
particular, a branching constructIF( f , f , f ).

The functionσ : F → 2A that computes for a formula the
addresses of the cells it references is defined as follows.

σ(v) = ∅
σ(a) = {a}
σ(ψ( f1, . . . , fk)) = σ( f1)∪ . . .∪σ( fk)

A set of addressess⊆ A is called ashape. We call σ( f )
the shapeof f . The functionσ can be naturally extended
to work on cells and cell addresses byσ(a, f ) = σ( f ) and
σ(a) = σ(S(a)), that is, for a given spreadsheetS, σ(a)
gives the shape of the formula stored in cella.

Related is the functionσ∗S : S×F → 2A that transitively
chases references to determine all the input cells for a for-
mula. The definition ofσ∗S is identical to that ofσ, except
for the following case:

σ∗S(a) =
{
{a} if S(a) ∈V
σ∗S(S(a)) otherwise

Like σ, σ∗S can be extended to work on cells and addresses.



The cells addressed byσ∗S(c) are also calledc’s input cells.
To apply the view of programs and their inputs to spread-

sheets, we observe that each spreadsheet contains a pro-
gram together with the corresponding input. More pre-
cisely, theprogram part of a spreadsheetS is given by
all of its cells that contain (non-trivial) formulas, that is,
PS = {(a, f ) ∈ S | σ( f ) 6= ∅}. This definition ignores for-
mulas like 2+ 3 and does not regard them as part of the
spreadsheet program, because they always evaluate to the
same result and can be effectively replaced by a constant.
Correspondingly, theinputof a spreadsheetSis given by all
of its cells containing values (and locally evaluable formu-
las), that is,IS = {(a, f ) ∈ S | σ( f ) = ∅}. Note that with
these two definitions we haveS= PS∪ IS andPS∩ IS = ∅.
Without loss of generalization we can assume from now on
that all input cells are of the form(a,v).

Based on these definitions we can now say more pre-
cisely what test cases are in the context of spreadsheets. A
test casefor a cell (a, f ) is a pair(I ,v) consisting of val-
ues for all the input cells transitively referenced byf , given
by I , and the expected output forf , given byv∈V. Since
the input values are tied to addresses, the input part of a
test case is itself essentially a spreadsheet, that isI : A→V.
However, not anyI will do: we require that the domain ofI
matchesf ’s shape, that is,dom(I) = σ∗S( f ). In other words,
the input values are given by cells whose addresses are ex-
actly the input cells contributing tof . Running a formulaf
on a test case means to evaluatef in the context ofI . The
evaluation of a formulaf in the context of a spreadsheet
(that is, cell definitions)S is denoted by[[ f ]]S.

Now we can define that a formulaf passesa testt =
(I ,v) if [[ f ]]I = v. Otherwise,f fails the testt. Likewise, we
say that a cell(a, f ) passes (fails)t if f passes (fails)t.

5 Definition-Use Coverage
The idea behind the DU coverage criterion is to test for

each definition of a variable (or cell in the case of spread-
sheets) all of its uses. In other words, test all DU pairs.
In a spreadsheet every cell defines a value. In fact, cells
with conditionals generally give rise two or more defini-
tions, contained in the different branches. Likewise, one
cell may contain different uses of a cell definition in dif-
ferent branches of conditionals. Therefore, definitions and
uses cannot simply be represented by cell addresses. In-
stead, we generally need paths to subformulas to identify
definitions and uses.

5.1 Expression and Constraint Trees

To formalize the notions of definitions and uses we em-
ploy an abstract tree representation of formulas that stores
conditions of conditionals in internal nodes and conditional-
free formulas in leaves. We can construct such a representa-
tion through two simple transformations of formulas. First,
we lift all conditionals out of subformulas (that are not con-
ditionals) so that the formula has the form of a nested con-
ditional. This transformation can be achieved by repeatedly

applying the following semantics-preserving rewrite rule to
conditionals that are subformulas.

ψ(. . . , IF(c, f1, f2), . . .) IF(c,ψ(. . . , f1, . . .),ψ(. . . , f2, . . .))

Note that the rewrite rule is only applied whenψ 6= IF.
In a second step, we transform a lifted formula into its

correspondingexpression tree(see also Figure 3(a)) using
the functionT , which creates for each conditional an inter-
nal node labeled with the condition and two subtrees for the
two branches. The edges to the branches are labeledT and
F to indicate which subtree corresponds to the “then” and
“else” branch of the conditional.

T (IF(c, f1, f2)) =

c

T ( f1) T ( f2)

�
�

@
@

T F

T ( f ) = f

The second case leaves all non-conditional formulas un-
changed.

Each conditionc stored in an internal node of an expres-
sion tree can be transformed into two constraintsγT andγF

that guarantee thatc evaluates to true or false, respectively.
These constraints will replace the edge labelsT andF in
the expression tree. Constraints have the following form

γ ::= f ωv | γ∧ γ | γ∨ γ
ω ::= < | ≤ | = | ≥ | >

For example, a conditionB3 > 4 will be transformed into
the two constraintsB3 > 4 andB3 ≤ 4, which will replace
the labelsT andF , respectively, in the expression tree.

A traversal of the whole expression tree that transforms
conditions in internal nodes into constraints that are at-
tached to the outgoing edges produces afactored constraint
tree, shown in Figure 3(b). The constraints along each path
from the root to a conditionc in an internal node or an ex-
pressione in a leaf characterize the conditions under which
the original formula would evaluate thec and e, respec-
tively.

In a final traversal4 we can collect all the constraints
along each path and attach the resulting conditions to the
leaf expressions, which results in aconstraint tree, shown
in Figure 3(c). For a condition or expression to be exe-
cuted, the constraint attached to it has to be satisfied. For
example, for expressione1 to be executed, we need both,
the constraintsγT

1 andγT
2 , to be satisfied. That is why the

leaf fore1 has been annotated withγT
1 ∧ γT

2 in Figure 3(c).

5.2 DU Pairs

A DU pair is given by a definition and a use, which are
both essentially represented by paths. To give a precise defi-
nition, we observe that while only expressions in leaves can
be definitions, conditions in internal nodes as well as leaf
expressions can be uses. Moreover, since a (sub)formula

4In an implementation, both traversals can be combined into one.
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Figure 3. Stages of test-case generation

defining a cell may refer to other cells defined by condi-
tionals, a single path is generally not sufficient to describe a
definition. Instead, a definition is given be a set of paths.

These observations lead to the following definitions. Let
C (a) be the constraint tree obtained from the expression
T (S(a)) as described above. We define theusesof a as
the setUS(a), which contains the nodes of all treesC (a′)
for which a ∈ σ(S(a′)). Correspondingly, theimmediate
definitionsof a are given by the the leaves ofC (a). We
refer to this set asD0

S(a). To obtain the complete set of
definitions for a we have to combine each expressione
in D0

S(a) with all definitions for any cell referenced bye,
which leads to the following inductive definition forDS(a),
the set ofdefinitionsof a. DS(a) is initially defined to be
{{γ:e} | γ:e∈ D0

S(a)}. Then we repeatedly replace a set of
pathsP= {γ1:e1, . . . ,γk:ek} ∈DS(a) for whicha′ ∈ σ(ei) by
the setP×D0

S(a
′) until no sucha′ exists anymore.

Now the set of allDU pairs for addressa is given by
{(a,d,u) | d ∈ DS(a)∧u∈US(a)}.

For each DU pair we can try to generate a test by solving
the constraints stored in the paths (as described in the next
section). Whenever the constraint solving fails, a test cannot
be generated and aninfeasibleDU pair has been identified.

A test suite that consists of a test for every feasible DU
pair is said to beDU-pair adequate.

6 Generating DU-Adequate Test Cases
The generation of a test case for a DU pair

(a,{γ1:e1, . . . ,γk:ek},γk+1:ek+1) requires solving the con-
straintγ1∧ . . .∧ γk∧ γk+1. In a first step, we group the con-
straints by involved addresses so that we obtain a constraint
of the form

γa1 ∧ γa2 ∧ . . .∧ γan

where eachγai is of the form

γai
1 ∨ γai

2 ∨ . . .∨ γai
ki

and eachγai
j is of the form

ai ω v1
i ∧ai ω v2

i ∧ . . .∧ai ω v
mi j
i

That is, for each addressai we obtain an alternative of con-
straints, each of which determines through a conjunction of
value comparisons possible input values for the cell at ad-
dressai . Note that by construction eachγai

j contains at most
one address, namelyai .

The attempt at solving each constraintγai can have one
out of two possible outcomes.

1. The constraint solver might succeed, in which case the
solution is, for each address, a range of values that sat-
isfy the constraints. For each address, any value from
the range can be used as a test input.

2. The constraint solver might fail. This situation arises
when for at least oneai none of the alternative con-
straintsγai

j is solvable. In this case it is not possible to
generate any test case that would be able to execute the
path. Therefore, failure of the constraint solving pro-
cess indicates that the particular path for a definition or
use cannot be exercised.

If all constraints have been successfully solved, a test case
can be created by taking values from computed ranges for
each address and by evaluating the formula to be tested (of
which ek+1 is a subformula) using these values (see Sec-
tion 4). A test case has the following form.

({(a1,v1), . . . ,(an,vn)},v)

If the constraint solver fails while trying to solve the con-
straints for a DU pair, that DU association cannot be exer-
cised given the constraints. In other words, unsolvable con-
straints on input data cells allow us to automatically detect
infeasible DU pairsin the spreadsheet program. In general,
it might not be possible to execute all of the DU associa-
tions in spreadsheets. The problem of identifying infeasible
DU pairs in programs written in general-purpose program-
ming languages is undecidable [25]. Detection of infeasible
DU pairs is easier in the case of spreadsheets languages like
Excel since they do not have loop constructs or recursion.

To illustrate how our algorithm works, we revisit the sce-
nario described in Section 3 and explain how AutoTest gen-
erates test cases for the spreadsheet shown in Figure 1. In



particular, we show how test cases are generated for the for-
mula in B9. To test the formula inB9 we need to test all
definitions ofD7 andB1 and their uses in the formula inB9.

IF(D7 =−1, “Error”, IF(D7 > B1, “Over Budget”, “BudgetOK”))

The formulas that affect the definitions ofD7 are:

D7 = IF(B8 = 1,−1,D4+D5+D6)
B8 = IF(OR(B4 < 0,B5 < 0,B6 < 0),1,0)

The constraint tree forB9 shows the uses ofD7 andB1 in
B9. Only the constraintγF

1 ≡ D7 6= −1 is needed in the
following.

: D7 > B1: “Error”

:“Over Budget”

D7 = -1

:“Budget OK”

gT
1

gF
1

gF
1

gT
2

gF
1

gF
2

The use ofD7 in the conditionD7 =−1 is always executed,
so we do not need to generate any constraints for it. How-
ever, to reach the use ofD7 andB1 in the conditionD7 > B1
we need to satisfy the constraintγF

1 . (SinceB1 is an input
cell, satisfying the constraintγF

1 fully tests all DU associa-
tions ofB1 in B9.)

The constraint tree for the formula inB8 is shown below.
The two leaves represent two definitions for which we have
the constraints:

OR(B4<0,B5<0,B6<0)

: 0gT
3

gF
3

: 1

γT
3 ≡ B4 < 0∨B5 < 0∨B6 < 0

γF
3 ≡ B4≥ 0∧B5≥ 0∧B6≥ 0

Since B4, B5, and B6 are input
cells, the definitions inB8 are de-
termined by the two constraints in-
ferred for the formula in the cell
alone.

Cell D7 also has two definitions since the expression
tree of the formula in the cell has two leaves. In this case

: D4 + D5 + D6

B8 = 1

gT
4

gF
4: -1

we have the following con-
straints for the definitions.

γT
4 ≡ B8 = 1

γF
4 ≡ B8 6= 1

Since the formulas inD4,
D5, and D6 do not contain
conditionals, no constraints are generated for their defini-
tions. Combining the definitions ofB8 with those ofD7, we
obtain the following four definitions forD7.

{γT
4 :−1,γT

3 :1},{γT
4 :−1,γF

3 :0},
{γF

4 :D4+D5+D6,γT
3 :1},{γF

4 :D4+D5+D6,γF
3 :0}

The four definitions combined with the two uses inB9 give
rise to 8 DU pairs.

As mentioned earlier, both definitions ofD7 already hit
the use in the conditionD7 = −1. Therefore, for generat-
ing test cases for the four DU pairs resulting from all the
definitions ofD7 and this use, we can solve the sets of con-
straints shown above. Since the sets{γT

4 :− 1,γF
3 :0} and

{γF
4 :D4+D5+D6,γT

3 :1} cannot be satisfied,5 we are left with
{γT

4 :−1,γT
3 :1} and{γF

4 :D4+D5+D6,γF
3 :0}. The first set of

constraint can be satisfied by setting value inB4 to −1,6

and the second set of constraints is already satisfied by the
values in the spreadsheet.

To test the use ofD7 in the conditionD7 > B1, we com-
bine the definitions ofD7 with those of this use to get the
following sets of constraints.

{γT
4 :−1,γT

3 :1,γF
1 :D7 > B1},

{γT
4 :−1,γF

3 :0,γF
1 :D7 > B1},

{γF
4 :D4+D5+D6,γT

3 :1,γF
1 :D7 > B1},

{γF
4 :D4+D5+D6,γF

3 :0,γF
1 :D7 > B1}

Two sets of constraints cannot be solved in this case, for the
same reason discussed above. Moreover, satisfyingγT

4 :−1
andγT

3 :1 leads to the output−1 in D7, which will not satisfy
γF
1 :D7 > B1. Therefore, the only set of constraints that can

be solved is{γF
4 :D4+D5+D6,γF

3 :0,γF
1 :D7 > B1}, and this is

already satisfied by the current values in the spreadsheet.
Note that, formally, the actual test case is the set of

address-value pairs that satisfy the constraints for a DU
pair. Only the generated values are shown in the AutoTest
interface—the values for the other input cells that affect the
formula output that are already in the spreadsheet are im-
plicitly part of the test case and not shown in the interface.

7 Evaluation
For AutoTest to be useful as a tool for testing spread-

sheets, it has to be botheffectiveandefficient. Effectiveness
is judged with respect to a test-adequacy criterion, DU ad-
equacy in this case. A more effective tool in this respect
would be one which is capable of generating test cases that
exercises more of the feasible DU pairs. Efficiency is mea-
sured in terms of the time taken by the system to generate
the test cases that meet the adequacy criterion. This factor
is especially important in the case of spreadsheet systems
with their support for immediate visual feedback.

Since we are comparing AutoTest against HMT, we fol-
low the evaluation of HMT described in [13] and take into
consideration two dependent variables.

1. Ultimate effectiveness, defined as the percentage of the
total number of feasible DU associations

5SatisfyingγT
3 leads to 1 inB8 which, in turn, results inγT

4 being sat-
isfied. On the other hand, satisfyingγF

3 leads to 0 inB8, which results in
γF
4 being satisfied.

6Actually, the first constraint can also be satisfied by setting values in
B5 or B6 to−1. Since the three test cases exercise the same DU pair, the
system only generates the first one.



2. Response time for test generation

7.1 Effectiveness and Efficiency

Since HMT uses randomization, depending on the tech-
nique used, the measures of the dependent variables may
change from one run to another. Therefore the ultimate
effectiveness score for HMT is averaged over 35 runs and
the median response time over 35 runs has been presented
in [13]. Our system, on the other hand, always produces
the same output given the same starting spreadsheet con-
figuration. We reproduce the results from [13] in Tables 1
and 2 and compare with the numbers obtained by running
AutoTest on the same spreadsheets.7

AutoTest is also efficient in the sense that it only gener-
ates one test case per feasible DU pair for the formula that
is being tested. Therefore it generates the minimum num-
ber of test cases to be able to execute all feasible DU pairs.
Such optimal test suites would save the user time and effort
during generation (since the user has to approve a candidate
test case before it can be added to the suite of test cases for
the formula), test runs, and maintenance of test suites. The
ultimate effectiveness scores reported in Table 1 and the re-
sponse times reported in Table 2 for AutoTest are based on
the optimal test suites that are generated by the system. The
size of the test suites generated by HMT for achieving the
level of coverage shown in Table 1 are not available.

7.2 Discussion

As can be seen from the ultimate effectiveness scores
shown in Table 1, AutoTest generates test cases that cause
the execution of all feasible DU associations for the spread-
sheets used in the evaluation. HMT running the Chaining
algorithm has comparable ultimate effectiveness scores.

The response times for test generation for each of the
spreadsheets used in the evaluation are shown in Table 2.
Note that the figures show the time taken to generate a set of
test cases that come as close as possible to a 100% ultimate
effectiveness score. From the numbers in Table 2, we see
that AutoTest far outperforms the algorithms used by HMT
for the generation of test cases.

We can conclude therefore that our AutoTest system,
whose approach to generate test cases is based on an deriva-
tion, propagation, and solving of constraints, is efficient and
accurate. Moreover, AutoTest can also detect infeasible DU
associations automatically

8 Conclusions and Future Work
We have presented a system, AutoTest, that supports

users of Microsoft Excel in the systematic testing of their
spreadsheets. AutoTest automatically generates a minimal
set of tests for each formula cell that guarantees a DU ad-
equate test coverage. The system runs efficiently and also
produces, as a by-product, information about infeasible DU

7Note that the first test case “Budget” is the spreadsheet we have used
in the scenario in Section 3.

associations in the spreadsheet.
The test generation approach, which is based on con-

straint generation, propagation, and solving, is conceptually
simple, which is important for at least two reasons. First, it
allows its reuse in other systems. For example, we believe
that it would be straightforward to integrate this new tech-
nique into the WYSIWYT tool. Second, it facilitates ex-
tensions to be investigated in future. For example, we plan
to extend AutoTest to allow whole regions to be tested by
the test cases for a single region-representative formula. We
can base this extension effectively on the region inference
mechanisms reported in [3].
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